netdev.c 170.9 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2011 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

31 32 33 34 35 36 37 38 39 40
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
41
#include <linux/slab.h>
42 43 44 45 46 47 48
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
49
#include <linux/pm_qos_params.h>
50
#include <linux/pm_runtime.h>
J
Jesse Brandeburg 已提交
51
#include <linux/aer.h>
52 53 54

#include "e1000.h"

55 56
#define DRV_EXTRAVERSION "-k2"

B
Bruce Allan 已提交
57
#define DRV_VERSION "1.2.20" DRV_EXTRAVERSION
58 59 60 61 62 63 64
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
65
	[board_82574]		= &e1000_82574_info,
66
	[board_82583]		= &e1000_82583_info,
67 68 69
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
70
	[board_ich10lan]	= &e1000_ich10_info,
71
	[board_pchlan]		= &e1000_pch_info,
72
	[board_pch2lan]		= &e1000_pch2_info,
73 74
};

75 76 77 78 79
struct e1000_reg_info {
	u32 ofs;
	char *name;
};

80 81 82 83 84 85 86 87 88 89 90
#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */

#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
91 92 93 94 95 96 97 98 99 100 101

static const struct e1000_reg_info e1000_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

102
	/* Rx Registers */
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN, "RDLEN"},
	{E1000_RDH, "RDH"},
	{E1000_RDT, "RDT"},
	{E1000_RDTR, "RDTR"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_ERT, "ERT"},
	{E1000_RDBAL, "RDBAL"},
	{E1000_RDBAH, "RDBAH"},
	{E1000_RDFH, "RDFH"},
	{E1000_RDFT, "RDFT"},
	{E1000_RDFHS, "RDFHS"},
	{E1000_RDFTS, "RDFTS"},
	{E1000_RDFPC, "RDFPC"},

118
	/* Tx Registers */
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL, "TDBAL"},
	{E1000_TDBAH, "TDBAH"},
	{E1000_TDLEN, "TDLEN"},
	{E1000_TDH, "TDH"},
	{E1000_TDT, "TDT"},
	{E1000_TIDV, "TIDV"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TADV, "TADV"},
	{E1000_TARC(0), "TARC"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFTS, "TDFTS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/*
 * e1000_regdump - register printout routine
 */
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_RXDCTL(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TXDCTL(n));
		break;
	case E1000_TARC(0):
		for (n = 0; n < 2; n++)
			regs[n] = __er32(hw, E1000_TARC(n));
		break;
	default:
		printk(KERN_INFO "%-15s %08x\n",
163
		       reginfo->name, __er32(hw, reginfo->ofs));
164 165 166 167 168 169 170 171 172 173 174
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
	printk(KERN_INFO "%-15s ", rname);
	for (n = 0; n < 2; n++)
		printk(KERN_CONT "%08x ", regs[n]);
	printk(KERN_CONT "\n");
}

/*
175
 * e1000e_dump - Print registers, Tx-ring and Rx-ring
176 177 178 179 180 181 182 183
 */
static void e1000e_dump(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_reg_info *reginfo;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc;
184 185 186 187
	struct my_u0 {
		u64 a;
		u64 b;
	} *u0;
188 189 190 191
	struct e1000_buffer *buffer_info;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	union e1000_rx_desc_packet_split *rx_desc_ps;
	struct e1000_rx_desc *rx_desc;
192 193 194 195 196 197
	struct my_u1 {
		u64 a;
		u64 b;
		u64 c;
		u64 d;
	} *u1;
198 199 200 201 202 203 204 205 206 207
	u32 staterr;
	int i = 0;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		printk(KERN_INFO "Device Name     state            "
208
		       "trans_start      last_rx\n");
209
		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
210 211
		       netdev->name, netdev->state, netdev->trans_start,
		       netdev->last_rx);
212 213 214 215 216 217 218 219 220 221
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	printk(KERN_INFO " Register Name   Value\n");
	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
	     reginfo->name; reginfo++) {
		e1000_regdump(hw, reginfo);
	}

222
	/* Print Tx Ring Summary */
223 224 225
	if (!netdev || !netif_running(netdev))
		goto exit;

226
	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227
	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
228
	       " leng ntw timestamp\n");
229 230
	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
231 232 233 234 235
	       0, tx_ring->next_to_use, tx_ring->next_to_clean,
	       (unsigned long long)buffer_info->dma,
	       buffer_info->length,
	       buffer_info->next_to_watch,
	       (unsigned long long)buffer_info->time_stamp);
236

237
	/* Print Tx Ring */
238 239 240
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

241
	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
	 *
	 * Legacy Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
	 *   +--------------------------------------------------------------+
	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
	 *   +--------------------------------------------------------------+
	 *   63       48 47        36 35    32 31     24 23    16 15        0
	 *
	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
	 *   63      48 47    40 39       32 31             16 15    8 7      0
	 *   +----------------------------------------------------------------+
	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
	 *   +----------------------------------------------------------------+
	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
	 *   +----------------------------------------------------------------+
	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
	 *
	 * Extended Data Descriptor (DTYP=0x1)
	 *   +----------------------------------------------------------------+
	 * 0 |                     Buffer Address [63:0]                      |
	 *   +----------------------------------------------------------------+
	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
	 *   +----------------------------------------------------------------+
	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
	 */
	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
271 272
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Legacy format\n");
273
	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
274 275
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Ext Context format\n");
276
	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
277 278
	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
	       "<-- Ext Data format\n");
279 280 281 282 283
	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		buffer_info = &tx_ring->buffer_info[i];
		u0 = (struct my_u0 *)tx_desc;
		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
284 285 286
		       "%04X  %3X %016llX %p",
		       (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
			((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
287 288 289 290 291
		       (unsigned long long)le64_to_cpu(u0->a),
		       (unsigned long long)le64_to_cpu(u0->b),
		       (unsigned long long)buffer_info->dma,
		       buffer_info->length, buffer_info->next_to_watch,
		       (unsigned long long)buffer_info->time_stamp,
292 293 294 295 296 297 298 299 300 301 302 303
		       buffer_info->skb);
		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC/U\n");
		else if (i == tx_ring->next_to_use)
			printk(KERN_CONT " NTU\n");
		else if (i == tx_ring->next_to_clean)
			printk(KERN_CONT " NTC\n");
		else
			printk(KERN_CONT "\n");

		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 305
				       16, 1, phys_to_virt(buffer_info->dma),
				       buffer_info->length, true);
306 307
	}

308
	/* Print Rx Ring Summary */
309
rx_ring_summary:
310
	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 312
	printk(KERN_INFO "Queue [NTU] [NTC]\n");
	printk(KERN_INFO " %5d %5X %5X\n", 0,
313
	       rx_ring->next_to_use, rx_ring->next_to_clean);
314

315
	/* Print Rx Ring */
316 317 318
	if (!netif_msg_rx_status(adapter))
		goto exit;

319
	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	switch (adapter->rx_ps_pages) {
	case 1:
	case 2:
	case 3:
		/* [Extended] Packet Split Receive Descriptor Format
		 *
		 *    +-----------------------------------------------------+
		 *  0 |                Buffer Address 0 [63:0]              |
		 *    +-----------------------------------------------------+
		 *  8 |                Buffer Address 1 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 16 |                Buffer Address 2 [63:0]              |
		 *    +-----------------------------------------------------+
		 * 24 |                Buffer Address 3 [63:0]              |
		 *    +-----------------------------------------------------+
		 */
		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
337
		       "[buffer 1 63:0 ] "
338 339 340 341 342 343 344 345 346 347 348 349 350 351
		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
		       "[bi->skb] <-- Ext Pkt Split format\n");
		/* [Extended] Receive Descriptor (Write-Back) Format
		 *
		 *   63       48 47    32 31     13 12    8 7    4 3        0
		 *   +------------------------------------------------------+
		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
		 *   | Checksum | Ident  |         | Queue |      |  Type   |
		 *   +------------------------------------------------------+
		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
		 *   +------------------------------------------------------+
		 *   63       48 47    32 31            20 19               0
		 */
		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
352
		       "[vl   l0 ee  es] "
353 354 355 356 357 358 359
		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
		       "[bi->skb] <-- Ext Rx Write-Back format\n");
		for (i = 0; i < rx_ring->count; i++) {
			buffer_info = &rx_ring->buffer_info[i];
			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
			u1 = (struct my_u1 *)rx_desc_ps;
			staterr =
360
			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
361 362 363
			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				printk(KERN_INFO "RWB[0x%03X]     %016llX "
364 365 366 367 368 369 370
				       "%016llX %016llX %016llX "
				       "---------------- %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)le64_to_cpu(u1->c),
				       (unsigned long long)le64_to_cpu(u1->d),
				       buffer_info->skb);
371 372
			} else {
				printk(KERN_INFO "R  [0x%03X]     %016llX "
373 374 375 376 377 378 379
				       "%016llX %016llX %016llX %016llX %p", i,
				       (unsigned long long)le64_to_cpu(u1->a),
				       (unsigned long long)le64_to_cpu(u1->b),
				       (unsigned long long)le64_to_cpu(u1->c),
				       (unsigned long long)le64_to_cpu(u1->d),
				       (unsigned long long)buffer_info->dma,
				       buffer_info->skb);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

				if (netif_msg_pktdata(adapter))
					print_hex_dump(KERN_INFO, "",
						DUMP_PREFIX_ADDRESS, 16, 1,
						phys_to_virt(buffer_info->dma),
						adapter->rx_ps_bsize0, true);
			}

