property.c 39.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * property.c - Unified device property interface.
 *
 * Copyright (C) 2014, Intel Corporation
 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/acpi.h>
14 15
#include <linux/export.h>
#include <linux/kernel.h>
16
#include <linux/of.h>
17
#include <linux/of_address.h>
18
#include <linux/of_graph.h>
19
#include <linux/property.h>
20 21
#include <linux/etherdevice.h>
#include <linux/phy.h>
22

23 24
struct property_set {
	struct fwnode_handle fwnode;
25
	const struct property_entry *properties;
26 27
};

28
static inline bool is_pset_node(struct fwnode_handle *fwnode)
29
{
30
	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
31 32
}

33
static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
34
{
35
	return is_pset_node(fwnode) ?
36 37 38
		container_of(fwnode, struct property_set, fwnode) : NULL;
}

39 40
static const struct property_entry *pset_prop_get(struct property_set *pset,
						  const char *name)
41
{
42
	const struct property_entry *prop;
43 44 45 46 47 48 49 50 51 52 53

	if (!pset || !pset->properties)
		return NULL;

	for (prop = pset->properties; prop->name; prop++)
		if (!strcmp(name, prop->name))
			return prop;

	return NULL;
}

54 55
static const void *pset_prop_find(struct property_set *pset,
				  const char *propname, size_t length)
56
{
57 58
	const struct property_entry *prop;
	const void *pointer;
59

60 61 62
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return ERR_PTR(-EINVAL);
63 64 65 66
	if (prop->is_array)
		pointer = prop->pointer.raw_data;
	else
		pointer = &prop->value.raw_data;
67 68 69 70 71 72 73 74 75 76 77
	if (!pointer)
		return ERR_PTR(-ENODATA);
	if (length > prop->length)
		return ERR_PTR(-EOVERFLOW);
	return pointer;
}

static int pset_prop_read_u8_array(struct property_set *pset,
				   const char *propname,
				   u8 *values, size_t nval)
{
78
	const void *pointer;
79 80 81 82 83 84 85 86 87 88 89 90 91 92
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u16_array(struct property_set *pset,
				    const char *propname,
				    u16 *values, size_t nval)
{
93
	const void *pointer;
94 95 96 97 98 99 100 101 102 103 104 105 106 107
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u32_array(struct property_set *pset,
				    const char *propname,
				    u32 *values, size_t nval)
{
108
	const void *pointer;
109 110 111 112 113 114 115 116 117 118 119 120 121 122
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_read_u64_array(struct property_set *pset,
				    const char *propname,
				    u64 *values, size_t nval)
{
123
	const void *pointer;
124 125 126 127 128 129 130 131 132 133 134 135 136
	size_t length = nval * sizeof(*values);

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(values, pointer, length);
	return 0;
}

static int pset_prop_count_elems_of_size(struct property_set *pset,
					 const char *propname, size_t length)
{
137
	const struct property_entry *prop;
138 139

	prop = pset_prop_get(pset, propname);
140 141
	if (!prop)
		return -EINVAL;
142 143 144 145 146 147 148 149

	return prop->length / length;
}

static int pset_prop_read_string_array(struct property_set *pset,
				       const char *propname,
				       const char **strings, size_t nval)
{
150
	const struct property_entry *prop;
151
	const void *pointer;
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	size_t array_len, length;

	/* Find out the array length. */
	prop = pset_prop_get(pset, propname);
	if (!prop)
		return -EINVAL;

	if (!prop->is_array)
		/* The array length for a non-array string property is 1. */
		array_len = 1;
	else
		/* Find the length of an array. */
		array_len = pset_prop_count_elems_of_size(pset, propname,
							  sizeof(const char *));

	/* Return how many there are if strings is NULL. */
	if (!strings)
		return array_len;

	array_len = min(nval, array_len);
	length = array_len * sizeof(*strings);
173 174 175 176 177 178

	pointer = pset_prop_find(pset, propname, length);
	if (IS_ERR(pointer))
		return PTR_ERR(pointer);

	memcpy(strings, pointer, length);
179

180
	return array_len;
181
}
182

183
struct fwnode_handle *dev_fwnode(struct device *dev)
184 185 186 187
{
	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
		&dev->of_node->fwnode : dev->fwnode;
}
188
EXPORT_SYMBOL_GPL(dev_fwnode);
189 190 191 192 193 194 195 196 197 198

