ram_core.c 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Copyright (C) 2012 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

15 16
#include <linux/device.h>
#include <linux/err.h>
17 18 19 20
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
21 22
#include <linux/list.h>
#include <linux/memblock.h>
23
#include <linux/rslib.h>
24
#include <linux/slab.h>
25
#include <linux/vmalloc.h>
26
#include <linux/pstore_ram.h>
27
#include <asm/page.h>
28 29 30

struct persistent_ram_buffer {
	uint32_t    sig;
31 32
	atomic_t    start;
	atomic_t    size;
33 34 35 36 37
	uint8_t     data[0];
};

#define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static inline size_t buffer_size(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->size);
}

static inline size_t buffer_start(struct persistent_ram_zone *prz)
{
	return atomic_read(&prz->buffer->start);
}

/* increase and wrap the start pointer, returning the old value */
static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
{
	int old;
	int new;

	do {
		old = atomic_read(&prz->buffer->start);
		new = old + a;
		while (unlikely(new > prz->buffer_size))
			new -= prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);

	return old;
}

/* increase the size counter until it hits the max size */
static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
{
	size_t old;
	size_t new;

	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
		return;

	do {
		old = atomic_read(&prz->buffer->size);
		new = old + a;
		if (new > prz->buffer_size)
			new = prz->buffer_size;
	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
}

81
static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
82 83 84
	uint8_t *data, size_t len, uint8_t *ecc)
{
	int i;
85
	uint16_t par[prz->ecc_info.ecc_size];
86

87 88 89
	/* Initialize the parity buffer */
	memset(par, 0, sizeof(par));
	encode_rs8(prz->rs_decoder, data, len, par, 0);
90
	for (i = 0; i < prz->ecc_info.ecc_size; i++)
91 92 93 94 95 96 97
		ecc[i] = par[i];
}

static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
	void *data, size_t len, uint8_t *ecc)
{
	int i;
98
	uint16_t par[prz->ecc_info.ecc_size];
99

100
	for (i = 0; i < prz->ecc_info.ecc_size; i++)
101 102 103 104 105
		par[i] = ecc[i];
	return decode_rs8(prz->rs_decoder, data, par, len,
				NULL, 0, NULL, 0, NULL);
}

106
static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
107
	unsigned int start, unsigned int count)
108 109 110 111 112
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *buffer_end = buffer->data + prz->buffer_size;
	uint8_t *block;
	uint8_t *par;
113 114 115
	int ecc_block_size = prz->ecc_info.block_size;
	int ecc_size = prz->ecc_info.ecc_size;
	int size = ecc_block_size;
116

117
	if (!ecc_size)
118 119
		return;

120
	block = buffer->data + (start & ~(ecc_block_size - 1));
121
	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
122

123
	do {
124
		if (block + ecc_block_size > buffer_end)
125 126
			size = buffer_end - block;
		persistent_ram_encode_rs8(prz, block, size, par);
127 128
		block += ecc_block_size;
		par += ecc_size;
129
	} while (block < buffer->data + start + count);
130 131
}

132
static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
133 134 135
{
	struct persistent_ram_buffer *buffer = prz->buffer;

136
	if (!prz->ecc_info.ecc_size)
137 138
		return;

139 140 141 142
	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
				  prz->par_header);
}

143
static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
144 145 146 147 148
{
	struct persistent_ram_buffer *buffer = prz->buffer;
	uint8_t *block;
	uint8_t *par;

149
	if (!prz->ecc_info.ecc_size)
150 151
		return;

152 153
	block = buffer->data;
	par = prz->par_buffer;
154
	while (block < buffer->data + buffer_size(prz)) {
155
		int numerr;
156
		int size = prz->ecc_info.block_size;
157 158 159 160
		if (block + size > buffer->data + prz->buffer_size)
			size = buffer->data + prz->buffer_size - block;
		numerr = persistent_ram_decode_rs8(prz, block, size, par);
		if (numerr > 0) {
161
			pr_devel("persistent_ram: error in block %p, %d\n",
162 163 164
			       block, numerr);
			prz->corrected_bytes += numerr;
		} else if (numerr < 0) {
165
			pr_devel("persistent_ram: uncorrectable error in block %p\n",
166 167 168
				block);
			prz->bad_blocks++;
		}
169 170
		block += prz->ecc_info.block_size;
		par += prz->ecc_info.ecc_size;
171 172 173
	}
}

174
static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
175
				   struct persistent_ram_ecc_info *ecc_info)
176 177 178 179
{
	int numerr;
	struct persistent_ram_buffer *buffer = prz->buffer;
	int ecc_blocks;
180
	size_t ecc_total;
181

182
	if (!ecc_info || !ecc_info->ecc_size)
183 184
		return 0;

185 186 187 188
	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
189

190 191 192 193
	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
				  prz->ecc_info.block_size +
				  prz->ecc_info.ecc_size);
	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
194 195
	if (ecc_total >= prz->buffer_size) {
		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
196 197
		       __func__, prz->ecc_info.ecc_size,
		       ecc_total, prz->buffer_size);
198 199 200
		return -EINVAL;
	}

201
	prz->buffer_size -= ecc_total;
202
	prz->par_buffer = buffer->data + prz->buffer_size;
203 204
	prz->par_header = prz->par_buffer +
			  ecc_blocks * prz->ecc_info.ecc_size;
205 206 207 208 209

	/*
	 * first consecutive root is 0
	 * primitive element to generate roots = 1
	 */
210 211
	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
				  0, 1, prz->ecc_info.ecc_size);
212 213 214
	if (prz->rs_decoder == NULL) {
		pr_info("persistent_ram: init_rs failed\n");
		return -EINVAL;
215
	}
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

	prz->corrected_bytes = 0;
	prz->bad_blocks = 0;

	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
					   prz->par_header);
	if (numerr > 0) {
		pr_info("persistent_ram: error in header, %d\n", numerr);
		prz->corrected_bytes += numerr;
	} else if (numerr < 0) {
		pr_info("persistent_ram: uncorrectable error in header\n");
		prz->bad_blocks++;
	}

	return 0;
}

ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
	char *str, size_t len)
{
	ssize_t ret;

	if (prz->corrected_bytes || prz->bad_blocks)
		ret = snprintf(str, len, ""
			"\n%d Corrected bytes, %d unrecoverable blocks\n",
			prz->corrected_bytes, prz->bad_blocks);
	else
		ret = snprintf(str, len, "\nNo errors detected\n");

	return ret;
}

248
static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
249
	const void *s, unsigned int start, unsigned int count)
250 251
{
	struct persistent_ram_buffer *buffer = prz->buffer;
252 253
	memcpy(buffer->data + start, s, count);
	persistent_ram_update_ecc(prz, start, count);
254 255
}

256
void persistent_ram_save_old(struct persistent_ram_zone *prz)
257 258
{
	struct persistent_ram_buffer *buffer = prz->buffer;
259 260
	size_t size = buffer_size(prz);
	size_t start = buffer_start(prz);
261

262 263
	if (!size)
		return;
264

265 266 267 268 269
	if (!prz->old_log) {
		persistent_ram_ecc_old(prz);
		prz->old_log = kmalloc(size, GFP_KERNEL);
	}
	if (!prz->old_log) {
270 271 272 273
		pr_err("persistent_ram: failed to allocate buffer\n");
		return;
	}

274 275 276
	prz->old_log_size = size;
	memcpy(prz->old_log, &buffer->data[start], size - start);
	memcpy(prz->old_log + size - start, &buffer->data[0], start);
277 278
}

279
int notrace persistent_ram_write(struct persistent_ram_zone *prz,
280 281 282 283
	const void *s, unsigned int count)
{
	int rem;
	int c = count;
284
	size_t start;
285

286
	if (unlikely(c > prz->buffer_size)) {
287 288 289
		s += c - prz->buffer_size;
		c = prz->buffer_size;
	}
290

291
	buffer_size_add(prz, c);
292 293 294 295 296 297

	start = buffer_start_add(prz, c);

	rem = prz->buffer_size - start;
	if (unlikely(rem < c)) {
		persistent_ram_update(prz, s, start, rem);
298 299
		s += rem;
		c -= rem;
300
		start = 0;
301
	}
302
	persistent_ram_update(prz, s, start, c);
303

304
	persistent_ram_update_header_ecc(prz);
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	return count;
}

size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
{
	return prz->old_log_size;
}

void *persistent_ram_old(struct persistent_ram_zone *prz)
{
	return prz->old_log;
}

void persistent_ram_free_old(struct persistent_ram_zone *prz)
{
	kfree(prz->old_log);
	prz->old_log = NULL;
	prz->old_log_size = 0;
}

326 327 328 329 330 331 332
void persistent_ram_zap(struct persistent_ram_zone *prz)
{
	atomic_set(&prz->buffer->start, 0);
	atomic_set(&prz->buffer->size, 0);
	persistent_ram_update_header_ecc(prz);
}

333
static void *persistent_ram_vmap(phys_addr_t start, size_t size)
334
{
335 336 337 338 339
	struct page **pages;
	phys_addr_t page_start;
	unsigned int page_count;
	pgprot_t prot;
	unsigned int i;
340
	void *vaddr;
341 342 343 344 345 346 347 348 349 350

	page_start = start - offset_in_page(start);
	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);

	prot = pgprot_noncached(PAGE_KERNEL);

	pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
	if (!pages) {
		pr_err("%s: Failed to allocate array for %u pages\n", __func__,
			page_count);
351
		return NULL;
352 353 354 355 356 357
	}

	for (i = 0; i < page_count; i++) {
		phys_addr_t addr = page_start + i * PAGE_SIZE;
		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
	}
358
	vaddr = vmap(pages, page_count, VM_MAP, prot);
359
	kfree(pages);
360 361 362 363

	return vaddr;
}

364 365 366 367 368 369 370 371 372 373 374
static void *persistent_ram_iomap(phys_addr_t start, size_t size)
{
	if (!request_mem_region(start, size, "persistent_ram")) {
		pr_err("request mem region (0x%llx@0x%llx) failed\n",
			(unsigned long long)size, (unsigned long long)start);
		return NULL;
	}

	return ioremap(start, size);
}

375 376 377
static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
		struct persistent_ram_zone *prz)
{
378 379 380
	prz->paddr = start;
	prz->size = size;

381 382 383 384 385
	if (pfn_valid(start >> PAGE_SHIFT))
		prz->vaddr = persistent_ram_vmap(start, size);
	else
		prz->vaddr = persistent_ram_iomap(start, size);

386
	if (!prz->vaddr) {
387 388
		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
			(unsigned long long)size, (unsigned long long)start);
389 390 391 392 393 394 395 396 397
		return -ENOMEM;
	}

	prz->buffer = prz->vaddr + offset_in_page(start);
	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);

	return 0;
}

398
static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
399
				    struct persistent_ram_ecc_info *ecc_info)
400
{
401
	int ret;
402

403
	ret = persistent_ram_init_ecc(prz, ecc_info);
404
	if (ret)
405
		return ret;
406

407 408 409
	sig ^= PERSISTENT_RAM_SIG;

	if (prz->buffer->sig == sig) {
410 411 412
		if (buffer_size(prz) > prz->buffer_size ||
		    buffer_start(prz) > buffer_size(prz))
			pr_info("persistent_ram: found existing invalid buffer,"
413
				" size %zu, start %zu\n",
414
			       buffer_size(prz), buffer_start(prz));
415
		else {
416
			pr_debug("persistent_ram: found existing buffer,"
417
				" size %zu, start %zu\n",
418
			       buffer_size(prz), buffer_start(prz));
419
			persistent_ram_save_old(prz);
420
			return 0;
421 422
		}
	} else {
423
		pr_debug("persistent_ram: no valid data in buffer"
424
			" (sig = 0x%08x)\n", prz->buffer->sig);
425 426
	}

427
	prz->buffer->sig = sig;
428
	persistent_ram_zap(prz);
429

430 431 432
	return 0;
}

433 434
void persistent_ram_free(struct persistent_ram_zone *prz)
{
435 436 437 438 439 440 441 442 443 444 445
	if (!prz)
		return;

	if (prz->vaddr) {
		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
			vunmap(prz->vaddr);
		} else {
			iounmap(prz->vaddr);
			release_mem_region(prz->paddr, prz->size);
		}
		prz->vaddr = NULL;
446 447 448 449 450
	}
	persistent_ram_free_old(prz);
	kfree(prz);
}

451
struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
452
			u32 sig, struct persistent_ram_ecc_info *ecc_info)
453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
	struct persistent_ram_zone *prz;
	int ret = -ENOMEM;

	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
	if (!prz) {
		pr_err("persistent_ram: failed to allocate persistent ram zone\n");
		goto err;
	}

	ret = persistent_ram_buffer_map(start, size, prz);
	if (ret)
		goto err;

467
	ret = persistent_ram_post_init(prz, sig, ecc_info);
468 469
	if (ret)
		goto err;
470 471 472

	return prz;
err:
473
	persistent_ram_free(prz);
474 475
	return ERR_PTR(ret);
}