			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");
		}
		break;
	default:
	case 0:
		/* Legacy Receive Descriptor Format
		 *
		 * +-----------------------------------------------------+
		 * |                Buffer Address [63:0]                |
		 * +-----------------------------------------------------+
		 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
		 * +-----------------------------------------------------+
		 * 63       48 47    40 39      32 31         16 15      0
		 */
		printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
408 409
		       "[vl er S cks ln] [bi->dma       ] [bi->skb] "
		       "<-- Legacy format\n");
410 411 412 413 414
		for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
			rx_desc = E1000_RX_DESC(*rx_ring, i);
			buffer_info = &rx_ring->buffer_info[i];
			u0 = (struct my_u0 *)rx_desc;
			printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
415 416 417 418 419
			       "%016llX %p", i,
			       (unsigned long long)le64_to_cpu(u0->a),
			       (unsigned long long)le64_to_cpu(u0->b),
			       (unsigned long long)buffer_info->dma,
			       buffer_info->skb);
420 421 422 423 424 425 426 427 428
			if (i == rx_ring->next_to_use)
				printk(KERN_CONT " NTU\n");
			else if (i == rx_ring->next_to_clean)
				printk(KERN_CONT " NTC\n");
			else
				printk(KERN_CONT "\n");

			if (netif_msg_pktdata(adapter))
				print_hex_dump(KERN_INFO, "",
429 430 431 432
					       DUMP_PREFIX_ADDRESS,
					       16, 1,
					       phys_to_virt(buffer_info->dma),
					       adapter->rx_buffer_len, true);
433 434 435 436 437 438 439
		}
	}

exit:
	return;
}

440 441 442 443 444 445 446 447 448 449 450 451
/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
452
 * e1000_receive_skb - helper function to handle Rx indications
453 454 455 456 457 458
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
459
			      struct net_device *netdev, struct sk_buff *skb,
A
Al Viro 已提交
460
			      u8 status, __le16 vlan)
461 462 463 464
{
	skb->protocol = eth_type_trans(skb, netdev);

	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
H
Herbert Xu 已提交
465 466
		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
				 le16_to_cpu(vlan), skb);
467
	else
H
Herbert Xu 已提交
468
		napi_gro_receive(&adapter->napi, skb);
469 470 471
}

/**
472
 * e1000_rx_checksum - Receive Checksum Offload
473 474 475 476 477 478 479 480 481 482
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
483 484

	skb_checksum_none_assert(skb);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
505 506 507
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
508 509
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
510 511
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
				   int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
531
	unsigned int bufsz = adapter->rx_buffer_len;
532 533 534 535 536 537 538 539 540 541 542

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

543
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
544 545 546 547 548 549 550 551
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
552
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
553
						  adapter->rx_buffer_len,
554 555
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
556
			dev_err(&pdev->dev, "Rx DMA map failed\n");
557 558 559 560 561 562 563
			adapter->rx_dma_failed++;
			break;
		}

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

564 565 566 567 568 569 570 571 572 573
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
			writel(i, adapter->hw.hw_addr + rx_ring->tail);
		}
574 575 576 577 578 579
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

580
	rx_ring->next_to_use = i;
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
				      int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
606 607 608
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
609 610
				rx_desc->read.buffer_addr[j + 1] =
				    ~cpu_to_le64(0);
A
Auke Kok 已提交
611 612 613 614
				continue;
			}
			if (!ps_page->page) {
				ps_page->page = alloc_page(GFP_ATOMIC);
615
				if (!ps_page->page) {
A
Auke Kok 已提交
616 617 618
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
619 620 621 622 623 624
				ps_page->dma = dma_map_page(&pdev->dev,
							    ps_page->page,
							    0, PAGE_SIZE,
							    DMA_FROM_DEVICE);
				if (dma_mapping_error(&pdev->dev,
						      ps_page->dma)) {
A
Auke Kok 已提交
625
					dev_err(&adapter->pdev->dev,
626
						"Rx DMA page map failed\n");
A
Auke Kok 已提交
627 628
					adapter->rx_dma_failed++;
					goto no_buffers;
629 630
				}
			}
A
Auke Kok 已提交
631 632 633 634 635
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
636 637
			rx_desc->read.buffer_addr[j + 1] =
			    cpu_to_le64(ps_page->dma);
638 639
		}

640 641
		skb = netdev_alloc_skb_ip_align(netdev,
						adapter->rx_ps_bsize0);
642 643 644 645 646 647 648

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
649
		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
650
						  adapter->rx_ps_bsize0,
651 652
						  DMA_FROM_DEVICE);
		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
653
			dev_err(&pdev->dev, "Rx DMA map failed\n");
654 655 656 657 658 659 660 661 662
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

663 664 665 666 667 668 669 670
		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
			/*
			 * Force memory writes to complete before letting h/w
			 * know there are new descriptors to fetch.  (Only
			 * applicable for weak-ordered memory model archs,
			 * such as IA-64).
			 */
			wmb();
671
			writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
672 673
		}

674 675 676 677 678 679 680
		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
681
	rx_ring->next_to_use = i;
682 683
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
                                         int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
700
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
701 702 703 704 705 706 707 708 709 710 711

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

712
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
			buffer_info->page = alloc_page(GFP_ATOMIC);
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
731
			buffer_info->dma = dma_map_page(&pdev->dev,
732 733
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
734
							DMA_FROM_DEVICE);
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

758 759 760 761 762 763 764 765 766 767 768 769
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
770
	struct e1000_hw *hw = &adapter->hw;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
791
		rmb();	/* read descriptor and rx_buffer_info after status DD */
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
809
		dma_unmap_single(&pdev->dev,
810 811
				 buffer_info->dma,
				 adapter->rx_buffer_len,
812
				 DMA_FROM_DEVICE);
813 814 815 816
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

817 818 819 820 821 822 823 824 825 826 827
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
828
			/* All receives must fit into a single buffer */
829
			e_dbg("Receive packet consumed multiple buffers\n");
830 831
			/* recycle */
			buffer_info->skb = skb;
832 833
			if (status & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
834 835 836 837 838 839 840 841 842
			goto next_desc;
		}

		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
843 844 845 846
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

847 848 849
		total_rx_bytes += length;
		total_rx_packets++;

850 851
		/*
		 * code added for copybreak, this should improve
852
		 * performance for small packets with large amounts
853 854
		 * of reassembly being done in the stack
		 */
855 856
		if (length < copybreak) {
			struct sk_buff *new_skb =
857
			    netdev_alloc_skb_ip_align(netdev, length);
858
			if (new_skb) {
859 860 861 862 863 864
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter,
				  (u32)(status) |
				  ((u32)(rx_desc->errors) << 24),
				  le16_to_cpu(rx_desc->csum), skb);

		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
902
	adapter->total_rx_packets += total_rx_packets;
903 904
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
905 906 907 908 909 910
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
911 912
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
913 914
			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
				       buffer_info->length, DMA_TO_DEVICE);
915
		else
916 917
			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
					 buffer_info->length, DMA_TO_DEVICE);
918 919
		buffer_info->dma = 0;
	}
920 921 922 923
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
924
	buffer_info->time_stamp = 0;
925 926
}

927
static void e1000_print_hw_hang(struct work_struct *work)
928
{
929 930 931
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
932 933 934 935
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
936 937 938 939 940 941 942
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
943

944 945 946 947
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
948 949 950 951 952 953 954 955
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
956 957 958 959 960 961
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
962 963 964 965 966 967 968
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
969 970 971 972 973 974
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

999 1000
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
1001
		bool cleaned = false;
1002
		rmb(); /* read buffer_info after eop_desc */
1003
		for (; !cleaned; count++) {
1004 1005 1006 1007 1008
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
1009 1010
				total_tx_packets += buffer_info->segs;
				total_tx_bytes += buffer_info->bytecount;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

1021 1022
		if (i == tx_ring->next_to_use)
			break;
1023 1024 1025 1026 1027 1028 1029
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
1030 1031
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
1045 1046 1047 1048
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
1049
		adapter->detect_tx_hung = 0;
1050 1051
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1052 1053
			       + (adapter->tx_timeout_factor * HZ)) &&
		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1054
			schedule_work(&adapter->print_hang_task);
1055 1056 1057 1058 1059
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
1060 1061
	netdev->stats.tx_bytes += total_tx_bytes;
	netdev->stats.tx_packets += total_tx_packets;
1062
	return count < tx_ring->count;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
1075
	struct e1000_hw *hw = &adapter->hw;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;
1099
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
1114
		dma_unmap_single(&pdev->dev, buffer_info->dma,
1115
				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1116 1117
		buffer_info->dma = 0;

1118
		/* see !EOP comment in other Rx routine */
1119 1120 1121 1122
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1123 1124
			e_dbg("Packet Split buffers didn't pick up the full "
			      "packet\n");
1125
			dev_kfree_skb_irq(skb);
1126 1127
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
1139 1140
			e_dbg("Last part of the packet spanning multiple "
			      "descriptors\n");
1141 1142 1143 1144 1145 1146 1147 1148
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
1149 1150 1151 1152
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
1153 1154
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

1155 1156 1157 1158 1159
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
1160 1161 1162 1163
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
1164
			ps_page = &buffer_info->ps_pages[0];
1165