/**
 * device_property_present - check if a property of a device is present
 * @dev: Device whose property is being checked
 * @propname: Name of the property
 *
 * Check if property @propname is present in the device firmware description.
 */
bool device_property_present(struct device *dev, const char *propname)
{
199
	return fwnode_property_present(dev_fwnode(dev), propname);
200 201 202
}
EXPORT_SYMBOL_GPL(device_property_present);

203 204
static bool __fwnode_property_present(struct fwnode_handle *fwnode,
				      const char *propname)
205 206
{
	if (is_of_node(fwnode))
207
		return of_property_read_bool(to_of_node(fwnode), propname);
208
	else if (is_acpi_node(fwnode))
209
		return !acpi_node_prop_get(fwnode, propname, NULL);
210 211
	else if (is_pset_node(fwnode))
		return !!pset_prop_get(to_pset_node(fwnode), propname);
212
	return false;
213
}
214 215 216 217 218 219 220 221 222 223 224

/**
 * fwnode_property_present - check if a property of a firmware node is present
 * @fwnode: Firmware node whose property to check
 * @propname: Name of the property
 */
bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
{
	bool ret;

	ret = __fwnode_property_present(fwnode, propname);
225 226
	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
227 228 229
		ret = __fwnode_property_present(fwnode->secondary, propname);
	return ret;
}
230 231
EXPORT_SYMBOL_GPL(fwnode_property_present);

232 233 234 235
/**
 * device_property_read_u8_array - return a u8 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
236
 * @val: The values are stored here or %NULL to return the number of values
237 238 239 240 241
 * @nval: Size of the @val array
 *
 * Function reads an array of u8 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
242 243
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
244 245 246 247
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
248
 *	   %-ENXIO if no suitable firmware interface is present.
249 250 251 252
 */
int device_property_read_u8_array(struct device *dev, const char *propname,
				  u8 *val, size_t nval)
{
253
	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
254 255 256 257 258 259 260
}
EXPORT_SYMBOL_GPL(device_property_read_u8_array);

/**
 * device_property_read_u16_array - return a u16 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
261
 * @val: The values are stored here or %NULL to return the number of values
262 263 264 265 266
 * @nval: Size of the @val array
 *
 * Function reads an array of u16 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
267 268
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
269 270 271 272
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
273
 *	   %-ENXIO if no suitable firmware interface is present.
274 275 276 277
 */
int device_property_read_u16_array(struct device *dev, const char *propname,
				   u16 *val, size_t nval)
{
278
	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
279 280 281 282 283 284 285
}
EXPORT_SYMBOL_GPL(device_property_read_u16_array);

/**
 * device_property_read_u32_array - return a u32 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
286
 * @val: The values are stored here or %NULL to return the number of values
287 288 289 290 291
 * @nval: Size of the @val array
 *
 * Function reads an array of u32 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
292 293
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
294 295 296 297
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
298
 *	   %-ENXIO if no suitable firmware interface is present.
299 300 301 302
 */
int device_property_read_u32_array(struct device *dev, const char *propname,
				   u32 *val, size_t nval)
{
303
	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
304 305 306 307 308 309 310
}
EXPORT_SYMBOL_GPL(device_property_read_u32_array);

/**
 * device_property_read_u64_array - return a u64 array property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
311
 * @val: The values are stored here or %NULL to return the number of values
312 313 314 315 316
 * @nval: Size of the @val array
 *
 * Function reads an array of u64 properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
317 318
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
319 320 321 322
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected.
323
 *	   %-ENXIO if no suitable firmware interface is present.
324 325 326 327
 */
int device_property_read_u64_array(struct device *dev, const char *propname,
				   u64 *val, size_t nval)
{
328
	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
329 330 331 332 333 334 335
}
EXPORT_SYMBOL_GPL(device_property_read_u64_array);

