ram_core.c 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 2012 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

15 16
#include <linux/device.h>
#include <linux/err.h>
17 18 19 20
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
21 22
#include <linux/list.h>
#include <linux/memblock.h>
23
#include <linux/rslib.h>
24
#include <linux/slab.h>
25
#include <linux/vmalloc.h>
26
#include <linux/pstore_ram.h>
27
#include <asm/page.h>
28 29 30

struct persistent_ram_buffer {
	uint32_t    sig;
31 32
	atomic_t    start;
	atomic_t    size;
33 34 35 36 37
	uint8_t     data[0];
};

#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static inline size_t buffer_size(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->size);
}

static inline size_t buffer_start(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->start);
}

/* increase and wrap the start pointer, returning the old value */
static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
{
	int old;
	int new;

	do {
		old = atomic_read(&prz->buffer->start);
		new = old + a;
		while (unlikely(new > prz->buffer_size))
			new -= prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);

	return old;
}

/* increase the size counter until it hits the max size */
static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
{
	size_t old;
	size_t new;

	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
		return;

	do {
		old = atomic_read(&prz->buffer->size);
		new = old + a;
		if (new > prz->buffer_size)
			new = prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
}

81
static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
82 83 84
	uint8_t *data, size_t len, uint8_t *ecc)
{
	int i;
85 86
	uint16_t par[prz->ecc_size];

87 88 89
	/* Initialize the parity buffer */
	memset(par, 0, sizeof(par));
	encode_rs8(prz->rs_decoder, data, len, par, 0);
90
	for (i = 0; i < prz->ecc_size; i++)
91 92 93 94 95 96 97
		ecc[i] = par[i];
}

static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
	void *data, size_t len, uint8_t *ecc)
{
	int i;
98 99 100
	uint16_t par[prz->ecc_size];

	for (i = 0; i < prz->ecc_size; i++)
101 102 103 104 105
		par[i] = ecc[i];
	return decode_rs8(prz->rs_decoder, data, par, len,
				NULL, 0, NULL, 0, NULL);
}

106
static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
107
	unsigned int start, unsigned int count)
108 109 110 111 112
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *buffer_end = buffer->data + prz->buffer_size;
	uint8_t *block;
	uint8_t *par;
113 114 115 116
	int ecc_block_size = prz->ecc_block_size;
	int ecc_size = prz->ecc_size;
	int size = prz->ecc_block_size;

117
	if (!prz->ecc_size)
118 119
		return;

120 121 122
	block = buffer->data + (start & ~(ecc_block_size - 1));
	par = prz->par_buffer + (start / ecc_block_size) * prz->ecc_size;

123
	do {
124
		if (block + ecc_block_size > buffer_end)
125 126
			size = buffer_end - block;
		persistent_ram_encode_rs8(prz, block, size, par);
127 128
		block += ecc_block_size;
		par += ecc_size;
129
	} while (block < buffer->data + start + count);
130 131
}

132
static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
133 134 135
{
	struct persistent_ram_buffer *buffer = prz->buffer;

136
	if (!prz->ecc_size)
137 138
		return;

139 140 141 142
	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
				  prz->par_header);
}

143
static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
144 145 146 147 148
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *block;
	uint8_t *par;

149
	if (!prz->ecc_size)
150 151
		return;

152 153
	block = buffer->data;
	par = prz->par_buffer;
154
	while (block < buffer->data + buffer_size(prz)) {
155
		int numerr;
156
		int size = prz->ecc_block_size;
157 158 159 160
		if (block + size > buffer->data + prz->buffer_size)
			size = buffer->data + prz->buffer_size - block;
		numerr = persistent_ram_decode_rs8(prz, block, size, par);
		if (numerr > 0) {
161
			pr_devel("persistent_ram: error in block %p, %d\n",
162 163 164
			       block, numerr);
			prz->corrected_bytes += numerr;
		} else if (numerr < 0) {
165
			pr_devel("persistent_ram: uncorrectable error in block %p\n",
166 167 168
				block);
			prz->bad_blocks++;
		}
169 170 171 172 173
		block += prz->ecc_block_size;
		par += prz->ecc_size;
	}
}

174 175
static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
				   int ecc_size)
176 177 178 179
{
	int numerr;
	struct persistent_ram_buffer *buffer = prz->buffer;
	int ecc_blocks;
180
	size_t ecc_total;
181 182
	int ecc_symsize = 8;
	int ecc_poly = 0x11d;
183

