property.c 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
14 15
#include <linux/export.h>
#include <linux/kernel.h>
16
#include <linux/of.h>
17
#include <linux/of_address.h>
18
#include <linux/of_graph.h>
19
#include <linux/property.h>
20 21
#include <linux/etherdevice.h>
#include <linux/phy.h>
22

23 24
struct property_set {
	struct fwnode_handle fwnode;
25
	const struct property_entry *properties;
26 27
};

28
static inline bool is_pset_node(struct fwnode_handle *fwnode)
29
{
30
	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
31 32
}

33
static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
34
{
35
	return is_pset_node(fwnode) ?
36 37 38
		container_of(fwnode, struct property_set, fwnode) : NULL;
}

39 40
static const struct property_entry *pset_prop_get(struct property_set *pset,
						  const char *name)
41
{
42
	const struct property_entry *prop;
43 44 45 46 47 48 49 50 51 52 53

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

54 55
static const void *pset_prop_find(struct property_set *pset,
				  const char *propname, size_t length)
56
{
57 58
	const struct property_entry *prop;
	const void *pointer;
59

60 61 62
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
63 64 65 66
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
67 68 69 70 71 72 73 74 75 76 77
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

static int pset_prop_read_u8_array(struct property_set *pset,
				   const char *propname,
				   u8 *values, size_t nval)
{
78
	const void *pointer;
79 80 81 82 83 84 85 86 87 88 89 90 91 92
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u16_array(struct property_set *pset,
				    const char *propname,
				    u16 *values, size_t nval)
{
93
	const void *pointer;
94 95 96 97 98 99 100 101 102 103 104 105 106 107
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u32_array(struct property_set *pset,
				    const char *propname,
				    u32 *values, size_t nval)
{
108
	const void *pointer;
109 110 111 112 113 114 115 116 117 118 119 120 121 122
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u64_array(struct property_set *pset,
				    const char *propname,
				    u64 *values, size_t nval)
{
123
	const void *pointer;
124 125 126 127 128 129 130 131 132 133 134 135 136
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_count_elems_of_size(struct property_set *pset,
					 const char *propname, size_t length)
{
137
	const struct property_entry *prop;
138 139

	prop = pset_prop_get(pset, propname);
140 141
	if (!prop)
		return -EINVAL;
142 143 144 145 146 147 148 149

	return prop->length / length;
}

static int pset_prop_read_string_array(struct property_set *pset,
				       const char *propname,
				       const char **strings, size_t nval)
{
150
	const struct property_entry *prop;
151
	const void *pointer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	size_t array_len, length;

	/* Find out the array length. */
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;

	if (!prop->is_array)
		/* The array length for a non-array string property is 1. */
		array_len = 1;
	else
		/* Find the length of an array. */
		array_len = pset_prop_count_elems_of_size(pset, propname,
							  sizeof(const char *));

	/* Return how many there are if strings is NULL. */
	if (!strings)
		return array_len;

	array_len = min(nval, array_len);
	length = array_len * sizeof(*strings);
173 174 175 176 177 178

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
179

180
	return array_len;
181
}
182

183
struct fwnode_handle *dev_fwnode(struct device *dev)
184 185 186 187
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
188
EXPORT_SYMBOL_GPL(dev_fwnode);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static bool pset_fwnode_property_present(struct fwnode_handle *fwnode,
					 const char *propname)
{
	return !!pset_prop_get(to_pset_node(fwnode), propname);
}

static int pset_fwnode_read_int_array(struct fwnode_handle *fwnode,
				      const char *propname,
				      unsigned int elem_size, void *val,
				      size_t nval)
{
	struct property_set *node = to_pset_node(fwnode);

	if (!val)
		return pset_prop_count_elems_of_size(node, propname, elem_size);

	switch (elem_size) {
	case sizeof(u8):
		return pset_prop_read_u8_array(node, propname, val, nval);
	case sizeof(u16):
		return pset_prop_read_u16_array(node, propname, val, nval);
	case sizeof(u32):
		return pset_prop_read_u32_array(node, propname, val, nval);
	case sizeof(u64):
		return pset_prop_read_u64_array(node, propname, val, nval);
	}

	return -ENXIO;
}

static int pset_fwnode_property_read_string_array(struct fwnode_handle *fwnode,
						  const char *propname,
						  const char **val, size_t nval)
{
	return pset_prop_read_string_array(to_pset_node(fwnode), propname,
					   val, nval);
}

static const struct fwnode_operations pset_fwnode_ops = {
	.property_present = pset_fwnode_property_present,
	.property_read_int_array = pset_fwnode_read_int_array,
	.property_read_string_array = pset_fwnode_property_read_string_array,
};