/**
 * device_property_read_string_array - return a string array property of device
 * @dev: Device to get the property of
 * @propname: Name of the property
336
 * @val: The values are stored here or %NULL to return the number of values
337 338 339 340 341
 * @nval: Size of the @val array
 *
 * Function reads an array of string properties with @propname from the device
 * firmware description and stores them to @val if found.
 *
342 343
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
344 345 346 347
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 *	   %-EOVERFLOW if the size of the property is not as expected.
348
 *	   %-ENXIO if no suitable firmware interface is present.
349 350 351 352
 */
int device_property_read_string_array(struct device *dev, const char *propname,
				      const char **val, size_t nval)
{
353
	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}
EXPORT_SYMBOL_GPL(device_property_read_string_array);

/**
 * device_property_read_string - return a string property of a device
 * @dev: Device to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Function reads property @propname from the device firmware description and
 * stores the value into @val if found. The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
370
 *	   %-ENXIO if no suitable firmware interface is present.
371 372 373 374
 */
int device_property_read_string(struct device *dev, const char *propname,
				const char **val)
{
375
	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
376 377
}
EXPORT_SYMBOL_GPL(device_property_read_string);
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
/**
 * device_property_match_string - find a string in an array and return index
 * @dev: Device to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int device_property_match_string(struct device *dev, const char *propname,
				 const char *string)
{
	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
}
EXPORT_SYMBOL_GPL(device_property_match_string);

401 402
#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
403 404
	      : of_property_count_elems_of_size((node), (propname), sizeof(type))

405 406 407 408
#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))

409
#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
410 411 412 413 414 415 416 417
({											\
	int _ret_;									\
	if (is_of_node(_fwnode_))							\
		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
					       _type_, _val_, _nval_);			\
	else if (is_acpi_node(_fwnode_))						\
		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
					    _val_, _nval_);				\
418
	else if (is_pset_node(_fwnode_)) 						\
419 420
		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
					     _type_, _val_, _nval_);			\
421 422 423
	else										\
		_ret_ = -ENXIO;								\
	_ret_;										\
424 425
})

426 427 428 429 430
#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
({											\
	int _ret_;									\
	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
				 _val_, _nval_);					\
431 432
	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
433 434 435 436 437
		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
				_proptype_, _val_, _nval_);				\
	_ret_;										\
})

438 439 440 441
/**
 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
442
 * @val: The values are stored here or %NULL to return the number of values
443 444 445 446 447
 * @nval: Size of the @val array
 *
 * Read an array of u8 properties with @propname from @fwnode and stores them to
 * @val if found.
 *
448 449
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
				  const char *propname, u8 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);

/**
 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
468
 * @val: The values are stored here or %NULL to return the number of values
469 470 471 472 473
 * @nval: Size of the @val array
 *
 * Read an array of u16 properties with @propname from @fwnode and store them to
 * @val if found.
 *
474 475
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
				   const char *propname, u16 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);

/**
 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
494
 * @val: The values are stored here or %NULL to return the number of values
495 496 497 498 499
 * @nval: Size of the @val array
 *
 * Read an array of u32 properties with @propname from @fwnode store them to
 * @val if found.
 *
500 501
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
				   const char *propname, u32 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);

/**
 * fwnode_property_read_u64_array - return a u64 array property firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
520
 * @val: The values are stored here or %NULL to return the number of values
521 522 523 524 525
 * @nval: Size of the @val array
 *
 * Read an array of u64 properties with @propname from @fwnode and store them to
 * @val if found.
 *
526 527
 * Return: number of values if @val was %NULL,
 *         %0 if the property was found (success),
528 529 530 531 532 533 534 535 536 537 538 539 540 541
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of numbers,
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
				   const char *propname, u64 *val, size_t nval)
{
	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
				      val, nval);
}
EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);

542 543 544 545 546 547 548 549 550 551 552 553 554
static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
					       const char *propname,
					       const char **val, size_t nval)
{
	if (is_of_node(fwnode))
		return val ?
			of_property_read_string_array(to_of_node(fwnode),
						      propname, val, nval) :
			of_property_count_strings(to_of_node(fwnode), propname);
	else if (is_acpi_node(fwnode))
		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
					   val, nval);
	else if (is_pset_node(fwnode))
555 556
		return pset_prop_read_string_array(to_pset_node(fwnode),
						   propname, val, nval);
557 558 559
	return -ENXIO;
}