184
	if (!ecc_size)
185 186 187
		return 0;

	prz->ecc_block_size = 128;
188
	prz->ecc_size = ecc_size;
189 190

	ecc_blocks = DIV_ROUND_UP(prz->buffer_size, prz->ecc_block_size);
191 192 193 194
	ecc_total = (ecc_blocks + 1) * prz->ecc_size;
	if (ecc_total >= prz->buffer_size) {
		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
		       __func__, prz->ecc_size, ecc_total, prz->buffer_size);
195 196 197
		return -EINVAL;
	}

198
	prz->buffer_size -= ecc_total;
199 200 201 202 203 204 205
	prz->par_buffer = buffer->data + prz->buffer_size;
	prz->par_header = prz->par_buffer + ecc_blocks * prz->ecc_size;

	/*
	 * first consecutive root is 0
	 * primitive element to generate roots = 1
	 */
206
	prz->rs_decoder = init_rs(ecc_symsize, ecc_poly, 0, 1, prz->ecc_size);
207 208 209
	if (prz->rs_decoder == NULL) {
		pr_info("persistent_ram: init_rs failed\n");
		return -EINVAL;
210
	}
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	prz->corrected_bytes = 0;
	prz->bad_blocks = 0;

	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
					   prz->par_header);
	if (numerr > 0) {
		pr_info("persistent_ram: error in header, %d\n", numerr);
		prz->corrected_bytes += numerr;
	} else if (numerr < 0) {
		pr_info("persistent_ram: uncorrectable error in header\n");
		prz->bad_blocks++;
	}

	return 0;
}

ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
	char *str, size_t len)
{
	ssize_t ret;

	if (prz->corrected_bytes || prz->bad_blocks)
		ret = snprintf(str, len, ""
			"\n%d Corrected bytes, %d unrecoverable blocks\n",
			prz->corrected_bytes, prz->bad_blocks);
	else
		ret = snprintf(str, len, "\nNo errors detected\n");

	return ret;
}

243
static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
244
	const void *s, unsigned int start, unsigned int count)
245 246
{
	struct persistent_ram_buffer *buffer = prz->buffer;
247 248
	memcpy(buffer->data + start, s, count);
	persistent_ram_update_ecc(prz, start, count);
249 250
}

251
void persistent_ram_save_old(struct persistent_ram_zone *prz)
252 253
{
	struct persistent_ram_buffer *buffer = prz->buffer;
254 255
	size_t size = buffer_size(prz);
	size_t start = buffer_start(prz);
256

257 258
	if (!size)
		return;
259

260 261 262 263 264
	if (!prz->old_log) {
		persistent_ram_ecc_old(prz);
		prz->old_log = kmalloc(size, GFP_KERNEL);
	}
	if (!prz->old_log) {
265 266 267 268
		pr_err("persistent_ram: failed to allocate buffer\n");
		return;
	}

269 270 271
	prz->old_log_size = size;
	memcpy(prz->old_log, &buffer->data[start], size - start);
	memcpy(prz->old_log + size - start, &buffer->data[0], start);
272 273
}

274
int notrace persistent_ram_write(struct persistent_ram_zone *prz,
275 276 277 278
	const void *s, unsigned int count)
{
	int rem;
	int c = count;
279
	size_t start;
280

281
	if (unlikely(c > prz->buffer_size)) {
282 283 284
		s += c - prz->buffer_size;
		c = prz->buffer_size;
	}
285

286
	buffer_size_add(prz, c);
287 288 289 290 291 292

	start = buffer_start_add(prz, c);

	rem = prz->buffer_size - start;
	if (unlikely(rem < c)) {
		persistent_ram_update(prz, s, start, rem);
293 294
		s += rem;
		c -= rem;
295
		start = 0;
296
	}
297
	persistent_ram_update(prz, s, start, c);
298

299
	persistent_ram_update_header_ecc(prz);
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	return count;
}

size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
{
	return prz->old_log_size;
}

void *persistent_ram_old(struct persistent_ram_zone *prz)
{
	return prz->old_log;
}

void persistent_ram_free_old(struct persistent_ram_zone *prz)
{
	kfree(prz->old_log);
	prz->old_log = NULL;
	prz->old_log_size = 0;
}

321 322 323 324 325 326 327
void persistent_ram_zap(struct persistent_ram_zone *prz)
{
	atomic_set(&prz->buffer->start, 0);
	atomic_set(&prz->buffer->size, 0);
	persistent_ram_update_header_ecc(prz);
}