234 235 236 237 238 239 240 241 242
/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
243
	return fwnode_property_present(dev_fwnode(dev), propname);
244 245 246
}
EXPORT_SYMBOL_GPL(device_property_present);

247 248 249 250 251 252 253 254 255
/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
{
	bool ret;

256
	ret = fwnode_call_int_op(fwnode, property_present, propname);
257 258
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
259 260
		ret = fwnode_call_int_op(fwnode->secondary, property_present,
					 propname);
261 262
	return ret;
}
263 264
EXPORT_SYMBOL_GPL(fwnode_property_present);

265 266 267 268
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
269
 * @val: The values are stored here or %NULL to return the number of values
270 271 272 273 274
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
275 276
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
277 278 279 280
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
281
 *	   %-ENXIO if no suitable firmware interface is present.
282 283 284 285
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
286
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
287 288 289 290 291 292 293
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
294
 * @val: The values are stored here or %NULL to return the number of values
295 296 297 298 299
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
300 301
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
302 303 304 305
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
306
 *	   %-ENXIO if no suitable firmware interface is present.
307 308 309 310
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
311
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
312 313 314 315 316 317 318
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
319
 * @val: The values are stored here or %NULL to return the number of values
320 321 322 323 324
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
325 326
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
327 328 329 330
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
331
 *	   %-ENXIO if no suitable firmware interface is present.
332 333 334 335
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
336
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
337 338 339 340 341 342 343
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
344
 * @val: The values are stored here or %NULL to return the number of values
345 346 347 348 349
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
350 351
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
352 353 354 355
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
356
 *	   %-ENXIO if no suitable firmware interface is present.
357 358 359 360
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
361
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
362 363 364 365 366 367 368
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
369
 * @val: The values are stored here or %NULL to return the number of values
370 371 372 373 374
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
375 376
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
377 378 379 380
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
381
 *	   %-ENXIO if no suitable firmware interface is present.
382 383 384 385
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
386
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
403
 *	   %-ENXIO if no suitable firmware interface is present.
404 405 406 407
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
408
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
409 410
}
EXPORT_SYMBOL_GPL(device_property_read_string);
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static int fwnode_property_read_int_array(struct fwnode_handle *fwnode,
					  const char *propname,
					  unsigned int elem_size, void *val,
					  size_t nval)
{
	int ret;

	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
				 elem_size, val, nval);
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
		ret = fwnode_call_int_op(
			fwnode->secondary, property_read_int_array, propname,
			elem_size, val, nval);

	return ret;
}
451

452 453 454 455
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
456
 * @val: The values are stored here or %NULL to return the number of values
457 458 459 460 461
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
462 463
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
464 465 466 467 468 469 470 471 472
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
				  const char *propname, u8 *val, size_t nval)
{
473 474
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
					      val, nval);
475 476 477 478 479 480 481
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
482
 * @val: The values are stored here or %NULL to return the number of values
483 484 485 486 487
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
488 489
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
490 491 492 493 494 495 496 497 498
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
				   const char *propname, u16 *val, size_t nval)
{
499 500
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
					      val, nval);
501 502 503 504 505 506 507
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
508
 * @val: The values are stored here or %NULL to return the number of values
509 510 511 512 513
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
514 515
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
516 517 518 519 520 521 522 523 524
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
				   const char *propname, u32 *val, size_t nval)
{
525 526
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
					      val, nval);
527 528 529 530 531 532 533
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
534
 * @val: The values are stored here or %NULL to return the number of values
535 536 537 538 539
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
540 541
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
542 543 544 545 546 547 548 549 550
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
				   const char *propname, u64 *val, size_t nval)
{
551 552
	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
					      val, nval);
553 554 555 556 557 558 559
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
560
 * @val: The values are stored here or %NULL to return the number of values
561 562 563 564 565
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
566 567
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
568 569
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
570
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
571 572 573 574 575 576 577
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
				      const char *propname, const char **val,
				      size_t nval)
{
578 579
	int ret;