560 561 562 563
/**
 * fwnode_property_read_string_array - return string array property of a node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
564
 * @val: The values are stored here or %NULL to return the number of values
565 566 567 568 569
 * @nval: Size of the @val array
 *
 * Read an string list property @propname from the given firmware node and store
 * them to @val if found.
 *
570 571
 * Return: number of values read on success if @val is non-NULL,
 *	   number of values available on success if @val is NULL,
572 573
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
574
 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
575 576 577 578 579 580 581
 *	   %-EOVERFLOW if the size of the property is not as expected,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
				      const char *propname, const char **val,
				      size_t nval)
{
582 583 584
	int ret;

	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
585 586
	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
	    !IS_ERR_OR_NULL(fwnode->secondary))
587 588 589
		ret = __fwnode_property_read_string_array(fwnode->secondary,
							  propname, val, nval);
	return ret;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);

/**
 * fwnode_property_read_string - return a string property of a firmware node
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property
 * @val: The value is stored here
 *
 * Read property @propname from the given firmware node and store the value into
 * @val if found.  The value is checked to be a string.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_read_string(struct fwnode_handle *fwnode,
				const char *propname, const char **val)
{
611
	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
612

613
	return ret < 0 ? ret : 0;
614 615 616
}
EXPORT_SYMBOL_GPL(fwnode_property_read_string);

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/**
 * fwnode_property_match_string - find a string in an array and return index
 * @fwnode: Firmware node to get the property of
 * @propname: Name of the property holding the array
 * @string: String to look for
 *
 * Find a given string in a string array and if it is found return the
 * index back.
 *
 * Return: %0 if the property was found (success),
 *	   %-EINVAL if given arguments are not valid,
 *	   %-ENODATA if the property does not have a value,
 *	   %-EPROTO if the property is not an array of strings,
 *	   %-ENXIO if no suitable firmware interface is present.
 */
int fwnode_property_match_string(struct fwnode_handle *fwnode,
	const char *propname, const char *string)
{
	const char **values;
636
	int nval, ret;
637 638 639 640 641

	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
	if (nval < 0)
		return nval;

642 643 644
	if (nval == 0)
		return -ENODATA;

645 646 647 648 649 650 651 652
	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
	if (!values)
		return -ENOMEM;

	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
	if (ret < 0)
		goto out;

653 654 655
	ret = match_string(values, nval, string);
	if (ret < 0)
		ret = -ENODATA;
656 657 658 659 660 661
out:
	kfree(values);
	return ret;
}
EXPORT_SYMBOL_GPL(fwnode_property_match_string);

662 663
static int property_copy_string_array(struct property_entry *dst,
				      const struct property_entry *src)
664
{
665 666 667
	char **d;
	size_t nval = src->length / sizeof(*d);
	int i;
668

669 670 671
	d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
	if (!d)
		return -ENOMEM;
672

673 674 675 676 677 678 679
	for (i = 0; i < nval; i++) {
		d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
		if (!d[i] && src->pointer.str[i]) {
			while (--i >= 0)
				kfree(d[i]);
			kfree(d);
			return -ENOMEM;
680 681 682
		}
	}

683 684
	dst->pointer.raw_data = d;
	return 0;
685 686
}

687 688
static int property_entry_copy_data(struct property_entry *dst,
				    const struct property_entry *src)
689
{
690
	int error;
691 692 693 694 695 696

	dst->name = kstrdup(src->name, GFP_KERNEL);
	if (!dst->name)
		return -ENOMEM;

	if (src->is_array) {
697 698 699 700
		if (!src->length) {
			error = -ENODATA;
			goto out_free_name;
		}
701

