ram_core.c 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 2012 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

15 16
#include <linux/device.h>
#include <linux/err.h>
17 18 19 20
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
21 22
#include <linux/list.h>
#include <linux/memblock.h>
23
#include <linux/rslib.h>
24
#include <linux/slab.h>
25
#include <linux/vmalloc.h>
26
#include <linux/pstore_ram.h>
27
#include <asm/page.h>
28 29 30

struct persistent_ram_buffer {
	uint32_t    sig;
31 32
	atomic_t    start;
	atomic_t    size;
33 34 35 36 37
	uint8_t     data[0];
};

#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static inline size_t buffer_size(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->size);
}

static inline size_t buffer_start(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->start);
}

/* increase and wrap the start pointer, returning the old value */
static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
{
	int old;
	int new;

	do {
		old = atomic_read(&prz->buffer->start);
		new = old + a;
		while (unlikely(new > prz->buffer_size))
			new -= prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);

	return old;
}

/* increase the size counter until it hits the max size */
static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
{
	size_t old;
	size_t new;

	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
		return;

	do {
		old = atomic_read(&prz->buffer->size);
		new = old + a;
		if (new > prz->buffer_size)
			new = prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
}

81
static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
82 83 84
	uint8_t *data, size_t len, uint8_t *ecc)
{
	int i;
85
	uint16_t par[prz->ecc_info.ecc_size];
86

87 88 89
	/* Initialize the parity buffer */
	memset(par, 0, sizeof(par));
	encode_rs8(prz->rs_decoder, data, len, par, 0);
90
	for (i = 0; i < prz->ecc_info.ecc_size; i++)
91 92 93 94 95 96 97
		ecc[i] = par[i];
}

static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
	void *data, size_t len, uint8_t *ecc)
{
	int i;
98
	uint16_t par[prz->ecc_info.ecc_size];
99

100
	for (i = 0; i < prz->ecc_info.ecc_size; i++)
101 102 103 104 105
		par[i] = ecc[i];
	return decode_rs8(prz->rs_decoder, data, par, len,
				NULL, 0, NULL, 0, NULL);
}

106
static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
107
	unsigned int start, unsigned int count)
108 109 110 111 112
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *buffer_end = buffer->data + prz->buffer_size;
	uint8_t *block;
	uint8_t *par;
113 114 115
	int ecc_block_size = prz->ecc_info.block_size;
	int ecc_size = prz->ecc_info.ecc_size;
	int size = ecc_block_size;
116

117
	if (!ecc_size)
118 119
		return;

120
	block = buffer->data + (start & ~(ecc_block_size - 1));
121
	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
122

123
	do {
124
		if (block + ecc_block_size > buffer_end)
125 126
			size = buffer_end - block;
		persistent_ram_encode_rs8(prz, block, size, par);
127 128
		block += ecc_block_size;
		par += ecc_size;
129
	} while (block < buffer->data + start + count);
130 131
}

132
static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
133 134 135
{
	struct persistent_ram_buffer *buffer = prz->buffer;

136
	if (!prz->ecc_info.ecc_size)
137 138
		return;

139 140 141 142
	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
				  prz->par_header);
}

143
static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
144 145 146 147 148
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *block;
	uint8_t *par;

149
	if (!prz->ecc_info.ecc_size)
150 151
		return;

152 153
	block = buffer->data;
	par = prz->par_buffer;
154
	while (block < buffer->data + buffer_size(prz)) {
155
		int numerr;
156
		int size = prz->ecc_info.block_size;
157 158 159 160
		if (block + size > buffer->data + prz->buffer_size)
			size = buffer->data + prz->buffer_size - block;
		numerr = persistent_ram_decode_rs8(prz, block, size, par);
		if (numerr > 0) {
161
			pr_devel("persistent_ram: error in block %p, %d\n",
162 163 164
			       block, numerr);
			prz->corrected_bytes += numerr;
		} else if (numerr < 0) {
165
			pr_devel("persistent_ram: uncorrectable error in block %p\n",
166 167 168
				block);
			prz->bad_blocks++;
		}
169 170
		block += prz->ecc_info.block_size;
		par += prz->ecc_info.ecc_size;
171 172 173
	}
}

174
static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
175
				   struct persistent_ram_ecc_info *ecc_info)
176 177 178 179
{
	int numerr;
	struct persistent_ram_buffer *buffer = prz->buffer;
	int ecc_blocks;
180
	size_t ecc_total;
181