1166 1167
			/*
			 * there is no documentation about how to call
1168
			 * kmap_atomic, so we can't hold the mapping
1169 1170
			 * very long
			 */
1171 1172
			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
						PAGE_SIZE, DMA_FROM_DEVICE);
1173 1174 1175
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1176 1177
			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
						   PAGE_SIZE, DMA_FROM_DEVICE);
A
Auke Kok 已提交
1178

J
Jeff Kirsher 已提交
1179 1180 1181 1182
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
1193
			ps_page = &buffer_info->ps_pages[j];
1194 1195
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1196 1197 1198 1199 1200 1201 1202 1203
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
1204 1205 1206 1207 1208 1209
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
1247
	adapter->total_rx_packets += total_rx_packets;
1248 1249
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1250 1251 1252
	return cleaned;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
1298
		rmb();	/* read descriptor and rx_buffer_info after status DD */
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
1314 1315
		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
			       DMA_FROM_DEVICE);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* errors is only valid for DD + EOP descriptors */
		if (unlikely((status & E1000_RXD_STAT_EOP) &&
		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
				/* recycle both page and skb */
				buffer_info->skb = skb;
				/* an error means any chain goes out the window
				 * too */
				if (rx_ring->rx_skb_top)
					dev_kfree_skb(rx_ring->rx_skb_top);
				rx_ring->rx_skb_top = NULL;
				goto next_desc;
		}

1333
#define rxtop (rx_ring->rx_skb_top)
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		if (!(status & E1000_RXD_STAT_EOP)) {
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
		e1000_rx_checksum(adapter,
		                  (u32)(status) |
		                  ((u32)(rx_desc->errors) << 24),
		                  le16_to_cpu(rx_desc->csum), skb);

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1400
			e_err("pskb_may_pull failed.\n");
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
			dev_kfree_skb(skb);
			goto next_desc;
		}

		e1000_receive_skb(adapter, netdev, skb, status,
		                  rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
1429 1430
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1431 1432 1433
	return cleaned;
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
1451
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1452
						 adapter->rx_buffer_len,
1453
						 DMA_FROM_DEVICE);
1454
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1455
				dma_unmap_page(&pdev->dev, buffer_info->dma,
1456
				               PAGE_SIZE,
1457
					       DMA_FROM_DEVICE);
1458
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1459
				dma_unmap_single(&pdev->dev, buffer_info->dma,
1460
						 adapter->rx_ps_bsize0,
1461
						 DMA_FROM_DEVICE);
1462 1463 1464
			buffer_info->dma = 0;
		}

1465 1466 1467 1468 1469
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1470 1471 1472 1473 1474 1475
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1476
			ps_page = &buffer_info->ps_pages[j];
1477 1478
			if (!ps_page->page)
				break;
1479 1480
			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
				       DMA_FROM_DEVICE);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1498
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1499 1500 1501 1502 1503

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1504 1505 1506 1507 1508 1509 1510 1511
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1524 1525 1526
	/*
	 * read ICR disables interrupts using IAM
	 */
1527

1528
	if (icr & E1000_ICR_LSC) {
1529
		hw->mac.get_link_status = 1;
1530 1531 1532 1533
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1534 1535
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1536
			schedule_work(&adapter->downshift_task);
1537

1538 1539
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1540
		 * link down event; disable receives here in the ISR and reset
1541 1542
		 * adapter in watchdog
		 */
1543 1544 1545 1546 1547
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1548
			adapter->flags |= FLAG_RX_RESTART_NOW;
1549 1550 1551 1552 1553 1554
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1555
	if (napi_schedule_prep(&adapter->napi)) {
1556 1557 1558 1559
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1560
		__napi_schedule(&adapter->napi);
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1577

1578
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1579 1580
		return IRQ_NONE;  /* Not our interrupt */

1581 1582 1583 1584
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1585 1586 1587
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1588 1589 1590 1591 1592
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1593

1594
	if (icr & E1000_ICR_LSC) {
1595
		hw->mac.get_link_status = 1;
1596 1597 1598 1599
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1600 1601
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1602
			schedule_work(&adapter->downshift_task);
1603

1604 1605
		/*
		 * 80003ES2LAN workaround--
1606 1607 1608 1609 1610 1611 1612 1613 1614
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1615
			adapter->flags |= FLAG_RX_RESTART_NOW;
1616 1617 1618 1619 1620 1621
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1622
	if (napi_schedule_prep(&adapter->napi)) {
1623 1624 1625 1626
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1627
		__napi_schedule(&adapter->napi);
1628 1629 1630 1631 1632
	}

	return IRQ_HANDLED;
}

1633 1634 1635 1636 1637 1638 1639 1640
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1641 1642
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1659 1660
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1698
	if (napi_schedule_prep(&adapter->napi)) {
1699 1700
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1701
		__napi_schedule(&adapter->napi);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
1798
	int i;
1799 1800 1801 1802

	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
1803 1804
			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(adapter->num_vectors,
1805 1806 1807
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
1808
				for (i = 0; i < adapter->num_vectors; i++)
1809 1810 1811 1812
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
1813
						      adapter->num_vectors);
B
Bruce Allan 已提交
1814
				if (err == 0)
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}
1837 1838 1839

	/* store the number of vectors being used */
	adapter->num_vectors = 1;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1854
		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1855 1856 1857
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1858
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1859 1860 1861 1862 1863 1864 1865 1866
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1867
		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1868 1869 1870
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1871
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1872 1873 1874 1875 1876 1877 1878 1879
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1880
			  e1000_msix_other, 0, netdev->name, netdev);
1881 1882 1883 1884 1885 1886 1887 1888 1889
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1890 1891 1892 1893 1894 1895
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1896 1897 1898 1899 1900
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

1901 1902 1903 1904 1905 1906 1907 1908
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
1909
	}
1910
	if (adapter->flags & FLAG_MSI_ENABLED) {
1911
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1912 1913 1914
				  netdev->name, netdev);
		if (!err)
			return err;
1915

1916 1917 1918
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1919 1920
	}

1921
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1922 1923 1924 1925
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

1926 1927 1928 1929 1930 1931 1932
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
1945
	}
1946 1947

	free_irq(adapter->pdev->irq, netdev);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
1958 1959
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
1960
	e1e_flush();
1961 1962 1963 1964 1965 1966 1967 1968

	if (adapter->msix_entries) {
		int i;
		for (i = 0; i < adapter->num_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
1969 1970 1971 1972 1973 1974 1975 1976 1977
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1978 1979 1980 1981 1982 1983
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
1984
	e1e_flush();
1985 1986 1987
}

/**
1988
 * e1000e_get_hw_control - get control of the h/w from f/w
1989 1990
 * @adapter: address of board private structure
 *
1991
 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1992 1993 1994 1995
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
1996
void e1000e_get_hw_control(struct e1000_adapter *adapter)
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2008
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2009 2010 2011 2012
	}
}

/**
2013
 * e1000e_release_hw_control - release control of the h/w to f/w
2014 2015
 * @adapter: address of board private structure
 *
2016
 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2017 2018 2019 2020 2021
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
2022
void e1000e_release_hw_control(struct e1000_adapter *adapter)
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
2034
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
E
Eric Dumazet 已提交
2066
	tx_ring->buffer_info = vzalloc(size);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (!tx_ring->buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
2084
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2097 2098
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
2099 2100

	size = sizeof(struct e1000_buffer) * rx_ring->count;
E
Eric Dumazet 已提交
2101
	rx_ring->buffer_info = vzalloc(size);
2102 2103 2104
	if (!rx_ring->buffer_info)
		goto err;

A
Auke Kok 已提交
2105 2106 2107 2108 2109 2110 2111 2112
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
2113 2114 2115 2116 2117 2118 2119 2120 2121

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
2122
		goto err_pages;
2123 2124 2125 2126 2127 2128

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
2129 2130 2131 2132 2133 2134

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
2135 2136
err:
	vfree(rx_ring->buffer_info);
2137
	e_err("Unable to allocate memory for the receive descriptor ring\n");
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
2201
	int i;
2202 2203 2204

	e1000_clean_rx_ring(adapter);

B
Bruce Allan 已提交
2205
	for (i = 0; i < rx_ring->count; i++)
A
Auke Kok 已提交
2206 2207
		kfree(rx_ring->buffer_info[i].ps_pages);

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
2218 2219 2220 2221 2222
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
2223 2224 2225 2226 2227 2228
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
2229 2230
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
B
Bruce Allan 已提交
2246
		else if ((packets < 5) && (bytes > 512))
2247 2248 2249 2250 2251
			retval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
B
Bruce Allan 已提交
2252
			if (bytes/packets > 8000)
2253
				retval = bulk_latency;
B
Bruce Allan 已提交
2254
			else if ((packets < 10) || ((bytes/packets) > 1200))
2255
				retval = bulk_latency;
B
Bruce Allan 已提交
2256
			else if ((packets > 35))
2257 2258 2259 2260 2261 2262 2263 2264 2265
				retval = lowest_latency;
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
B
Bruce Allan 已提交
2266
			if (packets > 35)
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
				retval = low_latency;
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