702
		if (src->is_string) {
703 704 705
			error = property_copy_string_array(dst, src);
			if (error)
				goto out_free_name;
706 707 708
		} else {
			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
							src->length, GFP_KERNEL);
709 710 711 712
			if (!dst->pointer.raw_data) {
				error = -ENOMEM;
				goto out_free_name;
			}
713 714 715
		}
	} else if (src->is_string) {
		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
716 717 718 719
		if (!dst->value.str && src->value.str) {
			error = -ENOMEM;
			goto out_free_name;
		}
720 721 722 723 724 725 726 727 728
	} else {
		dst->value.raw_data = src->value.raw_data;
	}

	dst->length = src->length;
	dst->is_array = src->is_array;
	dst->is_string = src->is_string;

	return 0;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

out_free_name:
	kfree(dst->name);
	return error;
}

static void property_entry_free_data(const struct property_entry *p)
{
	size_t i, nval;

	if (p->is_array) {
		if (p->is_string && p->pointer.str) {
			nval = p->length / sizeof(const char *);
			for (i = 0; i < nval; i++)
				kfree(p->pointer.str[i]);
		}
		kfree(p->pointer.raw_data);
	} else if (p->is_string) {
		kfree(p->value.str);
	}
	kfree(p->name);
}

/**
 * property_entries_dup - duplicate array of properties
 * @properties: array of properties to copy
 *
 * This function creates a deep copy of the given NULL-terminated array
 * of property entries.
 */
struct property_entry *
property_entries_dup(const struct property_entry *properties)
{
	struct property_entry *p;
	int i, n = 0;

	while (properties[n].name)
		n++;

	p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < n; i++) {
		int ret = property_entry_copy_data(&p[i], &properties[i]);
		if (ret) {
			while (--i >= 0)
				property_entry_free_data(&p[i]);
			kfree(p);
			return ERR_PTR(ret);
		}
	}

	return p;
}
EXPORT_SYMBOL_GPL(property_entries_dup);

/**
 * property_entries_free - free previously allocated array of properties
 * @properties: array of properties to destroy
 *
 * This function frees given NULL-terminated array of property entries,
 * along with their data.
 */
void property_entries_free(const struct property_entry *properties)
{
	const struct property_entry *p;

	for (p = properties; p->name; p++)
		property_entry_free_data(p);

	kfree(properties);
}
EXPORT_SYMBOL_GPL(property_entries_free);

/**
 * pset_free_set - releases memory allocated for copied property set
 * @pset: Property set to release
 *
 * Function takes previously copied property set and releases all the
 * memory allocated to it.
 */
static void pset_free_set(struct property_set *pset)
{
	if (!pset)
		return;

	property_entries_free(pset->properties);
	kfree(pset);
818 819 820 821 822 823 824 825 826 827 828 829 830 831
}

/**
 * pset_copy_set - copies property set
 * @pset: Property set to copy
 *
 * This function takes a deep copy of the given property set and returns
 * pointer to the copy. Call device_free_property_set() to free resources
 * allocated in this function.
 *
 * Return: Pointer to the new property set or error pointer.
 */
static struct property_set *pset_copy_set(const struct property_set *pset)
{
832
	struct property_entry *properties;
833 834 835 836 837 838
	struct property_set *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return ERR_PTR(-ENOMEM);

839 840
	properties = property_entries_dup(pset->properties);
	if (IS_ERR(properties)) {
841
		kfree(p);
842
		return ERR_CAST(properties);
843 844
	}

845
	p->properties = properties;
846 847 848 849
	return p;
}

/**
850
 * device_remove_properties - Remove properties from a device object.
851 852 853
 * @dev: Device whose properties to remove.
 *
 * The function removes properties previously associated to the device
854
 * secondary firmware node with device_add_properties(). Memory allocated
855 856
 * to the properties will also be released.
 */
857
void device_remove_properties(struct device *dev)
858 859 860 861 862 863 864 865 866 867 868
{
	struct fwnode_handle *fwnode;

	fwnode = dev_fwnode(dev);
	if (!fwnode)
		return;
	/*
	 * Pick either primary or secondary node depending which one holds
	 * the pset. If there is no real firmware node (ACPI/DT) primary
	 * will hold the pset.
	 */
869 870
	if (is_pset_node(fwnode)) {
		set_primary_fwnode(dev, NULL);
871
		pset_free_set(to_pset_node(fwnode));
872 873 874 875 876 877 878
	} else {
		fwnode = fwnode->secondary;
		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
			set_secondary_fwnode(dev, NULL);
			pset_free_set(to_pset_node(fwnode));
		}
	}
879
}
880
EXPORT_SYMBOL_GPL(device_remove_properties);
881 882