182
	if (!ecc_info || !ecc_info->ecc_size)
183 184
		return 0;

185 186 187 188
	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
189

190 191 192 193
	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
				  prz->ecc_info.block_size +
				  prz->ecc_info.ecc_size);
	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
194 195
	if (ecc_total >= prz->buffer_size) {
		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
196 197
		       __func__, prz->ecc_info.ecc_size,
		       ecc_total, prz->buffer_size);
198 199 200
		return -EINVAL;
	}

201
	prz->buffer_size -= ecc_total;
202
	prz->par_buffer = buffer->data + prz->buffer_size;
203 204
	prz->par_header = prz->par_buffer +
			  ecc_blocks * prz->ecc_info.ecc_size;
205 206 207 208 209

	/*
	 * first consecutive root is 0
	 * primitive element to generate roots = 1
	 */
210 211
	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
				  0, 1, prz->ecc_info.ecc_size);
212 213 214
	if (prz->rs_decoder == NULL) {
		pr_info("persistent_ram: init_rs failed\n");
		return -EINVAL;
215
	}
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

	prz->corrected_bytes = 0;
	prz->bad_blocks = 0;

	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
					   prz->par_header);
	if (numerr > 0) {
		pr_info("persistent_ram: error in header, %d\n", numerr);
		prz->corrected_bytes += numerr;
	} else if (numerr < 0) {
		pr_info("persistent_ram: uncorrectable error in header\n");
		prz->bad_blocks++;
	}

	return 0;
}

ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
	char *str, size_t len)
{
	ssize_t ret;

238 239 240
	if (!prz->ecc_info.ecc_size)
		return 0;

241 242 243 244 245 246 247 248 249 250
	if (prz->corrected_bytes || prz->bad_blocks)
		ret = snprintf(str, len, ""
			"\n%d Corrected bytes, %d unrecoverable blocks\n",
			prz->corrected_bytes, prz->bad_blocks);
	else
		ret = snprintf(str, len, "\nNo errors detected\n");

	return ret;
}

251
static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
252
	const void *s, unsigned int start, unsigned int count)
253 254
{
	struct persistent_ram_buffer *buffer = prz->buffer;
255 256
	memcpy(buffer->data + start, s, count);
	persistent_ram_update_ecc(prz, start, count);
257 258
}

259
void persistent_ram_save_old(struct persistent_ram_zone *prz)
260 261
{
	struct persistent_ram_buffer *buffer = prz->buffer;
262 263
	size_t size = buffer_size(prz);
	size_t start = buffer_start(prz);
264

265 266
	if (!size)
		return;
267

268 269 270 271 272
	if (!prz->old_log) {
		persistent_ram_ecc_old(prz);
		prz->old_log = kmalloc(size, GFP_KERNEL);
	}
	if (!prz->old_log) {
273 274 275 276
		pr_err("persistent_ram: failed to allocate buffer\n");
		return;
	}

277 278 279
	prz->old_log_size = size;
	memcpy(prz->old_log, &buffer->data[start], size - start);
	memcpy(prz->old_log + size - start, &buffer->data[0], start);
280 281
}

282
int notrace persistent_ram_write(struct persistent_ram_zone *prz,
283 284 285 286
	const void *s, unsigned int count)
{
	int rem;
	int c = count;
287
	size_t start;
288

289
	if (unlikely(c > prz->buffer_size)) {
290 291 292
		s += c - prz->buffer_size;
		c = prz->buffer_size;
	}
293

294
	buffer_size_add(prz, c);
295 296 297 298 299 300

	start = buffer_start_add(prz, c);

	rem = prz->buffer_size - start;
	if (unlikely(rem < c)) {
		persistent_ram_update(prz, s, start, rem);
301 302
		s += rem;
		c -= rem;
303
		start = 0;
304
	}
305
	persistent_ram_update(prz, s, start, c);
306

307
	persistent_ram_update_header_ecc(prz);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

	return count;
}

size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
{
	return prz->old_log_size;
}

void *persistent_ram_old(struct persistent_ram_zone *prz)
{
	return prz->old_log;
}

void persistent_ram_free_old(struct persistent_ram_zone *prz)
{
	kfree(prz->old_log);
	prz->old_log = NULL;
	prz->old_log_size = 0;
}