328
static void *persistent_ram_vmap(phys_addr_t start, size_t size)
329
{
330 331 332 333 334
	struct page **pages;
	phys_addr_t page_start;
	unsigned int page_count;
	pgprot_t prot;
	unsigned int i;
335
	void *vaddr;
336 337 338 339 340 341 342 343 344 345

	page_start = start - offset_in_page(start);
	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);

	prot = pgprot_noncached(PAGE_KERNEL);

	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
	if (!pages) {
		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
			page_count);
346
		return NULL;
347 348 349 350 351 352
	}

	for (i = 0; i < page_count; i++) {
		phys_addr_t addr = page_start + i * PAGE_SIZE;
		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
	}
353
	vaddr = vmap(pages, page_count, VM_MAP, prot);
354
	kfree(pages);
355 356 357 358

	return vaddr;
}

359 360 361 362 363 364 365 366 367 368 369
static void *persistent_ram_iomap(phys_addr_t start, size_t size)
{
	if (!request_mem_region(start, size, "persistent_ram")) {
		pr_err("request mem region (0x%llx@0x%llx) failed\n",
			(unsigned long long)size, (unsigned long long)start);
		return NULL;
	}

	return ioremap(start, size);
}

370 371 372
static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
		struct persistent_ram_zone *prz)
{
373 374 375
	prz->paddr = start;
	prz->size = size;

376 377 378 379 380
	if (pfn_valid(start >> PAGE_SHIFT))
		prz->vaddr = persistent_ram_vmap(start, size);
	else
		prz->vaddr = persistent_ram_iomap(start, size);

381
	if (!prz->vaddr) {
382 383
		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
			(unsigned long long)size, (unsigned long long)start);
384 385 386 387 388 389 390 391 392
		return -ENOMEM;
	}

	prz->buffer = prz->vaddr + offset_in_page(start);
	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);

	return 0;
}

393
static int __devinit persistent_ram_post_init(struct persistent_ram_zone *prz,
394
					      u32 sig, int ecc_size)
395
{
396
	int ret;
397

398
	ret = persistent_ram_init_ecc(prz, ecc_size);
399
	if (ret)
400
		return ret;
401

402 403 404
	sig ^= PERSISTENT_RAM_SIG;

	if (prz->buffer->sig == sig) {
405 406 407
		if (buffer_size(prz) > prz->buffer_size ||
		    buffer_start(prz) > buffer_size(prz))
			pr_info("persistent_ram: found existing invalid buffer,"
408
				" size %zu, start %zu\n",
409
			       buffer_size(prz), buffer_start(prz));
410
		else {
411
			pr_debug("persistent_ram: found existing buffer,"
412
				" size %zu, start %zu\n",
413
			       buffer_size(prz), buffer_start(prz));
414
			persistent_ram_save_old(prz);
415
			return 0;
416 417
		}
	} else {
418
		pr_debug("persistent_ram: no valid data in buffer"
419
			" (sig = 0x%08x)\n", prz->buffer->sig);
420 421
	}

422
	prz->buffer->sig = sig;
423
	persistent_ram_zap(prz);
424

425 426 427
	return 0;
}

428 429
void persistent_ram_free(struct persistent_ram_zone *prz)
{
430 431 432 433 434 435 436 437 438 439 440
	if (!prz)
		return;

	if (prz->vaddr) {
		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
			vunmap(prz->vaddr);
		} else {
			iounmap(prz->vaddr);
			release_mem_region(prz->paddr, prz->size);
		}
		prz->vaddr = NULL;
441 442 443 444 445
	}
	persistent_ram_free_old(prz);
	kfree(prz);
}

446
struct persistent_ram_zone * __devinit persistent_ram_new(phys_addr_t start,
447
							  size_t size, u32 sig,
448
							  int ecc_size)
449 450 451 452 453 454 455 456 457 458 459 460 461 462
{
	struct persistent_ram_zone *prz;
	int ret = -ENOMEM;

	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
	if (!prz) {
		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
		goto err;
	}

	ret = persistent_ram_buffer_map(start, size, prz);
	if (ret)
		goto err;

463
	ret = persistent_ram_post_init(prz, sig, ecc_size);
464 465
	if (ret)
		goto err;
466 467 468

	return prz;
err:
469
	persistent_ram_free(prz);
470 471
	return ERR_PTR(ret);
}