/**
883
 * device_add_properties - Add a collection of properties to a device object.
884
 * @dev: Device to add properties to.
885
 * @properties: Collection of properties to add.
886
 *
887 888 889
 * Associate a collection of device properties represented by @properties with
 * @dev as its secondary firmware node. The function takes a copy of
 * @properties.
890
 */
891 892
int device_add_properties(struct device *dev,
			  const struct property_entry *properties)
893
{
894
	struct property_set *p, pset;
895

896
	if (!properties)
897 898
		return -EINVAL;

899 900 901
	pset.properties = properties;

	p = pset_copy_set(&pset);
902 903 904 905 906 907 908
	if (IS_ERR(p))
		return PTR_ERR(p);

	p->fwnode.type = FWNODE_PDATA;
	set_secondary_fwnode(dev, &p->fwnode);
	return 0;
}
909
EXPORT_SYMBOL_GPL(device_add_properties);
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/**
 * fwnode_get_next_parent - Iterate to the node's parent
 * @fwnode: Firmware whose parent is retrieved
 *
 * This is like fwnode_get_parent() except that it drops the refcount
 * on the passed node, making it suitable for iterating through a
 * node's parents.
 *
 * Returns a node pointer with refcount incremented, use
 * fwnode_handle_node() on it when done.
 */
struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = fwnode_get_parent(fwnode);

	fwnode_handle_put(fwnode);

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_next_parent);

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/**
 * fwnode_get_parent - Return parent firwmare node
 * @fwnode: Firmware whose parent is retrieved
 *
 * Return parent firmware node of the given node if possible or %NULL if no
 * parent was available.
 */
struct fwnode_handle *fwnode_get_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_get_parent(to_of_node(fwnode));
		if (node)
			parent = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		parent = acpi_node_get_parent(fwnode);
	}

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_get_parent);

957
/**
958 959 960
 * fwnode_get_next_child_node - Return the next child node handle for a node
 * @fwnode: Firmware node to find the next child node for.
 * @child: Handle to one of the node's child nodes or a %NULL handle.
961
 */
962
struct fwnode_handle *fwnode_get_next_child_node(struct fwnode_handle *fwnode,
963 964
						 struct fwnode_handle *child)
{
965
	if (is_of_node(fwnode)) {
966 967
		struct device_node *node;

968 969
		node = of_get_next_available_child(to_of_node(fwnode),
						   to_of_node(child));
970 971
		if (node)
			return &node->fwnode;
972 973
	} else if (is_acpi_node(fwnode)) {
		return acpi_get_next_subnode(fwnode, child);
974
	}
975

976 977
	return NULL;
}
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);

/**
 * device_get_next_child_node - Return the next child node handle for a device
 * @dev: Device to find the next child node for.
 * @child: Handle to one of the device's child nodes or a null handle.
 */
struct fwnode_handle *device_get_next_child_node(struct device *dev,
						 struct fwnode_handle *child)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);
	struct fwnode_handle *fwnode = NULL;

	if (dev->of_node)
		fwnode = &dev->of_node->fwnode;
	else if (adev)
		fwnode = acpi_fwnode_handle(adev);

	return fwnode_get_next_child_node(fwnode, child);
}
998 999
EXPORT_SYMBOL_GPL(device_get_next_child_node);

1000
/**
1001 1002
 * fwnode_get_named_child_node - Return first matching named child node handle
 * @fwnode: Firmware node to find the named child node for.
1003 1004
 * @childname: String to match child node name against.
 */
1005
struct fwnode_handle *fwnode_get_named_child_node(struct fwnode_handle *fwnode,
1006 1007 1008 1009 1010
						  const char *childname)
{
	struct fwnode_handle *child;

	/*
1011
	 * Find first matching named child node of this fwnode.
1012 1013
	 * For ACPI this will be a data only sub-node.
	 */
1014
	fwnode_for_each_child_node(fwnode, child) {
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		if (is_of_node(child)) {
			if (!of_node_cmp(to_of_node(child)->name, childname))
				return child;
		} else if (is_acpi_data_node(child)) {
			if (acpi_data_node_match(child, childname))
				return child;
		}
	}

	return NULL;
}
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);