580 581
	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
				 val, nval);
582 583
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
584 585 586
		ret = fwnode_call_int_op(fwnode->secondary,
					 property_read_string_array, propname,
					 val, nval);
587
	return ret;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string(struct fwnode_handle *fwnode,
				const char *propname, const char **val)
{
609
	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
610

611
	return ret < 0 ? ret : 0;
612 613 614
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_match_string(struct fwnode_handle *fwnode,
	const char *propname, const char *string)
{
	const char **values;
634
	int nval, ret;
635 636 637 638 639

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

640 641 642
	if (nval == 0)
		return -ENODATA;

643 644 645 646 647 648 649 650
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

651 652 653
	ret = match_string(values, nval, string);
	if (ret < 0)
		ret = -ENODATA;
654 655 656 657 658 659
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

660 661
static int property_copy_string_array(struct property_entry *dst,
				      const struct property_entry *src)
662
{
663 664 665
	char **d;
	size_t nval = src->length / sizeof(*d);
	int i;
666

667 668 669
	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
670

671 672 673 674 675 676 677
	for (i = 0; i < nval; i++) {
		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
		if (!d[i] && src->pointer.str[i]) {
			while (--i >= 0)
				kfree(d[i]);
			kfree(d);
			return -ENOMEM;
678 679 680
		}
	}

681 682
	dst->pointer.raw_data = d;
	return 0;
683 684
}

685 686
static int property_entry_copy_data(struct property_entry *dst,
				    const struct property_entry *src)
687
{
688
	int error;
689 690 691 692 693 694

	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		return -ENOMEM;

	if (src->is_array) {
695 696 697 698
		if (!src->length) {
			error = -ENODATA;
			goto out_free_name;
		}
699

700
		if (src->is_string) {
701 702 703
			error = property_copy_string_array(dst, src);
			if (error)
				goto out_free_name;
704 705 706
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
707 708 709 710
			if (!dst->pointer.raw_data) {
				error = -ENOMEM;
				goto out_free_name;
			}
711 712 713
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
714 715 716 717
		if (!dst->value.str && src->value.str) {
			error = -ENOMEM;
			goto out_free_name;
		}
718 719 720 721 722 723 724 725 726
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

	return 0;
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

out_free_name:
	kfree(dst->name);
	return error;
}

static void property_entry_free_data(const struct property_entry *p)
{
	size_t i, nval;

	if (p->is_array) {
		if (p->is_string && p->pointer.str) {
			nval = p->length / sizeof(const char *);
			for (i = 0; i < nval; i++)
				kfree(p->pointer.str[i]);
		}
		kfree(p->pointer.raw_data);
	} else if (p->is_string) {
		kfree(p->value.str);
	}
	kfree(p->name);
}

/**
 * property_entries_dup - duplicate array of properties
 * @properties: array of properties to copy
 *
 * This function creates a deep copy of the given NULL-terminated array
 * of property entries.
 */
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
	struct property_entry *p;
	int i, n = 0;

	while (properties[n].name)
		n++;

	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n; i++) {
		int ret = property_entry_copy_data(&p[i], &properties[i]);
		if (ret) {
			while (--i >= 0)
				property_entry_free_data(&p[i]);
			kfree(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);

/**
 * property_entries_free - free previously allocated array of properties
 * @properties: array of properties to destroy
 *
 * This function frees given NULL-terminated array of property entries,
 * along with their data.
 */
void property_entries_free(const struct property_entry *properties)
{
	const struct property_entry *p;

	for (p = properties; p->name; p++)
		property_entry_free_data(p);

	kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);

/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	if (!pset)
		return;

	property_entries_free(pset->properties);
	kfree(pset);
816 817 818 819 820 821 822 823 824 825 826 827 828 829
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
830
	struct property_entry *properties;
831 832 833 834 835 836
	struct property_set *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

837 838
	properties = property_entries_dup(pset->properties);
	if (IS_ERR(properties)) {
839
		kfree(p);
840
		return ERR_CAST(properties);
841 842
	}