2291 2292 2293 2294 2295
	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
		new_itr = 0;
		goto set_itr_now;
	}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
2331 2332
		/*
		 * this attempts to bias the interrupt rate towards Bulk
2333
		 * by adding intermediate steps when interrupt rate is
2334 2335
		 * increasing
		 */
2336 2337 2338 2339
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
2340 2341 2342 2343
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
2344 2345 2346 2347
			if (new_itr)
				ew32(ITR, 1000000000 / (new_itr * 256));
			else
				ew32(ITR, 0);
2348 2349 2350
	}
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2373 2374
/**
 * e1000_clean - NAPI Rx polling callback
2375
 * @napi: struct associated with this polling callback
2376
 * @budget: amount of packets driver is allowed to process this poll
2377 2378 2379 2380
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2381
	struct e1000_hw *hw = &adapter->hw;
2382
	struct net_device *poll_dev = adapter->netdev;
2383
	int tx_cleaned = 1, work_done = 0;
2384

2385
	adapter = netdev_priv(poll_dev);
2386

2387 2388 2389 2390
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2391
	tx_cleaned = e1000_clean_tx_irq(adapter);
2392

2393
clean_rx:
2394
	adapter->clean_rx(adapter, &work_done, budget);
2395

2396
	if (!tx_cleaned)
2397
		work_done = budget;
2398

2399 2400
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2401 2402
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2403
		napi_complete(napi);
2404 2405 2406 2407 2408 2409
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
2426

2427
	/* add VID to filter table */
2428 2429 2430 2431 2432 2433
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2434 2435 2436 2437 2438 2439 2440 2441
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

J
Jesse Brandeburg 已提交
2442 2443
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2444
	vlan_group_set_device(adapter->vlgrp, vid, NULL);
J
Jesse Brandeburg 已提交
2445 2446 2447

	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2448 2449 2450 2451 2452

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
2453
		e1000e_release_hw_control(adapter);
2454 2455 2456 2457
		return;
	}

	/* remove VID from filter table */
2458 2459 2460 2461 2462 2463
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
}

static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (!adapter->vlgrp)
		return;

	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
		if (adapter->hw.mng_cookie.status &
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
			e1000_vlan_rx_add_vid(netdev, vid);
			adapter->mng_vlan_id = vid;
		}

		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
				(vid != old_vid) &&
		    !vlan_group_get_device(adapter->vlgrp, old_vid))
			e1000_vlan_rx_kill_vid(netdev, old_vid);
	} else {
		adapter->mng_vlan_id = vid;
	}
}


static void e1000_vlan_rx_register(struct net_device *netdev,
				   struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

J
Jesse Brandeburg 已提交
2500 2501
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			/* enable VLAN receive filtering */
			rctl = er32(RCTL);
			rctl &= ~E1000_RCTL_CFIEN;
			ew32(RCTL, rctl);
			e1000_update_mng_vlan(adapter);
		}
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			if (adapter->mng_vlan_id !=
			    (u16)E1000_MNG_VLAN_NONE) {
				e1000_vlan_rx_kill_vid(netdev,
						       adapter->mng_vlan_id);
				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
			}
		}
	}

J
Jesse Brandeburg 已提交
2533 2534
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (!adapter->vlgrp)
		return;

2546
	for (vid = 0; vid < VLAN_N_VID; vid++) {
2547 2548 2549 2550 2551 2552
		if (!vlan_group_get_device(adapter->vlgrp, vid))
			continue;
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
	}
}

2553
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2554 2555
{
	struct e1000_hw *hw = &adapter->hw;
2556
	u32 manc, manc2h, mdef, i, j;
2557 2558 2559 2560 2561 2562

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2563 2564
	/*
	 * enable receiving management packets to the host. this will probably
2565
	 * generate destination unreachable messages from the host OS, but
2566 2567
	 * the packets will be handled on SMBUS
	 */
2568 2569
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584

	switch (hw->mac.type) {
	default:
		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
		break;
	case e1000_82574:
	case e1000_82583:
		/*
		 * Check if IPMI pass-through decision filter already exists;
		 * if so, enable it.
		 */
		for (i = 0, j = 0; i < 8; i++) {
			mdef = er32(MDEF(i));

			/* Ignore filters with anything other than IPMI ports */
2585
			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
				continue;

			/* Enable this decision filter in MANC2H */
			if (mdef)
				manc2h |= (1 << i);

			j |= mdef;
		}

		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
			break;

		/* Create new decision filter in an empty filter */
		for (i = 0, j = 0; i < 8; i++)
			if (er32(MDEF(i)) == 0) {
				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
					       E1000_MDEF_PORT_664));
				manc2h |= (1 << 1);
				j++;
				break;
			}

		if (!j)
			e_warn("Unable to create IPMI pass-through filter\n");
		break;
	}

2613 2614 2615 2616 2617
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
2618
 * e1000_configure_tx - Configure Transmit Unit after Reset
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2634
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2656
	/* Tx irq moderation */
2657 2658
	ew32(TADV, adapter->tx_abs_int_delay);

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		u32 txdctl = er32(TXDCTL(0));
		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
			    E1000_TXDCTL_WTHRESH);
		/*
		 * set up some performance related parameters to encourage the
		 * hardware to use the bus more efficiently in bursts, depends
		 * on the tx_int_delay to be enabled,
		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
		 * hthresh = 1 ==> prefetch when one or more available
		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
		 * BEWARE: this seems to work but should be considered first if
2671
		 * there are Tx hangs or other Tx related bugs
2672 2673 2674 2675 2676 2677 2678
		 */
		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
		ew32(TXDCTL(0), txdctl);
		/* erratum work around: set txdctl the same for both queues */
		ew32(TXDCTL(1), txdctl);
	}

2679 2680 2681 2682 2683 2684 2685
	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2686
		tarc = er32(TARC(0));
2687 2688 2689 2690
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2691 2692
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2693
		ew32(TARC(0), tarc);
2694 2695 2696 2697
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2698
		tarc = er32(TARC(0));
2699
		tarc |= 1;
2700 2701
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2702
		tarc |= 1;
2703
		ew32(TARC(1), tarc);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2718
	e1000e_config_collision_dist(hw);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 psrctl = 0;
	u32 pages = 0;

2734 2735 2736 2737 2738 2739 2740 2741
	/* Workaround Si errata on 82579 - configure jumbo frame flow */
	if (hw->mac.type == e1000_pch2lan) {
		s32 ret_val;

		if (adapter->netdev->mtu > ETH_DATA_LEN)
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
		else
			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2742 2743 2744

		if (ret_val)
			e_dbg("failed to enable jumbo frame workaround mode\n");
2745 2746
	}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2763 2764 2765 2766 2767 2768
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2769

2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2823
	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2824
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2825
		adapter->rx_ps_pages = pages;
2826 2827
	else
		adapter->rx_ps_pages = 0;
2828 2829 2830 2831 2832

	if (adapter->rx_ps_pages) {
		/* Configure extra packet-split registers */
		rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_EXTEN;
2833 2834 2835 2836
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2837 2838 2839 2840 2841
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

		ew32(RFCTL, rfctl);

A
Auke Kok 已提交
2842 2843
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

	ew32(RCTL, rctl);
2865 2866
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
2885
		    sizeof(union e1000_rx_desc_packet_split);
2886 2887
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2888 2889 2890 2891
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2892
	} else {
2893
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	e1e_flush();
	msleep(10);

2904 2905 2906 2907
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		/*
		 * set the writeback threshold (only takes effect if the RDTR
		 * is set). set GRAN=1 and write back up to 0x4 worth, and
2908
		 * enable prefetching of 0x20 Rx descriptors
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
		 * granularity = 01
		 * wthresh = 04,
		 * hthresh = 04,
		 * pthresh = 0x20
		 */
		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);

		/*
		 * override the delay timers for enabling bursting, only if
		 * the value was not set by the user via module options
		 */
		if (adapter->rx_int_delay == DEFAULT_RDTR)
			adapter->rx_int_delay = BURST_RDTR;
		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
			adapter->rx_abs_int_delay = BURST_RADV;
	}

2927 2928 2929 2930 2931
	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
2932
	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2933
		ew32(ITR, 1000000000 / (adapter->itr * 256));
2934 2935 2936 2937 2938 2939 2940 2941

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

2942 2943 2944 2945
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
2946
	rdba = rx_ring->dma;
2947
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
		rxcsum |= E1000_RXCSUM_TUOFL;

2960 2961 2962 2963
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
2964 2965 2966 2967 2968 2969 2970 2971
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

2972 2973
	/*
	 * Enable early receives on supported devices, only takes effect when
2974
	 * packet size is equal or larger than the specified value (in 8 byte
2975 2976
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
2977 2978
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan)) {
2979 2980 2981
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
2982 2983
			if (adapter->flags & FLAG_HAS_ERT)
				ew32(ERT, E1000_ERT_2048 | (1 << 13));
2984 2985 2986 2987 2988
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
2989
			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
2990
		} else {
2991 2992
			pm_qos_update_request(&adapter->netdev->pm_qos_req,
					      PM_QOS_DEFAULT_VALUE);
2993
		}
2994
	}
2995 2996 2997 2998 2999 3000

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
3001
 *  e1000_update_mc_addr_list - Update Multicast addresses
3002 3003 3004 3005
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
3006
 *  Updates the Multicast Table Array.
3007 3008
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
3009
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3010
				      u32 mc_addr_count)
3011
{
3012
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3028
	struct netdev_hw_addr *ha;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	u8  *mta_list;
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3039
		rctl &= ~E1000_RCTL_VFE;
3040
	} else {
3041 3042 3043 3044 3045 3046
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
3047
		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3048
			rctl |= E1000_RCTL_VFE;
3049 3050 3051 3052
	}

	ew32(RCTL, rctl);