/**
 * device_get_named_child_node - Return first matching named child node handle
 * @dev: Device to find the named child node for.
 * @childname: String to match child node name against.
 */
struct fwnode_handle *device_get_named_child_node(struct device *dev,
						  const char *childname)
{
	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
}
1038 1039
EXPORT_SYMBOL_GPL(device_get_named_child_node);

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/**
 * fwnode_handle_get - Obtain a reference to a device node
 * @fwnode: Pointer to the device node to obtain the reference to.
 */
void fwnode_handle_get(struct fwnode_handle *fwnode)
{
	if (is_of_node(fwnode))
		of_node_get(to_of_node(fwnode));
}
EXPORT_SYMBOL_GPL(fwnode_handle_get);

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
/**
 * fwnode_handle_put - Drop reference to a device node
 * @fwnode: Pointer to the device node to drop the reference to.
 *
 * This has to be used when terminating device_for_each_child_node() iteration
 * with break or return to prevent stale device node references from being left
 * behind.
 */
void fwnode_handle_put(struct fwnode_handle *fwnode)
{
	if (is_of_node(fwnode))
1062
		of_node_put(to_of_node(fwnode));
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
}
EXPORT_SYMBOL_GPL(fwnode_handle_put);

/**
 * device_get_child_node_count - return the number of child nodes for device
 * @dev: Device to cound the child nodes for
 */
unsigned int device_get_child_node_count(struct device *dev)
{
	struct fwnode_handle *child;
	unsigned int count = 0;

	device_for_each_child_node(dev, child)
		count++;

	return count;
}
EXPORT_SYMBOL_GPL(device_get_child_node_count);
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
bool device_dma_supported(struct device *dev)
{
	/* For DT, this is always supported.
	 * For ACPI, this depends on CCA, which
	 * is determined by the acpi_dma_supported().
	 */
	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
		return true;

	return acpi_dma_supported(ACPI_COMPANION(dev));
}
EXPORT_SYMBOL_GPL(device_dma_supported);

enum dev_dma_attr device_get_dma_attr(struct device *dev)
{
	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;

	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
		if (of_dma_is_coherent(dev->of_node))
			attr = DEV_DMA_COHERENT;
		else
			attr = DEV_DMA_NON_COHERENT;
	} else
		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));

	return attr;
}
EXPORT_SYMBOL_GPL(device_get_dma_attr);

1111
/**
1112
 * device_get_phy_mode - Get phy mode for given device
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
 * @dev:	Pointer to the given device
 *
 * The function gets phy interface string from property 'phy-mode' or
 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 * error case.
 */
int device_get_phy_mode(struct device *dev)
{
	const char *pm;
	int err, i;

	err = device_property_read_string(dev, "phy-mode", &pm);
	if (err < 0)
		err = device_property_read_string(dev,
						  "phy-connection-type", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
		if (!strcasecmp(pm, phy_modes(i)))
			return i;

	return -ENODEV;
}
EXPORT_SYMBOL_GPL(device_get_phy_mode);

static void *device_get_mac_addr(struct device *dev,
				 const char *name, char *addr,
				 int alen)
{
	int ret = device_property_read_u8_array(dev, name, addr, alen);

1145
	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1146 1147 1148 1149 1150
		return addr;
	return NULL;
}

/**
1151 1152 1153 1154 1155 1156
 * device_get_mac_address - Get the MAC for a given device
 * @dev:	Pointer to the device
 * @addr:	Address of buffer to store the MAC in
 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 *
 * Search the firmware node for the best MAC address to use.  'mac-address' is
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
 * checked first, because that is supposed to contain to "most recent" MAC
 * address. If that isn't set, then 'local-mac-address' is checked next,
 * because that is the default address.  If that isn't set, then the obsolete
 * 'address' is checked, just in case we're using an old device tree.
 *
 * Note that the 'address' property is supposed to contain a virtual address of
 * the register set, but some DTS files have redefined that property to be the
 * MAC address.
 *
 * All-zero MAC addresses are rejected, because those could be properties that
1167 1168 1169 1170 1171
 * exist in the firmware tables, but were not updated by the firmware.  For
 * example, the DTS could define 'mac-address' and 'local-mac-address', with
 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
 * exists but is all zeros.
1172 1173 1174
*/
void *device_get_mac_address(struct device *dev, char *addr, int alen)
{
1175
	char *res;
1176