843
	p->properties = properties;
844 845 846 847
	return p;
}

/**
848
 * device_remove_properties - Remove properties from a device object.
849 850 851
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
852
 * secondary firmware node with device_add_properties(). Memory allocated
853 854
 * to the properties will also be released.
 */
855
void device_remove_properties(struct device *dev)
856 857 858 859 860 861 862 863 864 865 866
{
	struct fwnode_handle *fwnode;

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
867 868
	if (is_pset_node(fwnode)) {
		set_primary_fwnode(dev, NULL);
869
		pset_free_set(to_pset_node(fwnode));
870 871 872 873 874 875 876
	} else {
		fwnode = fwnode->secondary;
		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
			set_secondary_fwnode(dev, NULL);
			pset_free_set(to_pset_node(fwnode));
		}
	}
877
}
878
EXPORT_SYMBOL_GPL(device_remove_properties);
879 880

/**
881
 * device_add_properties - Add a collection of properties to a device object.
882
 * @dev: Device to add properties to.
883
 * @properties: Collection of properties to add.
884
 *
885 886 887
 * Associate a collection of device properties represented by @properties with
 * @dev as its secondary firmware node. The function takes a copy of
 * @properties.
888
 */
889 890
int device_add_properties(struct device *dev,
			  const struct property_entry *properties)
891
{
892
	struct property_set *p, pset;
893

894
	if (!properties)
895 896
		return -EINVAL;

897 898 899
	pset.properties = properties;

	p = pset_copy_set(&pset);
900 901 902 903
	if (IS_ERR(p))
		return PTR_ERR(p);

	p->fwnode.type = FWNODE_PDATA;
904
	p->fwnode.ops = &pset_fwnode_ops;
905 906 907
	set_secondary_fwnode(dev, &p->fwnode);
	return 0;
}
908
EXPORT_SYMBOL_GPL(device_add_properties);
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/**
 * fwnode_get_next_parent - Iterate to the node's parent
 * @fwnode: Firmware whose parent is retrieved
 *
 * This is like fwnode_get_parent() except that it drops the refcount
 * on the passed node, making it suitable for iterating through a
 * node's parents.
 *
 * Returns a node pointer with refcount incremented, use
 * fwnode_handle_node() on it when done.
 */
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = fwnode_get_parent(fwnode);

	fwnode_handle_put(fwnode);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);

931 932 933 934 935 936 937 938 939
/**
 * fwnode_get_parent - Return parent firwmare node
 * @fwnode: Firmware whose parent is retrieved
 *
 * Return parent firmware node of the given node if possible or %NULL if no
 * parent was available.
 */
struct fwnode_handle *fwnode_get_parent(struct fwnode_handle *fwnode)
{
940
	return fwnode_call_ptr_op(fwnode, get_parent);
941 942 943
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);

944
/**
945 946 947
 * fwnode_get_next_child_node - Return the next child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
948
 */
949
struct fwnode_handle *fwnode_get_next_child_node(struct fwnode_handle *fwnode,
950 951
						 struct fwnode_handle *child)
{
952
	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
953
}
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);

/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct fwnode_handle *fwnode = NULL;

	if (dev->of_node)
		fwnode = &dev->of_node->fwnode;
	else if (adev)
		fwnode = acpi_fwnode_handle(adev);

	return fwnode_get_next_child_node(fwnode, child);
}
974 975
EXPORT_SYMBOL_GPL(device_get_next_child_node);

976
/**
977 978
 * fwnode_get_named_child_node - Return first matching named child node handle
 * @fwnode: Firmware node to find the named child node for.
979 980
 * @childname: String to match child node name against.
 */
981
struct fwnode_handle *fwnode_get_named_child_node(struct fwnode_handle *fwnode,
982 983
						  const char *childname)
{
984
	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
985
}
986 987 988 989 990 991 992 993 994 995 996 997
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);

/**
 * device_get_named_child_node - Return first matching named child node handle
 * @dev: Device to find the named child node for.
 * @childname: String to match child node name against.
 */
struct fwnode_handle *device_get_named_child_node(struct device *dev,
						  const char *childname)
{
	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
998 999
EXPORT_SYMBOL_GPL(device_get_named_child_node);

1000 1001 1002 1003 1004 1005
/**
 * fwnode_handle_get - Obtain a reference to a device node
 * @fwnode: Pointer to the device node to obtain the reference to.
 */
void fwnode_handle_get(struct fwnode_handle *fwnode)
{
1006
	fwnode_call_void_op(fwnode, get);
1007 1008 1009
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
1020
	fwnode_call_void_op(fwnode, put);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