3053 3054
	if (!netdev_mc_empty(netdev)) {
		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3055 3056 3057 3058
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
3059
		i = 0;
3060 3061
		netdev_for_each_mc_addr(ha, netdev)
			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3062

3063
		e1000_update_mc_addr_list(hw, mta_list, i);
3064 3065 3066 3067 3068 3069
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
3070
		e1000_update_mc_addr_list(hw, NULL, 0);
3071 3072 3073 3074
	}
}

/**
3075
 * e1000_configure - configure the hardware for Rx and Tx
3076 3077 3078 3079 3080 3081 3082
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
3083
	e1000_init_manageability_pt(adapter);
3084 3085 3086 3087

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
3088
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
3101 3102
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
3103 3104 3105 3106 3107 3108 3109

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
3110 3111
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
3112 3113 3114 3115
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
3116
	if (adapter->wol)
3117 3118
		return;

3119 3120
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
3121 3122 3123 3124 3125 3126 3127 3128
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
3129
 * properly configured for Rx, Tx etc.
3130 3131 3132 3133
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
3134
	struct e1000_fc_info *fc = &adapter->hw.fc;
3135 3136
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
3137
	u32 pba = adapter->pba;
3138 3139
	u16 hwm;

3140
	/* reset Packet Buffer Allocation to default */
3141
	ew32(PBA, pba);
3142

3143
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3144 3145
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
3146 3147 3148 3149
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
3150 3151
		 * expressed in KB.
		 */
3152
		pba = er32(PBA);
3153
		/* upper 16 bits has Tx packet buffer allocation size in KB */
3154
		tx_space = pba >> 16;
3155
		/* lower 16 bits has Rx packet buffer allocation size in KB */
3156
		pba &= 0xffff;
3157
		/*
3158
		 * the Tx fifo also stores 16 bytes of information about the Tx
3159
		 * but don't include ethernet FCS because hardware appends it
3160 3161
		 */
		min_tx_space = (adapter->max_frame_size +
3162 3163 3164 3165 3166
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
3167
		min_rx_space = adapter->max_frame_size;
3168 3169 3170
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

3171 3172
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
3173
		 * and the min Tx FIFO size is less than the current Rx FIFO
3174 3175
		 * allocation, take space away from current Rx allocation
		 */
3176 3177 3178
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
3179

3180
			/*
3181
			 * if short on Rx space, Rx wins and must trump Tx
3182 3183
			 * adjustment or use Early Receive if available
			 */
3184
			if ((pba < min_rx_space) &&
3185 3186
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
3187
				pba = min_rx_space;
3188
		}
3189 3190

		ew32(PBA, pba);
3191 3192
	}

3193 3194 3195
	/*
	 * flow control settings
	 *
3196
	 * The high water mark must be low enough to fit one full frame
3197 3198 3199 3200 3201
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3202
	 * - the full Rx FIFO size minus one full frame
3203
	 */
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
		fc->pause_time = 0xFFFF;
	else
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	switch (hw->mac.type) {
	default:
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));

		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
		break;
	case e1000_pchlan:
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
3236
		fc->refresh_time = 0x1000;
3237 3238 3239 3240 3241 3242
		break;
	case e1000_pch2lan:
		fc->high_water = 0x05C20;
		fc->low_water = 0x05048;
		fc->pause_time = 0x0650;
		fc->refresh_time = 0x0400;
3243 3244 3245 3246
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			pba = 14;
			ew32(PBA, pba);
		}
3247
		break;
3248
	}
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	/*
	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
	 * fit in receive buffer and early-receive not supported.
	 */
	if (adapter->itr_setting & 0x3) {
		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
		    !(adapter->flags & FLAG_HAS_ERT)) {
			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
				dev_info(&adapter->pdev->dev,
					"Interrupt Throttle Rate turned off\n");
				adapter->flags2 |= FLAG2_DISABLE_AIM;
				ew32(ITR, 0);
			}
		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
			dev_info(&adapter->pdev->dev,
				 "Interrupt Throttle Rate turned on\n");
			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
			adapter->itr = 20000;
			ew32(ITR, 1000000000 / (adapter->itr * 256));
		}
	}

3272 3273
	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
3274 3275 3276 3277 3278

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
3279
	if (adapter->flags & FLAG_HAS_AMT)
3280
		e1000e_get_hw_control(adapter);
3281

3282 3283 3284
	ew32(WUC, 0);

	if (mac->ops.init_hw(hw))
3285
		e_err("Hardware Error\n");
3286 3287 3288 3289 3290 3291 3292

	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
3293 3294 3295 3296 3297 3298 3299

	if (!netif_running(adapter->netdev) &&
	    !test_bit(__E1000_TESTING, &adapter->state)) {
		e1000_power_down_phy(adapter);
		return;
	}

3300 3301
	e1000_get_phy_info(hw);

3302 3303
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3304
		u16 phy_data = 0;
3305 3306
		/*
		 * speed up time to link by disabling smart power down, ignore
3307
		 * the return value of this function because there is nothing
3308 3309
		 * different we would do if it failed
		 */
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
3326 3327
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
3328 3329
	e1000_irq_enable(adapter);

3330 3331
	netif_wake_queue(adapter->netdev);

3332
	/* fire a link change interrupt to start the watchdog */
3333 3334 3335 3336 3337
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);

3338 3339 3340 3341 3342 3343 3344 3345 3346
	return 0;
}

void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

3347 3348 3349 3350
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
3351 3352 3353 3354 3355 3356 3357
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

3358
	netif_stop_queue(netdev);
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	/* flush both disables and wait for them to finish */
	e1e_flush();
	msleep(10);

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

3378 3379
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
3413 3414
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3415

3416
	e1000e_set_interrupt_capability(adapter);
3417

3418 3419
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
3420 3421 3422 3423 3424 3425 3426 3427

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

3440
	e_dbg("icr is %08X\n", icr);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
3467
	e1000e_reset_interrupt_capability(adapter);
3468 3469 3470 3471 3472 3473 3474 3475 3476

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

3477
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3498
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3499 3500 3501
		e_info("MSI interrupt test failed, using legacy interrupt.\n");
	} else
		e_dbg("MSI interrupt test succeeded!\n");
3502 3503 3504 3505 3506

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

msi_test_failed:
3507
	e1000e_set_interrupt_capability(adapter);
3508
	return e1000_request_irq(adapter);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3527 3528 3529
	if (pci_cmd & PCI_COMMAND_SERR)
		pci_write_config_word(adapter->pdev, PCI_COMMAND,
				      pci_cmd & ~PCI_COMMAND_SERR);
3530 3531 3532

	err = e1000_test_msi_interrupt(adapter);

3533 3534 3535 3536 3537 3538
	/* re-enable SERR */
	if (pci_cmd & PCI_COMMAND_SERR) {
		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
		pci_cmd |= PCI_COMMAND_SERR;
		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
	}
3539 3540 3541 3542

	return err;
}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
3559
	struct pci_dev *pdev = adapter->pdev;
3560 3561 3562 3563 3564 3565
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3566 3567
	pm_runtime_get_sync(&pdev->dev);

3568 3569
	netif_carrier_off(netdev);

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

3580 3581 3582 3583 3584
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open and reset the part to a known state.
	 */
	if (adapter->flags & FLAG_HAS_AMT) {
3585
		e1000e_get_hw_control(adapter);
3586 3587 3588
		e1000e_reset(adapter);
	}

3589 3590 3591 3592 3593 3594 3595
	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3596
	/* DMA latency requirement to workaround early-receive/jumbo issue */
3597 3598
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3599 3600 3601
		pm_qos_add_request(&adapter->netdev->pm_qos_req,
				   PM_QOS_CPU_DMA_LATENCY,
				   PM_QOS_DEFAULT_VALUE);
3602

3603 3604
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3605 3606
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3607 3608
	 * clean_rx handler before we do so.
	 */
3609 3610 3611 3612 3613 3614
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3615 3616 3617 3618 3619
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3620
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3621 3622 3623 3624 3625 3626 3627
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3628 3629 3630 3631 3632 3633 3634
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3635
	netif_start_queue(netdev);
3636

3637 3638 3639
	adapter->idle_check = true;
	pm_runtime_put(&pdev->dev);

3640
	/* fire a link status change interrupt to start the watchdog */
3641 3642 3643 3644
	if (adapter->msix_entries)
		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
	else
		ew32(ICS, E1000_ICS_LSC);
3645 3646 3647 3648

	return 0;

err_req_irq:
3649
	e1000e_release_hw_control(adapter);
3650 3651 3652 3653 3654 3655
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);
3656
	pm_runtime_put_sync(&pdev->dev);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
3675
	struct pci_dev *pdev = adapter->pdev;
3676 3677

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3678 3679 3680 3681 3682 3683 3684

	pm_runtime_get_sync(&pdev->dev);

	if (!test_bit(__E1000_DOWN, &adapter->state)) {
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
3685 3686 3687 3688 3689
	e1000_power_down_phy(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3690 3691 3692 3693
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
3694 3695 3696 3697 3698 3699
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3700 3701 3702 3703
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
3704 3705 3706
	if ((adapter->flags & FLAG_HAS_AMT) &&
	    !test_bit(__E1000_TESTING, &adapter->state))
		e1000e_release_hw_control(adapter);
3707

