ram_core.c 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 2012 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

15 16
#include <linux/device.h>
#include <linux/err.h>
17 18 19 20
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
21 22
#include <linux/list.h>
#include <linux/memblock.h>
23
#include <linux/rslib.h>
24
#include <linux/slab.h>
25
#include <linux/vmalloc.h>
26
#include <linux/pstore_ram.h>
27
#include <asm/page.h>
28 29 30

struct persistent_ram_buffer {
	uint32_t    sig;
31 32
	atomic_t    start;
	atomic_t    size;
33 34 35 36 37
	uint8_t     data[0];
};

#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */

38
static __initdata LIST_HEAD(persistent_ram_list);
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static inline size_t buffer_size(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->size);
}

static inline size_t buffer_start(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->start);
}

/* increase and wrap the start pointer, returning the old value */
static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
{
	int old;
	int new;

	do {
		old = atomic_read(&prz->buffer->start);
		new = old + a;
		while (unlikely(new > prz->buffer_size))
			new -= prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);

	return old;
}

/* increase the size counter until it hits the max size */
static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
{
	size_t old;
	size_t new;

	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
		return;

	do {
		old = atomic_read(&prz->buffer->size);
		new = old + a;
		if (new > prz->buffer_size)
			new = prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
}

83
static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
84 85 86
	uint8_t *data, size_t len, uint8_t *ecc)
{
	int i;
87 88
	uint16_t par[prz->ecc_size];

89 90 91
	/* Initialize the parity buffer */
	memset(par, 0, sizeof(par));
	encode_rs8(prz->rs_decoder, data, len, par, 0);
92
	for (i = 0; i < prz->ecc_size; i++)
93 94 95 96 97 98 99
		ecc[i] = par[i];
}

static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
	void *data, size_t len, uint8_t *ecc)
{
	int i;
100 101 102
	uint16_t par[prz->ecc_size];

	for (i = 0; i < prz->ecc_size; i++)
103 104 105 106 107
		par[i] = ecc[i];
	return decode_rs8(prz->rs_decoder, data, par, len,
				NULL, 0, NULL, 0, NULL);
}

108
static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
109
	unsigned int start, unsigned int count)
110 111 112 113 114
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *buffer_end = buffer->data + prz->buffer_size;
	uint8_t *block;
	uint8_t *par;
115 116 117 118 119 120 121
	int ecc_block_size = prz->ecc_block_size;
	int ecc_size = prz->ecc_size;
	int size = prz->ecc_block_size;

	if (!prz->ecc)
		return;

122 123 124
	block = buffer->data + (start & ~(ecc_block_size - 1));
	par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size;

125
	do {
126
		if (block + ecc_block_size > buffer_end)
127 128
			size = buffer_end - block;
		persistent_ram_encode_rs8(prz, block, size, par);
129 130
		block += ecc_block_size;
		par += ecc_size;
131
	} while (block < buffer->data + start + count);
132 133
}

134
static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
135 136 137
{
	struct persistent_ram_buffer *buffer = prz->buffer;

138 139 140
	if (!prz->ecc)
		return;

141 142 143 144
	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
				  prz->par_header);
}

145
static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
146 147 148 149 150
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *block;
	uint8_t *par;

151 152 153
	if (!prz->ecc)
		return;

154 155
	block = buffer->data;
	par = prz->par_buffer;
156
	while (block < buffer->data + buffer_size(prz)) {
157
		int numerr;
158
		int size = prz->ecc_block_size;
159 160 161 162
		if (block + size > buffer->data + prz->buffer_size)
			size = buffer->data + prz->buffer_size - block;
		numerr = persistent_ram_decode_rs8(prz, block, size, par);
		if (numerr > 0) {
163
			pr_devel("persistent_ram: error in block %p, %d\n",
164 165 166
			       block, numerr);
			prz->corrected_bytes += numerr;
		} else if (numerr < 0) {
167
			pr_devel("persistent_ram: uncorrectable error in block %p\n",
168 169 170
				block);
			prz->bad_blocks++;
		}
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		block += prz->ecc_block_size;
		par += prz->ecc_size;
	}
}

static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
	size_t buffer_size)
{
	int numerr;
	struct persistent_ram_buffer *buffer = prz->buffer;
	int ecc_blocks;

	if (!prz->ecc)
		return 0;

	prz->ecc_block_size = 128;
	prz->ecc_size = 16;
	prz->ecc_symsize = 8;
	prz->ecc_poly = 0x11d;

	ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size);
	prz->buffer_size -= (ecc_blocks + 1) * prz->ecc_size;

	if (prz->buffer_size > buffer_size) {
		pr_err("persistent_ram: invalid size %zu, non-ecc datasize %zu\n",
		       buffer_size, prz->buffer_size);
		return -EINVAL;
	}

	prz->par_buffer = buffer->data + prz->buffer_size;
	prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size;