1069
/**
1070
 * device_get_phy_mode - Get phy mode for given device
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	const char *pm;
	int err, i;

	err = device_property_read_string(dev, "phy-mode", &pm);
	if (err < 0)
		err = device_property_read_string(dev,
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
EXPORT_SYMBOL_GPL(device_get_phy_mode);

static void *device_get_mac_addr(struct device *dev,
				 const char *name, char *addr,
				 int alen)
{
	int ret = device_property_read_u8_array(dev, name, addr, alen);

1103
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1104 1105 1106 1107 1108
		return addr;
	return NULL;
}

/**
1109 1110 1111 1112 1113 1114
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1125 1126 1127 1128 1129
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1130 1131 1132
*/
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
1133
	char *res;
1134

1135 1136 1137 1138 1139 1140 1141
	res = device_get_mac_addr(dev, "mac-address", addr, alen);
	if (res)
		return res;

	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
	if (res)
		return res;
1142 1143 1144 1145

	return device_get_mac_addr(dev, "address", addr, alen);
}
EXPORT_SYMBOL(device_get_mac_address);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

/**
 * device_graph_get_next_endpoint - Get next endpoint firmware node
 * @fwnode: Pointer to the parent firmware node
 * @prev: Previous endpoint node or %NULL to get the first
 *
 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 * are available.
 */
struct fwnode_handle *
fwnode_graph_get_next_endpoint(struct fwnode_handle *fwnode,
			       struct fwnode_handle *prev)
{
	struct fwnode_handle *endpoint = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_graph_get_next_endpoint(to_of_node(fwnode),
						  to_of_node(prev));

		if (node)
			endpoint = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		endpoint = acpi_graph_get_next_endpoint(fwnode, prev);
		if (IS_ERR(endpoint))
			endpoint = NULL;
	}

	return endpoint;

}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);

/**
 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote device the @fwnode points to.
 */
struct fwnode_handle *
fwnode_graph_get_remote_port_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_graph_get_remote_port_parent(to_of_node(fwnode));
		if (node)
			parent = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		int ret;

		ret = acpi_graph_get_remote_endpoint(fwnode, &parent, NULL,
						     NULL);
		if (ret)
			return NULL;
	}

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);

/**
 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote port the @fwnode points to.
 */
struct fwnode_handle *fwnode_graph_get_remote_port(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *port = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_graph_get_remote_port(to_of_node(fwnode));
		if (node)
			port = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		int ret;

		ret = acpi_graph_get_remote_endpoint(fwnode, NULL, &port, NULL);
		if (ret)
			return NULL;
	}

	return port;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);

/**
 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote endpoint the @fwnode points to.
 */
struct fwnode_handle *
fwnode_graph_get_remote_endpoint(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *endpoint = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_parse_phandle(to_of_node(fwnode), "remote-endpoint",
					0);
		if (node)
			endpoint = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		int ret;

		ret = acpi_graph_get_remote_endpoint(fwnode, NULL, NULL,
						     &endpoint);
		if (ret)
			return NULL;
	}

	return endpoint;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

/**
 * fwnode_graph_parse_endpoint - parse common endpoint node properties
 * @fwnode: pointer to endpoint fwnode_handle
 * @endpoint: pointer to the fwnode endpoint data structure
 *
 * Parse @fwnode representing a graph endpoint node and store the
 * information in @endpoint. The caller must hold a reference to
 * @fwnode.
 */
int fwnode_graph_parse_endpoint(struct fwnode_handle *fwnode,
				struct fwnode_endpoint *endpoint)
{
	struct fwnode_handle *port_fwnode = fwnode_get_parent(fwnode);

	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_fwnode = fwnode;

	if (is_acpi_node(port_fwnode)) {
		fwnode_property_read_u32(port_fwnode, "port", &endpoint->port);
		fwnode_property_read_u32(fwnode, "endpoint", &endpoint->id);
	} else {
		fwnode_property_read_u32(port_fwnode, "reg", &endpoint->port);
		fwnode_property_read_u32(fwnode, "reg", &endpoint->id);
	}

	fwnode_handle_put(port_fwnode);

	return 0;
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);