3708 3709
	if ((adapter->flags & FLAG_HAS_ERT) ||
	    (adapter->hw.mac.type == e1000_pch2lan))
3710
		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3711

3712 3713
	pm_runtime_put_sync(&pdev->dev);

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3740 3741
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3742 3743 3744 3745
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3746 3747
		 * RAR[14]
		 */
3748 3749 3750 3751 3752 3753 3754 3755
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
	e1000_get_phy_info(&adapter->hw);
}

3771 3772 3773 3774
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3775 3776 3777
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3778
	schedule_work(&adapter->update_phy_task);
3779 3780
}

3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
/**
 * e1000e_update_phy_stats - Update the PHY statistics counters
 * @adapter: board private structure
 **/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	s32 ret_val;
	u16 phy_data;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;

	hw->phy.addr = 1;

#define HV_PHY_STATS_PAGE	778
	/*
	 * A page set is expensive so check if already on desired page.
	 * If not, set to the page with the PHY status registers.
	 */
	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
					   &phy_data);
	if (ret_val)
		goto release;
	if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
		ret_val = e1000e_write_phy_reg_mdic(hw,
						    IGP01E1000_PHY_PAGE_SELECT,
						    (HV_PHY_STATS_PAGE <<
						     IGP_PAGE_SHIFT));
		if (ret_val)
			goto release;
	}

	/* Read/clear the upper 16-bit registers and read/accumulate lower */

	/* Single Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.scc += phy_data;

	/* Excessive Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.ecol += phy_data;

	/* Multiple Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.mcc += phy_data;

	/* Late Collision Count */
	e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_LATECOL_LOWER &
					   MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.latecol += phy_data;

	/* Collision Count - also used for adaptive IFS */
	e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		hw->mac.collision_delta = phy_data;

	/* Defer Count */
	e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.dc += phy_data;

	/* Transmit with no CRS */
	e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
				 &phy_data);
	ret_val = e1000e_read_phy_reg_mdic(hw,
					   HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
					   &phy_data);
	if (!ret_val)
		adapter->stats.tncrs += phy_data;

release:
	hw->phy.ops.release(hw);
}

3885 3886 3887 3888 3889 3890
/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
void e1000e_update_stats(struct e1000_adapter *adapter)
{
3891
	struct net_device *netdev = adapter->netdev;
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
3906 3907
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
3908 3909 3910 3911 3912
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931

	/* Half-duplex statistics */
	if (adapter->link_duplex == HALF_DUPLEX) {
		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
			e1000e_update_phy_stats(adapter);
		} else {
			adapter->stats.scc += er32(SCC);
			adapter->stats.ecol += er32(ECOL);
			adapter->stats.mcc += er32(MCC);
			adapter->stats.latecol += er32(LATECOL);
			adapter->stats.dc += er32(DC);

			hw->mac.collision_delta = er32(COLC);

			if ((hw->mac.type != e1000_82574) &&
			    (hw->mac.type != e1000_82583))
				adapter->stats.tncrs += er32(TNCRS);
		}
		adapter->stats.colc += hw->mac.collision_delta;
3932
	}
3933

3934 3935 3936 3937 3938
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
3939 3940
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
3959 3960
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3961 3962 3963

	/* Rx Errors */

3964 3965 3966 3967
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
3968
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3969 3970 3971
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3972
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3973
					      adapter->stats.roc;
3974 3975 3976
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3977 3978

	/* Tx Errors */
3979
	netdev->stats.tx_errors = adapter->stats.ecol +
3980
				       adapter->stats.latecol;
3981 3982 3983
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3984 3985 3986 3987 3988 3989 3990 3991 3992

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;
	int ret_val;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
4014
			e_warn("Error reading PHY register\n");
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

4034 4035 4036 4037 4038
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

4039 4040 4041 4042
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
4043 4044
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
4045
	       "Full Duplex" : "Half Duplex",
4046
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4047 4048 4049
	       "Rx/Tx" :
	       ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
		((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4050 4051
}

4052
static bool e1000e_has_link(struct e1000_adapter *adapter)
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4089
		e_info("Gigabit has been disabled, downgrading speed\n");
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/*
	 * With 82574 controllers, PHY needs to be checked periodically
	 * for hung state and reset, if two calls return true
	 */
	if (e1000_check_phy_82574(hw))
		adapter->phy_hang_count++;
	else
		adapter->phy_hang_count = 0;

	if (adapter->phy_hang_count > 1) {
		adapter->phy_hang_count = 0;
		schedule_work(&adapter->reset_task);
	}
}

4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
4146
	struct e1000_phy_info *phy = &adapter->hw.phy;
4147 4148 4149 4150 4151
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;
	int tx_pending = 0;

4152
	link = e1000e_has_link(adapter);
4153
	if ((netif_carrier_ok(netdev)) && link) {
4154 4155 4156
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

4157
		e1000e_enable_receives(adapter);
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
4168 4169 4170 4171

			/* Cancel scheduled suspend requests. */
			pm_runtime_resume(netdev->dev.parent);

4172
			/* update snapshot of PHY registers on LSC */
4173
			e1000_phy_read_status(adapter);
4174 4175 4176 4177
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

4199
			/* adjust timeout factor according to speed/duplex */
4200 4201 4202 4203
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
4204
				adapter->tx_timeout_factor = 16;
4205 4206 4207
				break;
			case SPEED_100:
				txb2b = 0;
4208
				adapter->tx_timeout_factor = 10;
4209 4210 4211
				break;
			}

4212 4213 4214 4215
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
4216 4217 4218
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
4219
				tarc0 = er32(TARC(0));
4220
				tarc0 &= ~SPEED_MODE_BIT;
4221
				ew32(TARC(0), tarc0);
4222 4223
			}

4224 4225 4226 4227
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
4228 4229 4230 4231
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
4232
					e_info("10/100 speed: disabling TSO\n");
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

4246 4247 4248 4249
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
4250 4251 4252 4253
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
4254 4255 4256 4257 4258 4259 4260
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
4271 4272 4273
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
4274 4275 4276 4277 4278 4279 4280
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
4281 4282 4283
			else
				pm_schedule_suspend(netdev->dev.parent,
							LINK_TIMEOUT);
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
		}
	}

link_up:
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

4295 4296 4297 4298
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
4299 4300 4301 4302 4303 4304 4305

	e1000e_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
			       tx_ring->count);
		if (tx_pending) {
4306 4307
			/*
			 * We've lost link, so the controller stops DMA,
4308 4309
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
4310 4311
			 * (Do the reset outside of interrupt context).
			 */
4312
			schedule_work(&adapter->reset_task);
4313 4314
			/* return immediately since reset is imminent */
			return;
4315 4316 4317
		}
	}

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	/* Simple mode for Interrupt Throttle Rate (ITR) */
	if (adapter->itr_setting == 4) {
		/*
		 * Symmetric Tx/Rx gets a reduced ITR=2000;
		 * Total asymmetrical Tx or Rx gets ITR=8000;
		 * everyone else is between 2000-8000.
		 */
		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
		u32 dif = (adapter->gotc > adapter->gorc ?
			    adapter->gotc - adapter->gorc :
			    adapter->gorc - adapter->gotc) / 10000;
		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;

		ew32(ITR, 1000000000 / (itr * 256));
	}

4334
	/* Cause software interrupt to ensure Rx ring is cleaned */
4335 4336 4337 4338
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
4339 4340 4341 4342

	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

4343
	/* flush partial descriptors to memory before detecting Tx hang */
4344 4345 4346 4347 4348 4349 4350 4351 4352
	if (adapter->flags2 & FLAG2_DMA_BURST) {
		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
		ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
		/*
		 * no need to flush the writes because the timeout code does
		 * an er32 first thing
		 */
	}

4353 4354 4355 4356
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
4357 4358 4359
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

4360 4361 4362
	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
		e1000e_check_82574_phy_workaround(adapter);

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;
	int err;

4388 4389
	if (!skb_is_gso(skb))
		return 0;
4390

4391 4392 4393 4394
	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
4395 4396
	}

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
4407
	} else if (skb_is_gso_v6(skb)) {
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4446 4447 4448 4449 4450 4451 4452 4453 4454
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
4455
	u32 cmd_len = E1000_TXD_CMD_DEXT;
4456
	__be16 protocol;
4457

4458 4459
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
4460

4461 4462 4463 4464 4465
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
4466
	switch (protocol) {
4467
	case cpu_to_be16(ETH_P_IP):
4468 4469 4470
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
4471
	case cpu_to_be16(ETH_P_IPV6):
4472 4473 4474 4475 4476 4477
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
4478 4479
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
4480
		break;
4481 4482
	}

4483
	css = skb_checksum_start_offset(skb);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
4517
	struct pci_dev *pdev = adapter->pdev;
4518
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
4519
	unsigned int len = skb_headlen(skb);
4520
	unsigned int offset = 0, size, count = 0, i;
4521
	unsigned int f, bytecount, segs;
4522 4523 4524 4525

	i = tx_ring->next_to_use;

	while (len) {
4526
		buffer_info = &tx_ring->buffer_info[i];
4527 4528 4529 4530 4531
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
4532 4533
		buffer_info->dma = dma_map_single(&pdev->dev,
						  skb->data + offset,
4534
						  size, DMA_TO_DEVICE);
4535
		buffer_info->mapped_as_page = false;
4536
		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4537
			goto dma_error;
4538 4539 4540

		len -= size;
		offset += size;
4541
		count++;
4542 4543 4544 4545 4546 4547

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
4548 4549 4550 4551 4552 4553 4554
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
4555
		offset = frag->page_offset;
4556 4557

		while (len) {
4558 4559 4560 4561
			i++;
			if (i == tx_ring->count)
				i = 0;