	/*
	 * first consecutive root is 0
	 * primitive element to generate roots = 1
	 */
	prz->rs_decoder = init_rs(prz->ecc_symsize, prz->ecc_poly, 0, 1,
				  prz->ecc_size);
	if (prz->rs_decoder == NULL) {
		pr_info("persistent_ram: init_rs failed\n");
		return -EINVAL;
212
	}
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244

	prz->corrected_bytes = 0;
	prz->bad_blocks = 0;

	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
					   prz->par_header);
	if (numerr > 0) {
		pr_info("persistent_ram: error in header, %d\n", numerr);
		prz->corrected_bytes += numerr;
	} else if (numerr < 0) {
		pr_info("persistent_ram: uncorrectable error in header\n");
		prz->bad_blocks++;
	}

	return 0;
}

ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
	char *str, size_t len)
{
	ssize_t ret;

	if (prz->corrected_bytes || prz->bad_blocks)
		ret = snprintf(str, len, ""
			"\n%d Corrected bytes, %d unrecoverable blocks\n",
			prz->corrected_bytes, prz->bad_blocks);
	else
		ret = snprintf(str, len, "\nNo errors detected\n");

	return ret;
}

245
static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
246
	const void *s, unsigned int start, unsigned int count)
247 248
{
	struct persistent_ram_buffer *buffer = prz->buffer;
249 250
	memcpy(buffer->data + start, s, count);
	persistent_ram_update_ecc(prz, start, count);
251 252
}

253
void persistent_ram_save_old(struct persistent_ram_zone *prz)
254 255
{
	struct persistent_ram_buffer *buffer = prz->buffer;
256 257
	size_t size = buffer_size(prz);
	size_t start = buffer_start(prz);
258

259 260
	if (!size)
		return;
261

262 263 264 265 266
	if (!prz->old_log) {
		persistent_ram_ecc_old(prz);
		prz->old_log = kmalloc(size, GFP_KERNEL);
	}
	if (!prz->old_log) {
267 268 269 270
		pr_err("persistent_ram: failed to allocate buffer\n");
		return;
	}

271 272 273
	prz->old_log_size = size;
	memcpy(prz->old_log, &buffer->data[start], size - start);
	memcpy(prz->old_log + size - start, &buffer->data[0], start);
274 275
}

276
int notrace persistent_ram_write(struct persistent_ram_zone *prz,
277 278 279 280
	const void *s, unsigned int count)
{
	int rem;
	int c = count;
281
	size_t start;
282

283
	if (unlikely(c > prz->buffer_size)) {
284 285 286
		s += c - prz->buffer_size;
		c = prz->buffer_size;
	}
287

288
	buffer_size_add(prz, c);
289 290 291 292 293 294

	start = buffer_start_add(prz, c);

	rem = prz->buffer_size - start;
	if (unlikely(rem < c)) {
		persistent_ram_update(prz, s, start, rem);
295 296
		s += rem;
		c -= rem;
297
		start = 0;
298
	}
299
	persistent_ram_update(prz, s, start, c);
300

301
	persistent_ram_update_header_ecc(prz);
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

	return count;
}

size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
{
	return prz->old_log_size;
}

void *persistent_ram_old(struct persistent_ram_zone *prz)
{
	return prz->old_log;
}

void persistent_ram_free_old(struct persistent_ram_zone *prz)
{
	kfree(prz->old_log);
	prz->old_log = NULL;
	prz->old_log_size = 0;
}

323 324 325 326 327 328 329
void persistent_ram_zap(struct persistent_ram_zone *prz)
{
	atomic_set(&prz->buffer->start, 0);
	atomic_set(&prz->buffer->size, 0);
	persistent_ram_update_header_ecc(prz);
}

330
static void *persistent_ram_vmap(phys_addr_t start, size_t size)
331
{
332 333 334 335 336
	struct page **pages;
	phys_addr_t page_start;
	unsigned int page_count;
	pgprot_t prot;
	unsigned int i;
337
	void *vaddr;
338 339 340 341 342 343 344 345 346 347

	page_start = start - offset_in_page(start);
	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);

	prot = pgprot_noncached(PAGE_KERNEL);

	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
	if (!pages) {
		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
			page_count);
348
		return NULL;
349 350 351 352 353 354
	}

	for (i = 0; i < page_count; i++) {
		phys_addr_t addr = page_start + i * PAGE_SIZE;
		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
	}
355
	vaddr = vmap(pages, page_count, VM_MAP, prot);
356
	kfree(pages);
357 358 359 360

	return vaddr;
}

361 362 363 364 365 366 367 368 369 370 371
static void *persistent_ram_iomap(phys_addr_t start, size_t size)
{
	if (!request_mem_region(start, size, "persistent_ram")) {
		pr_err("request mem region (0x%llx@0x%llx) failed\n",
			(unsigned long long)size, (unsigned long long)start);
		return NULL;
	}

	return ioremap(start, size);
}

372 373 374
static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
		struct persistent_ram_zone *prz)
{
375 376 377
	prz->paddr = start;
	prz->size = size;