1177 1178 1179 1180 1181 1182 1183
	res = device_get_mac_addr(dev, "mac-address", addr, alen);
	if (res)
		return res;

	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
	if (res)
		return res;
1184 1185 1186 1187

	return device_get_mac_addr(dev, "address", addr, alen);
}
EXPORT_SYMBOL(device_get_mac_address);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

/**
 * device_graph_get_next_endpoint - Get next endpoint firmware node
 * @fwnode: Pointer to the parent firmware node
 * @prev: Previous endpoint node or %NULL to get the first
 *
 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
 * are available.
 */
struct fwnode_handle *
fwnode_graph_get_next_endpoint(struct fwnode_handle *fwnode,
			       struct fwnode_handle *prev)
{
	struct fwnode_handle *endpoint = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_graph_get_next_endpoint(to_of_node(fwnode),
						  to_of_node(prev));

		if (node)
			endpoint = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		endpoint = acpi_graph_get_next_endpoint(fwnode, prev);
		if (IS_ERR(endpoint))
			endpoint = NULL;
	}

	return endpoint;

}
EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);

/**
 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote device the @fwnode points to.
 */
struct fwnode_handle *
fwnode_graph_get_remote_port_parent(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *parent = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_graph_get_remote_port_parent(to_of_node(fwnode));
		if (node)
			parent = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		int ret;

		ret = acpi_graph_get_remote_endpoint(fwnode, &parent, NULL,
						     NULL);
		if (ret)
			return NULL;
	}

	return parent;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);

/**
 * fwnode_graph_get_remote_port - Return fwnode of a remote port
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote port the @fwnode points to.
 */
struct fwnode_handle *fwnode_graph_get_remote_port(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *port = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_graph_get_remote_port(to_of_node(fwnode));
		if (node)
			port = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		int ret;

		ret = acpi_graph_get_remote_endpoint(fwnode, NULL, &port, NULL);
		if (ret)
			return NULL;
	}

	return port;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);

/**
 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
 * @fwnode: Endpoint firmware node pointing to the remote endpoint
 *
 * Extracts firmware node of a remote endpoint the @fwnode points to.
 */
struct fwnode_handle *
fwnode_graph_get_remote_endpoint(struct fwnode_handle *fwnode)
{
	struct fwnode_handle *endpoint = NULL;

	if (is_of_node(fwnode)) {
		struct device_node *node;

		node = of_parse_phandle(to_of_node(fwnode), "remote-endpoint",
					0);
		if (node)
			endpoint = &node->fwnode;
	} else if (is_acpi_node(fwnode)) {
		int ret;

		ret = acpi_graph_get_remote_endpoint(fwnode, NULL, NULL,
						     &endpoint);
		if (ret)
			return NULL;
	}

	return endpoint;
}
EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

/**
 * fwnode_graph_parse_endpoint - parse common endpoint node properties
 * @fwnode: pointer to endpoint fwnode_handle
 * @endpoint: pointer to the fwnode endpoint data structure
 *
 * Parse @fwnode representing a graph endpoint node and store the
 * information in @endpoint. The caller must hold a reference to
 * @fwnode.
 */
int fwnode_graph_parse_endpoint(struct fwnode_handle *fwnode,
				struct fwnode_endpoint *endpoint)
{
	struct fwnode_handle *port_fwnode = fwnode_get_parent(fwnode);

	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_fwnode = fwnode;

	if (is_acpi_node(port_fwnode)) {
		fwnode_property_read_u32(port_fwnode, "port", &endpoint->port);
		fwnode_property_read_u32(fwnode, "endpoint", &endpoint->id);
	} else {
		fwnode_property_read_u32(port_fwnode, "reg", &endpoint->port);
		fwnode_property_read_u32(fwnode, "reg", &endpoint->id);
	}

	fwnode_handle_put(port_fwnode);

	return 0;
}
EXPORT_SYMBOL(fwnode_graph_parse_endpoint);