329 330 331 332 333 334 335
void persistent_ram_zap(struct persistent_ram_zone *prz)
{
	atomic_set(&prz->buffer->start, 0);
	atomic_set(&prz->buffer->size, 0);
	persistent_ram_update_header_ecc(prz);
}

336
static void *persistent_ram_vmap(phys_addr_t start, size_t size)
337
{
338 339 340 341 342
	struct page **pages;
	phys_addr_t page_start;
	unsigned int page_count;
	pgprot_t prot;
	unsigned int i;
343
	void *vaddr;
344 345 346 347 348 349 350 351 352 353

	page_start = start - offset_in_page(start);
	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);

	prot = pgprot_noncached(PAGE_KERNEL);

	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
	if (!pages) {
		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
			page_count);
354
		return NULL;
355 356 357 358 359 360
	}

	for (i = 0; i < page_count; i++) {
		phys_addr_t addr = page_start + i * PAGE_SIZE;
		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
	}
361
	vaddr = vmap(pages, page_count, VM_MAP, prot);
362
	kfree(pages);
363 364 365 366

	return vaddr;
}

367 368 369 370 371 372 373 374 375 376 377
static void *persistent_ram_iomap(phys_addr_t start, size_t size)
{
	if (!request_mem_region(start, size, "persistent_ram")) {
		pr_err("request mem region (0x%llx@0x%llx) failed\n",
			(unsigned long long)size, (unsigned long long)start);
		return NULL;
	}

	return ioremap(start, size);
}

378 379 380
static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
		struct persistent_ram_zone *prz)
{
381 382 383
	prz->paddr = start;
	prz->size = size;

384 385 386 387 388
	if (pfn_valid(start >> PAGE_SHIFT))
		prz->vaddr = persistent_ram_vmap(start, size);
	else
		prz->vaddr = persistent_ram_iomap(start, size);

389
	if (!prz->vaddr) {
390 391
		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
			(unsigned long long)size, (unsigned long long)start);
392 393 394 395 396 397 398 399 400
		return -ENOMEM;
	}

	prz->buffer = prz->vaddr + offset_in_page(start);
	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);

	return 0;
}

401
static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
402
				    struct persistent_ram_ecc_info *ecc_info)
403
{
404
	int ret;
405

406
	ret = persistent_ram_init_ecc(prz, ecc_info);
407
	if (ret)
408
		return ret;
409

410 411 412
	sig ^= PERSISTENT_RAM_SIG;

	if (prz->buffer->sig == sig) {
413 414 415
		if (buffer_size(prz) > prz->buffer_size ||
		    buffer_start(prz) > buffer_size(prz))
			pr_info("persistent_ram: found existing invalid buffer,"
416
				" size %zu, start %zu\n",
417
			       buffer_size(prz), buffer_start(prz));
418
		else {
419
			pr_debug("persistent_ram: found existing buffer,"
420
				" size %zu, start %zu\n",
421
			       buffer_size(prz), buffer_start(prz));
422
			persistent_ram_save_old(prz);
423
			return 0;
424 425
		}
	} else {
426
		pr_debug("persistent_ram: no valid data in buffer"
427
			" (sig = 0x%08x)\n", prz->buffer->sig);
428 429
	}

430
	prz->buffer->sig = sig;
431
	persistent_ram_zap(prz);
432

433 434 435
	return 0;
}

436 437
void persistent_ram_free(struct persistent_ram_zone *prz)
{
438 439 440 441 442 443 444 445 446 447 448
	if (!prz)
		return;

	if (prz->vaddr) {
		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
			vunmap(prz->vaddr);
		} else {
			iounmap(prz->vaddr);
			release_mem_region(prz->paddr, prz->size);
		}
		prz->vaddr = NULL;
449 450 451 452 453
	}
	persistent_ram_free_old(prz);
	kfree(prz);
}

454
struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
455
			u32 sig, struct persistent_ram_ecc_info *ecc_info)
456 457 458 459 460 461 462 463 464 465 466 467 468 469
{
	struct persistent_ram_zone *prz;
	int ret = -ENOMEM;

	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
	if (!prz) {
		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
		goto err;
	}

	ret = persistent_ram_buffer_map(start, size, prz);
	if (ret)
		goto err;

470
	ret = persistent_ram_post_init(prz, sig, ecc_info);
471 472
	if (ret)
		goto err;
473 474 475

	return prz;
err:
476
	persistent_ram_free(prz);
477 478
	return ERR_PTR(ret);
}