378 379 380 381 382
	if (pfn_valid(start >> PAGE_SHIFT))
		prz->vaddr = persistent_ram_vmap(start, size);
	else
		prz->vaddr = persistent_ram_iomap(start, size);

383
	if (!prz->vaddr) {
384 385
		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
			(unsigned long long)size, (unsigned long long)start);
386 387 388 389 390 391 392 393 394
		return -ENOMEM;
	}

	prz->buffer = prz->vaddr + offset_in_page(start);
	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);

	return 0;
}

395
static int __init persistent_ram_post_init(struct persistent_ram_zone *prz, bool ecc)
396
{
397
	int ret;
398

399
	prz->ecc = ecc;
400

401
	ret = persistent_ram_init_ecc(prz, prz->buffer_size);
402
	if (ret)
403
		return ret;
404

405
	if (prz->buffer->sig == PERSISTENT_RAM_SIG) {
406 407 408
		if (buffer_size(prz) > prz->buffer_size ||
		    buffer_start(prz) > buffer_size(prz))
			pr_info("persistent_ram: found existing invalid buffer,"
409
				" size %zu, start %zu\n",
410
			       buffer_size(prz), buffer_start(prz));
411
		else {
412
			pr_info("persistent_ram: found existing buffer,"
413
				" size %zu, start %zu\n",
414
			       buffer_size(prz), buffer_start(prz));
415
			persistent_ram_save_old(prz);
416
			return 0;
417 418
		}
	} else {
419 420
		pr_info("persistent_ram: no valid data in buffer"
			" (sig = 0x%08x)\n", prz->buffer->sig);
421 422
	}

423
	prz->buffer->sig = PERSISTENT_RAM_SIG;
424
	persistent_ram_zap(prz);
425

426 427 428
	return 0;
}

429 430 431 432 433 434 435 436 437 438 439 440
void persistent_ram_free(struct persistent_ram_zone *prz)
{
	if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
		vunmap(prz->vaddr);
	} else {
		iounmap(prz->vaddr);
		release_mem_region(prz->paddr, prz->size);
	}
	persistent_ram_free_old(prz);
	kfree(prz);
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
struct persistent_ram_zone * __init persistent_ram_new(phys_addr_t start,
						       size_t size,
						       bool ecc)
{
	struct persistent_ram_zone *prz;
	int ret = -ENOMEM;

	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
	if (!prz) {
		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
		goto err;
	}

	ret = persistent_ram_buffer_map(start, size, prz);
	if (ret)
		goto err;

	persistent_ram_post_init(prz, ecc);

	return prz;
err:
	kfree(prz);
	return ERR_PTR(ret);
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
#ifndef MODULE
static int __init persistent_ram_buffer_init(const char *name,
		struct persistent_ram_zone *prz)
{
	int i;
	struct persistent_ram *ram;
	struct persistent_ram_descriptor *desc;
	phys_addr_t start;

	list_for_each_entry(ram, &persistent_ram_list, node) {
		start = ram->start;
		for (i = 0; i < ram->num_descs; i++) {
			desc = &ram->descs[i];
			if (!strcmp(desc->name, name))
				return persistent_ram_buffer_map(start,
						desc->size, prz);
			start += desc->size;
		}
	}

	return -EINVAL;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
static  __init
struct persistent_ram_zone *__persistent_ram_init(struct device *dev, bool ecc)
{
	struct persistent_ram_zone *prz;
	int ret = -ENOMEM;

	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
	if (!prz) {
		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
		goto err;
	}

	ret = persistent_ram_buffer_init(dev_name(dev), prz);
	if (ret) {
		pr_err("persistent_ram: failed to initialize buffer\n");
		goto err;
	}

	persistent_ram_post_init(prz, ecc);

509
	return prz;
510 511 512
err:
	kfree(prz);
	return ERR_PTR(ret);
513
}
514

515 516 517 518
struct persistent_ram_zone * __init
persistent_ram_init_ringbuffer(struct device *dev, bool ecc)
{
	return __persistent_ram_init(dev, ecc);
519 520
}

521
int __init persistent_ram_early_init(struct persistent_ram *ram)
522
{
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	int ret;

	ret = memblock_reserve(ram->start, ram->size);
	if (ret) {
		pr_err("Failed to reserve persistent memory from %08lx-%08lx\n",
			(long)ram->start, (long)(ram->start + ram->size - 1));
		return ret;
	}

	list_add_tail(&ram->node, &persistent_ram_list);

	pr_info("Initialized persistent memory from %08lx-%08lx\n",
		(long)ram->start, (long)(ram->start + ram->size - 1));

	return 0;
538
}
539
#endif