4562 4563 4564 4565 4566 4567
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
4568
			buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4569
							offset, size,
4570
							DMA_TO_DEVICE);
4571
			buffer_info->mapped_as_page = true;
4572
			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4573
				goto dma_error;
4574 4575 4576 4577 4578 4579 4580

			len -= size;
			offset += size;
			count++;
		}
	}

4581
	segs = skb_shinfo(skb)->gso_segs ? : 1;
4582 4583 4584
	/* multiply data chunks by size of headers */
	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;

4585
	tx_ring->buffer_info[i].skb = skb;
4586 4587
	tx_ring->buffer_info[i].segs = segs;
	tx_ring->buffer_info[i].bytecount = bytecount;
4588 4589 4590
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
4591 4592

dma_error:
4593
	dev_err(&pdev->dev, "Tx DMA map failed\n");
4594
	buffer_info->dma = 0;
4595
	if (count)
4596
		count--;
4597 4598

	while (count--) {
4599
		if (i == 0)
4600
			i += tx_ring->count;
4601
		i--;
4602
		buffer_info = &tx_ring->buffer_info[i];
4603
		e1000_put_txbuf(adapter, buffer_info);
4604 4605 4606
	}

	return 0;
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

4639
	do {
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
4650
	} while (--count > 0);
4651 4652 4653

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4654 4655
	/*
	 * Force memory writes to complete before letting h/w
4656 4657
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4658 4659
	 * such as IA-64).
	 */
4660 4661 4662 4663
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
4664 4665 4666 4667
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4679 4680
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4715 4716
	/*
	 * Herbert's original patch had:
4717
	 *  smp_mb__after_netif_stop_queue();
4718 4719
	 * but since that doesn't exist yet, just open code it.
	 */
4720 4721
	smp_mb();

4722 4723 4724 4725
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4745 4746
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4747 4748 4749 4750 4751 4752 4753
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
E
Eric Dumazet 已提交
4754
	unsigned int len = skb_headlen(skb);
4755 4756
	unsigned int nr_frags;
	unsigned int mss;
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4772 4773
	/*
	 * The controller does a simple calculation to
4774 4775 4776 4777
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4778 4779
	 * drops.
	 */
4780 4781 4782 4783 4784
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4785 4786 4787 4788 4789
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4790
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4791 4792 4793 4794
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4795
		if (skb->data_len && (hdr_len == len)) {
4796 4797 4798 4799
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4800
				e_err("__pskb_pull_tail failed.\n");
4801 4802 4803
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
E
Eric Dumazet 已提交
4804
			len = skb_headlen(skb);
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4823 4824 4825 4826
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4827
	if (e1000_maybe_stop_tx(netdev, count + 2))
4828 4829
		return NETDEV_TX_BUSY;

4830
	if (vlan_tx_tag_present(skb)) {
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4848 4849
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4850
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4851 4852
	 * no longer assume, we must.
	 */
4853 4854 4855
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

4856
	/* if count is 0 then mapping error has occured */
4857
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4858 4859 4860 4861 4862 4863
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4864
		dev_kfree_skb_any(skb);
4865 4866
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

4890 4891 4892 4893 4894
	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
		e1000e_dump(adapter);
		e_err("Reset adapter\n");
	}
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
	e1000e_reinit_locked(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
{
	/* only return the current stats */
4908
	return &netdev->stats;
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

4923 4924 4925 4926
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
4927 4928 4929
		return -EINVAL;
	}

4930 4931 4932 4933
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
4934 4935 4936
		return -EINVAL;
	}

4937 4938 4939 4940 4941 4942 4943 4944 4945
	/* Jumbo frame workaround on 82579 requires CRC be stripped */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
	    (new_mtu > ETH_DATA_LEN)) {
		e_err("Jumbo Frames not supported on 82579 when CRC "
		      "stripping is disabled.\n");
		return -EINVAL;
	}

4946 4947 4948 4949 4950 4951 4952 4953
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

4954 4955
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
4956
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4957
	adapter->max_frame_size = max_frame;
4958 4959
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
4960 4961 4962
	if (netif_running(netdev))
		e1000e_down(adapter);

4963 4964
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4965 4966
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
4967
	 * i.e. RXBUFFER_2048 --> size-4096 slab
4968 4969
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
4970
	 */
4971

4972
	if (max_frame <= 2048)
4973 4974 4975 4976 4977 4978 4979 4980
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4981
					 + ETH_FCS_LEN;
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

4999
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5000 5001 5002 5003 5004 5005 5006
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
5007 5008
		e1000_phy_read_status(adapter);

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

5063 5064 5065 5066 5067 5068 5069 5070
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
	u16 phy_reg;
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
5071
	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108

	/* copy MAC MTA to PHY MTA */
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* configure PHY Rx Control register */
	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);

	/* activate PHY wakeup */
5109
	retval = hw->phy.ops.acquire(hw);
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
	if (retval) {
		e_err("Could not read PHY page 769\n");
		goto out;
	}
	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
5126
	hw->phy.ops.release(hw);
5127 5128 5129 5130

	return retval;
}

5131 5132
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
			    bool runtime)
5133 5134 5135 5136 5137
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
5138 5139
	/* Runtime suspend should only enable wakeup for link changes */
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5140 5141 5142 5143 5144 5145 5146 5147 5148
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
5149
	e1000e_reset_interrupt_capability(adapter);
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5175 5176 5177
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5178 5179
		ew32(CTRL, ctrl);

5180 5181 5182
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
5183 5184
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
5185
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5186 5187 5188
			ew32(CTRL_EXT, ctrl_ext);
		}

5189 5190 5191
		if (adapter->flags & FLAG_IS_ICH)
			e1000e_disable_gig_wol_ich8lan(&adapter->hw);

5192 5193 5194
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

5195
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5196 5197 5198 5199 5200 5201 5202 5203 5204
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
5205 5206 5207 5208 5209
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

5210 5211
	*enable_wake = !!wufc;

5212
	/* make sure adapter isn't asleep if manageability is enabled */
5213 5214
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
5215
		*enable_wake = true;
5216 5217 5218 5219

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

5220 5221 5222 5223
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5224
	e1000e_release_hw_control(adapter);
5225 5226 5227

	pci_disable_device(pdev);

5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

5263
		e1000_power_off(pdev, sleep, wake);
5264 5265 5266

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
5267
		e1000_power_off(pdev, sleep, wake);
5268
	}
5269 5270
}

5271 5272 5273 5274 5275 5276 5277
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
	pci_disable_link_state(pdev, state);
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5278 5279
{
	int pos;
5280
	u16 reg16;
5281 5282

	/*
5283 5284
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
5285
	 */
5286 5287 5288 5289 5290
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

5291 5292 5293
	if (!pdev->bus->self)
		return;

5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
5307 5308
}

5309
#ifdef CONFIG_PM_OPS
5310
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5311
{
5312
	return !!adapter->tx_ring->buffer_info;
5313 5314
}

5315
static int __e1000_resume(struct pci_dev *pdev)
5316 5317 5318 5319 5320 5321 5322 5323
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
5324
	pci_save_state(pdev);
5325 5326
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
T
Taku Izumi 已提交
5327

5328
	e1000e_set_interrupt_capability(adapter);
5329 5330 5331 5332 5333 5334 5335
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

	e1000e_power_up_phy(adapter);
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

5366 5367
	e1000e_reset(adapter);

5368
	e1000_init_manageability_pt(adapter);
5369 5370 5371 5372 5373 5374

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

5375 5376
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5377
	 * is up.  For all other cases, let the f/w know that the h/w is now
5378 5379
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5380
	if (!(adapter->flags & FLAG_HAS_AMT))
5381
		e1000e_get_hw_control(adapter);
5382 5383 5384

	return 0;
}
5385

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake, false);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
static int e1000_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter))
		adapter->idle_check = true;

	return __e1000_resume(pdev);
}
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000e_pm_ready(adapter)) {
		bool wake;

		__e1000_shutdown(pdev, &wake, true);
	}

	return 0;
}

static int e1000_idle(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	if (adapter->idle_check) {
		adapter->idle_check = false;
		if (!e1000e_has_link(adapter))
			pm_schedule_suspend(dev, MSEC_PER_SEC);
	}

	return -EBUSY;
}
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458

static int e1000_runtime_resume(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (!e1000e_pm_ready(adapter))
		return 0;

	adapter->idle_check = !dev->power.runtime_auto;
	return __e1000_resume(pdev);
}
5459 5460
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM_OPS */
5461 5462 5463

static void e1000_shutdown(struct pci_dev *pdev)
{
5464 5465
	bool wake = false;

5466
	__e1000_shutdown(pdev, &wake, false);
5467 5468 5469

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
5470 5471 5472
}

#ifdef CONFIG_NET_POLL_CONTROLLER
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502

static irqreturn_t e1000_intr_msix(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int vector, msix_irq;

	if (adapter->msix_entries) {
		vector = 0;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_rx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_intr_msix_tx(msix_irq, netdev);
		enable_irq(msix_irq);

		vector++;
		msix_irq = adapter->msix_entries[vector].vector;
		disable_irq(msix_irq);
		e1000_msix_other(msix_irq, netdev);
		enable_irq(msix_irq);
	}

	return IRQ_HANDLED;
}

5503 5504 5505 5506 5507 5508 5509 5510 5511
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		e1000_intr_msix(adapter->pdev->irq, netdev);
		break;
	case E1000E_INT_MODE_MSI:
		disable_irq(adapter->pdev->irq);
		e1000_intr_msi(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	default: /* E1000E_INT_MODE_LEGACY */
		disable_irq(adapter->pdev->irq);
		e1000_intr(adapter->pdev->irq, netdev);
		enable_irq(adapter->pdev->irq);
		break;
	}
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

5546 5547 5548
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
T
Taku Izumi 已提交
5569
	int err;
J
Jesse Brandeburg 已提交
5570
	pci_ers_result_t result;
5571

5572 5573
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5574
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
5575
	if (err) {
5576 5577
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
5578 5579 5580
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
5581
		pdev->state_saved = true;
J
Jesse Brandeburg 已提交
5582
		pci_restore_state(pdev);
5583

J
Jesse Brandeburg 已提交
5584 5585
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
5586

J
Jesse Brandeburg 已提交
5587 5588 5589 5590
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
5591

J
Jesse Brandeburg 已提交
5592 5593 5594
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5610
	e1000_init_manageability_pt(adapter);
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

5622 5623
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5624
	 * is up.  For all other cases, let the f/w know that the h/w is now
5625 5626
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5627
	if (!(adapter->flags & FLAG_HAS_AMT))
5628
		e1000e_get_hw_control(adapter);
5629 5630 5631 5632 5633 5634 5635

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
5636 5637
	u32 ret_val;
	u8 pba_str[E1000_PBANUM_LENGTH];
5638 5639

	/* print bus type/speed/width info */
J
Johannes Berg 已提交
5640
	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5641 5642 5643 5644
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
5645
	       netdev->dev_addr);
5646 5647
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5648 5649 5650
	ret_val = e1000_read_pba_string_generic(hw, pba_str,
						E1000_PBANUM_LENGTH);
	if (ret_val)
5651
		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5652 5653
	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
	       hw->mac.type, hw->phy.type, pba_str);
5654 5655
}

5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5666
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5667
		/* Deep Smart Power Down (DSPD) */
5668 5669
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
5670 5671 5672
	}
}

5673 5674 5675
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
5676
	.ndo_start_xmit		= e1000_xmit_frame,
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
	.ndo_get_stats		= e1000_get_stats,
	.ndo_set_multicast_list	= e1000_set_multi,
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
};

5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5711 5712
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
5713 5714 5715 5716 5717 5718

	static int cards_found;
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

5719 5720
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
T
Taku Izumi 已提交
5721

5722
	err = pci_enable_device_mem(pdev);
5723 5724 5725 5726
	if (err)
		return err;

	pci_using_dac = 0;
5727
	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5728
	if (!err) {
5729
		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5730 5731 5732
		if (!err)
			pci_using_dac = 1;
	} else {
5733
		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5734
		if (err) {
5735 5736
			err = dma_set_coherent_mask(&pdev->dev,
						    DMA_BIT_MASK(32));
5737 5738 5739 5740 5741 5742 5743 5744
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

5745
	err = pci_request_selected_regions_exclusive(pdev,
5746 5747
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
5748 5749 5750
	if (err)
		goto err_pci_reg;

5751
	/* AER (Advanced Error Reporting) hooks */
5752
	pci_enable_pcie_error_reporting(pdev);
5753

5754
	pci_set_master(pdev);
5755 5756 5757 5758
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
5759 5760 5761 5762 5763 5764 5765 5766

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

5767 5768
	netdev->irq = pdev->irq;

5769 5770 5771 5772 5773 5774 5775 5776
	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
5777
	adapter->flags2 = ei->flags2;
5778 5779
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
5780
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
5801
	netdev->netdev_ops		= &e1000e_netdev_ops;
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

5812 5813
	e1000e_check_options(adapter);

5814 5815 5816 5817 5818 5819 5820 5821 5822
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
5823
	err = ei->get_variants(adapter);
5824 5825 5826
	if (err)
		goto err_hw_init;

5827 5828 5829 5830
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

5831 5832
	hw->mac.ops.get_bus_info(&adapter->hw);

5833
	adapter->hw.phy.autoneg_wait_to_complete = 0;
5834 5835

	/* Copper options */
5836
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5837 5838 5839 5840 5841 5842
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
5843
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855

	netdev->features = NETIF_F_SG |
			   NETIF_F_HW_CSUM |
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

5856 5857 5858 5859 5860
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_HW_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

5861
	if (pci_using_dac) {
5862
		netdev->features |= NETIF_F_HIGHDMA;
5863 5864
		netdev->vlan_features |= NETIF_F_HIGHDMA;
	}
5865 5866 5867 5868

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

5869 5870 5871 5872
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
5883
			e_err("The NVM Checksum Is Not Valid\n");
5884 5885 5886 5887 5888
			err = -EIO;
			goto err_eeprom;
		}
	}

5889 5890
	e1000_eeprom_checks(adapter);

5891
	/* copy the MAC address */
5892
	if (e1000e_read_mac_addr(&adapter->hw))
5893
		e_err("NVM Read Error while reading MAC address\n");
5894 5895 5896 5897 5898

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
5899
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5900 5901 5902 5903 5904
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
5905
	adapter->watchdog_timer.function = e1000_watchdog;
5906 5907 5908
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
5909
	adapter->phy_info_timer.function = e1000_update_phy_info;
5910 5911 5912 5913
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5914 5915
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5916
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5917
	INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
5918 5919 5920

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
5921
	adapter->fc_autoneg = 1;
5922 5923
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
5938 5939
		if (eeprom_data & E1000_WUC_PHY_WAKE)
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
5964
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5965

5966 5967 5968
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

5969 5970 5971
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

5972 5973
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5974
	 * is up.  For all other cases, let the f/w know that the h/w is now
5975 5976
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5977
	if (!(adapter->flags & FLAG_HAS_AMT))
5978
		e1000e_get_hw_control(adapter);
5979

5980
	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
5981 5982 5983 5984
	err = register_netdev(netdev);
	if (err)
		goto err_register;

5985 5986 5987
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

5988 5989
	e1000_print_device_info(adapter);

5990 5991
	if (pci_dev_run_wake(pdev))
		pm_runtime_put_noidle(&pdev->dev);
5992

5993 5994 5995
	return 0;

err_register:
J
Jesse Brandeburg 已提交
5996
	if (!(adapter->flags & FLAG_HAS_AMT))
5997
		e1000e_release_hw_control(adapter);
5998 5999 6000
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
6001
err_hw_init:
6002 6003 6004
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
6005 6006
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6007
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
6008
err_flashmap:
6009 6010 6011 6012
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
6013 6014
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
6034 6035
	bool down = test_bit(__E1000_DOWN, &adapter->state);

6036
	/*
6037 6038
	 * The timers may be rescheduled, so explicitly disable them
	 * from being rescheduled.
6039
	 */
6040 6041
	if (!down)
		set_bit(__E1000_DOWN, &adapter->state);
6042 6043 6044
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

6045 6046 6047 6048
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
6049
	cancel_work_sync(&adapter->led_blink_task);
6050
	cancel_work_sync(&adapter->print_hang_task);
6051

6052 6053 6054
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

6055 6056 6057
	/* Don't lie to e1000_close() down the road. */
	if (!down)
		clear_bit(__E1000_DOWN, &adapter->state);
6058 6059
	unregister_netdev(netdev);

6060 6061
	if (pci_dev_run_wake(pdev))
		pm_runtime_get_noresume(&pdev->dev);
6062

6063 6064 6065 6066
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
6067
	e1000e_release_hw_control(adapter);
6068

6069
	e1000e_reset_interrupt_capability(adapter);
6070 6071 6072 6073 6074 6075
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
6076 6077
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
6078 6079 6080

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
6081
	/* AER disable */
6082
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
6083

6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

6094
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6095 6096 6097 6098 6099 6100
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6101 6102 6103
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6104

6105 6106 6107 6108
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6109

6110 6111 6112
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6113

6114
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6115
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6116
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6117

6118 6119 6120 6121 6122 6123 6124 6125
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
6126

6127 6128 6129 6130 6131 6132 6133
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
6134
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6135

6136 6137 6138 6139 6140
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6141
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6142 6143 6144 6145 6146 6147 6148
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6149

6150 6151
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6152
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6153

6154 6155 6156 6157 6158
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

6159 6160 6161
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },

6162 6163 6164 6165
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

6166
#ifdef CONFIG_PM_OPS
6167
static const struct dev_pm_ops e1000_pm_ops = {
6168 6169 6170
	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
				e1000_runtime_resume, e1000_idle)
6171
};
6172
#endif
6173

6174 6175 6176 6177 6178 6179
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
6180
#ifdef CONFIG_PM_OPS
6181
	.driver.pm = &e1000_pm_ops,
6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
6196 6197
	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
		e1000e_driver_version);
B
Bruce Allan 已提交
6198
	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6199
	ret = pci_register_driver(&e1000_driver);
6200

6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */