netdev.c 147.6 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
46
#include <linux/pm_qos_params.h>
J
Jesse Brandeburg 已提交
47
#include <linux/aer.h>
48 49 50

#include "e1000.h"

B
Bruce Allan 已提交
51
#define DRV_VERSION "1.0.2-k2"
52 53 54 55 56 57 58
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
59
	[board_82574]		= &e1000_82574_info,
60
	[board_82583]		= &e1000_82583_info,
61 62 63
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
64
	[board_ich10lan]	= &e1000_ich10_info,
65
	[board_pchlan]		= &e1000_pch_info,
66 67 68 69 70 71 72 73 74 75 76 77 78 79
};

/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
80
 * e1000_receive_skb - helper function to handle Rx indications
81 82 83 84 85 86 87 88
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
			      struct net_device *netdev,
			      struct sk_buff *skb,
A
Al Viro 已提交
89
			      u8 status, __le16 vlan)
90 91 92 93
{
	skb->protocol = eth_type_trans(skb, netdev);

	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
H
Herbert Xu 已提交
94 95
		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
				 le16_to_cpu(vlan), skb);
96
	else
H
Herbert Xu 已提交
97
		napi_gro_receive(&adapter->napi, skb);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
133 134 135
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
136 137
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
138 139
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
				   int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
159
	unsigned int bufsz = adapter->rx_buffer_len;
160 161 162 163 164 165 166 167 168 169 170

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

171
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
172 173 174 175 176 177 178 179 180 181 182
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_buffer_len,
						  PCI_DMA_FROMDEVICE);
183
		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			break;
		}

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i-- == 0)
			i = (rx_ring->count - 1);

203 204
		/*
		 * Force memory writes to complete before letting h/w
205 206
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
207 208
		 * such as IA-64).
		 */
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
				      int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
237 238 239
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
A
Al Viro 已提交
240
				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
A
Auke Kok 已提交
241 242 243 244
				continue;
			}
			if (!ps_page->page) {
				ps_page->page = alloc_page(GFP_ATOMIC);
245
				if (!ps_page->page) {
A
Auke Kok 已提交
246 247 248 249 250 251 252
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
				ps_page->dma = pci_map_page(pdev,
						   ps_page->page,
						   0, PAGE_SIZE,
						   PCI_DMA_FROMDEVICE);
253
				if (pci_dma_mapping_error(pdev, ps_page->dma)) {
A
Auke Kok 已提交
254 255 256 257
					dev_err(&adapter->pdev->dev,
					  "RX DMA page map failed\n");
					adapter->rx_dma_failed++;
					goto no_buffers;
258 259
				}
			}
A
Auke Kok 已提交
260 261 262 263 264 265 266
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
			rx_desc->read.buffer_addr[j+1] =
			     cpu_to_le64(ps_page->dma);
267 268
		}

269 270
		skb = netdev_alloc_skb_ip_align(netdev,
						adapter->rx_ps_bsize0);
271 272 273 274 275 276 277 278 279 280

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_ps_bsize0,
						  PCI_DMA_FROMDEVICE);
281
		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		if (!(i--))
			i = (rx_ring->count - 1);

305 306
		/*
		 * Force memory writes to complete before letting h/w
307 308
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
309 310
		 * such as IA-64).
		 */
311
		wmb();
312 313
		/*
		 * Hardware increments by 16 bytes, but packet split
314 315 316 317 318 319 320
		 * descriptors are 32 bytes...so we increment tail
		 * twice as much.
		 */
		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
	}
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
                                         int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
337
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
338 339 340 341 342 343 344 345 346 347 348

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

349
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
			buffer_info->page = alloc_page(GFP_ATOMIC);
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
			buffer_info->dma = pci_map_page(pdev,
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
			                                PCI_DMA_FROMDEVICE);

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

395 396 397 398 399 400 401 402 403 404 405 406
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
407
	struct e1000_hw *hw = &adapter->hw;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
		pci_unmap_single(pdev,
				 buffer_info->dma,
				 adapter->rx_buffer_len,
				 PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* !EOP means multiple descriptors were used to store a single
		 * packet, also make sure the frame isn't just CRC only */
		if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
			/* All receives must fit into a single buffer */
457
			e_dbg("Receive packet consumed multiple buffers\n");
458 459 460 461 462 463 464 465 466 467 468
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
469 470 471 472
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

473 474 475
		total_rx_bytes += length;
		total_rx_packets++;

476 477
		/*
		 * code added for copybreak, this should improve
478
		 * performance for small packets with large amounts
479 480
		 * of reassembly being done in the stack
		 */
481 482
		if (length < copybreak) {
			struct sk_buff *new_skb =
483
			    netdev_alloc_skb_ip_align(netdev, length);
484
			if (new_skb) {
485 486 487 488 489 490
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter,
				  (u32)(status) |
				  ((u32)(rx_desc->errors) << 24),
				  le16_to_cpu(rx_desc->csum), skb);

		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
528
	adapter->total_rx_packets += total_rx_packets;
529 530
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
531 532 533 534 535 536
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
537 538 539 540 541 542 543 544 545 546
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
			pci_unmap_page(adapter->pdev, buffer_info->dma,
				       buffer_info->length, PCI_DMA_TODEVICE);
		else
			pci_unmap_single(adapter->pdev,	buffer_info->dma,
					 buffer_info->length,
					 PCI_DMA_TODEVICE);
		buffer_info->dma = 0;
	}
547 548 549 550
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
551
	buffer_info->time_stamp = 0;
552 553
}

554
static void e1000_print_hw_hang(struct work_struct *work)
555
{
556 557 558
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
559 560 561 562
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
563 564 565 566 567 568 569
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
570

571 572 573 574
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
575 576 577 578 579 580 581 582
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
583 584 585 586 587 588
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
589 590 591 592 593 594 595
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
596 597 598 599 600 601
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

626 627
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
628 629
		bool cleaned = false;
		for (; !cleaned; count++) {
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
				struct sk_buff *skb = buffer_info->skb;
				unsigned int segs, bytecount;
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_tx_packets += segs;
				total_tx_bytes += bytecount;
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
660 661
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
662 663 664 665 666 667 668 669 670 671 672 673 674
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
675 676 677 678
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
679
		adapter->detect_tx_hung = 0;
680 681
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
682 683
			       + (adapter->tx_timeout_factor * HZ)) &&
		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
684
			schedule_work(&adapter->print_hang_task);
685 686 687 688 689
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
690 691
	netdev->stats.tx_bytes += total_tx_bytes;
	netdev->stats.tx_packets += total_tx_packets;
692
	return (count < tx_ring->count);
693 694 695 696 697 698 699 700 701 702 703 704
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
705
	struct e1000_hw *hw = &adapter->hw;
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
		pci_unmap_single(pdev, buffer_info->dma,
				 adapter->rx_ps_bsize0,
				 PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		if (!(staterr & E1000_RXD_STAT_EOP)) {
749 750
			e_dbg("Packet Split buffers didn't pick up the full "
			      "packet\n");
751 752 753 754 755 756 757 758 759 760 761 762
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
763 764
			e_dbg("Last part of the packet spanning multiple "
			      "descriptors\n");
765 766 767 768 769 770 771 772
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
773 774 775 776
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
777 778
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

779 780 781 782 783
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
784 785 786 787
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
788
			ps_page = &buffer_info->ps_pages[0];
789

790 791
			/*
			 * there is no documentation about how to call
792
			 * kmap_atomic, so we can't hold the mapping
793 794
			 * very long
			 */
795 796 797 798 799 800 801
			pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
				PAGE_SIZE, PCI_DMA_FROMDEVICE);
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
			pci_dma_sync_single_for_device(pdev, ps_page->dma,
				PAGE_SIZE, PCI_DMA_FROMDEVICE);
A
Auke Kok 已提交
802

J
Jeff Kirsher 已提交
803 804 805 806
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

807 808 809 810 811 812 813 814 815 816
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
817
			ps_page = &buffer_info->ps_pages[j];
818 819 820 821 822 823 824 825 826 827
			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
828 829 830 831 832 833
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
871
	adapter->total_rx_packets += total_rx_packets;
872 873
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
874 875 876
	return cleaned;
}

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
		pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
		               PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* errors is only valid for DD + EOP descriptors */
		if (unlikely((status & E1000_RXD_STAT_EOP) &&
		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
				/* recycle both page and skb */
				buffer_info->skb = skb;
				/* an error means any chain goes out the window
				 * too */
				if (rx_ring->rx_skb_top)
					dev_kfree_skb(rx_ring->rx_skb_top);
				rx_ring->rx_skb_top = NULL;
				goto next_desc;
		}

#define rxtop rx_ring->rx_skb_top
		if (!(status & E1000_RXD_STAT_EOP)) {
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
		e1000_rx_checksum(adapter,
		                  (u32)(status) |
		                  ((u32)(rx_desc->errors) << 24),
		                  le16_to_cpu(rx_desc->csum), skb);

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1023
			e_err("pskb_may_pull failed.\n");
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			dev_kfree_skb(skb);
			goto next_desc;
		}

		e1000_receive_skb(adapter, netdev, skb, status,
		                  rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
1052 1053
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1054 1055 1056
	return cleaned;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_buffer_len,
						 PCI_DMA_FROMDEVICE);
1077 1078 1079 1080
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
				pci_unmap_page(pdev, buffer_info->dma,
				               PAGE_SIZE,
				               PCI_DMA_FROMDEVICE);
1081 1082 1083 1084 1085 1086 1087
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_ps_bsize0,
						 PCI_DMA_FROMDEVICE);
			buffer_info->dma = 0;
		}

1088 1089 1090 1091 1092
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1093 1094 1095 1096 1097 1098
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1099
			ps_page = &buffer_info->ps_pages[j];
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
			if (!ps_page->page)
				break;
			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1126 1127 1128 1129 1130 1131 1132 1133
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1146 1147 1148
	/*
	 * read ICR disables interrupts using IAM
	 */
1149

1150
	if (icr & E1000_ICR_LSC) {
1151
		hw->mac.get_link_status = 1;
1152 1153 1154 1155
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1156 1157
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1158
			schedule_work(&adapter->downshift_task);
1159

1160 1161
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1162
		 * link down event; disable receives here in the ISR and reset
1163 1164
		 * adapter in watchdog
		 */
1165 1166 1167 1168 1169
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1170
			adapter->flags |= FLAG_RX_RESTART_NOW;
1171 1172 1173 1174 1175 1176
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1177
	if (napi_schedule_prep(&adapter->napi)) {
1178 1179 1180 1181
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1182
		__napi_schedule(&adapter->napi);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1199

1200
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1201 1202
		return IRQ_NONE;  /* Not our interrupt */

1203 1204 1205 1206
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1207 1208 1209
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1210 1211 1212 1213 1214
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1215

1216
	if (icr & E1000_ICR_LSC) {
1217
		hw->mac.get_link_status = 1;
1218 1219 1220 1221
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1222 1223
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1224
			schedule_work(&adapter->downshift_task);
1225

1226 1227
		/*
		 * 80003ES2LAN workaround--
1228 1229 1230 1231 1232 1233 1234 1235 1236
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1237
			adapter->flags |= FLAG_RX_RESTART_NOW;
1238 1239 1240 1241 1242 1243
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1244
	if (napi_schedule_prep(&adapter->napi)) {
1245 1246 1247 1248
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1249
		__napi_schedule(&adapter->napi);
1250 1251 1252 1253 1254
	}

	return IRQ_HANDLED;
}

1255 1256 1257 1258 1259 1260 1261 1262
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1263 1264
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1281 1282
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1320
	if (napi_schedule_prep(&adapter->napi)) {
1321 1322
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1323
		__napi_schedule(&adapter->napi);
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}

	return;
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
	int numvecs, i;


	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
			numvecs = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(numvecs,
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
				for (i = 0; i < numvecs; i++)
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
						      numvecs);
				if (err == 0)
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}

	return;
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1478
		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1479 1480 1481
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1482
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1483 1484 1485 1486 1487 1488 1489 1490
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1491
		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1492 1493 1494
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1495
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1496 1497 1498 1499 1500 1501 1502 1503
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1504
			  e1000_msix_other, 0, netdev->name, netdev);
1505 1506 1507 1508 1509 1510 1511 1512 1513
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1514 1515 1516 1517 1518 1519
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1520 1521 1522 1523 1524
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

1525 1526 1527 1528 1529 1530 1531 1532
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
1533
	}
1534
	if (adapter->flags & FLAG_MSI_ENABLED) {
1535
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1536 1537 1538
				  netdev->name, netdev);
		if (!err)
			return err;
1539

1540 1541 1542
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1543 1544
	}

1545
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1546 1547 1548 1549
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

1550 1551 1552 1553 1554 1555 1556
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
1569
	}
1570 1571

	free_irq(adapter->pdev->irq, netdev);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
1582 1583
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	e1e_flush();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1595 1596 1597 1598 1599 1600
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
1601
	e1e_flush();
1602 1603 1604 1605 1606 1607
}

/**
 * e1000_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
1608
 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
static void e1000_get_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
1625
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1626 1627 1628 1629 1630 1631 1632
	}
}

/**
 * e1000_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
1633
 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
static void e1000_release_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
1651
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
1702
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
1715 1716
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
1717 1718 1719 1720 1721 1722 1723

	size = sizeof(struct e1000_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

A
Auke Kok 已提交
1724 1725 1726 1727 1728 1729 1730 1731
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
1732 1733 1734 1735 1736 1737 1738 1739 1740

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
1741
		goto err_pages;
1742 1743 1744 1745 1746 1747

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
1748 1749 1750 1751 1752 1753

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
1754 1755
err:
	vfree(rx_ring->buffer_info);
1756
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
1820
	int i;
1821 1822 1823

	e1000_clean_rx_ring(adapter);

A
Auke Kok 已提交
1824 1825 1826 1827
	for (i = 0; i < rx_ring->count; i++) {
		kfree(rx_ring->buffer_info[i].ps_pages);
	}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
1838 1839 1840 1841 1842
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
1843 1844 1845 1846 1847 1848
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
1849 1850
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512)) {
			retval = low_latency;
		}
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35) {
				retval = low_latency;
			}
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
1949 1950
		/*
		 * this attempts to bias the interrupt rate towards Bulk
1951
		 * by adding intermediate steps when interrupt rate is
1952 1953
		 * increasing
		 */
1954 1955 1956 1957
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
1958 1959 1960 1961 1962
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
			ew32(ITR, 1000000000 / (new_itr * 256));
1963 1964 1965
	}
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

1988 1989
/**
 * e1000_clean - NAPI Rx polling callback
1990
 * @napi: struct associated with this polling callback
1991
 * @budget: amount of packets driver is allowed to process this poll
1992 1993 1994 1995
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1996
	struct e1000_hw *hw = &adapter->hw;
1997
	struct net_device *poll_dev = adapter->netdev;
1998
	int tx_cleaned = 1, work_done = 0;
1999

2000
	adapter = netdev_priv(poll_dev);
2001

2002 2003 2004 2005
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2006
	tx_cleaned = e1000_clean_tx_irq(adapter);
2007

2008
clean_rx:
2009
	adapter->clean_rx(adapter, &work_done, budget);
2010

2011
	if (!tx_cleaned)
2012
		work_done = budget;
2013

2014 2015
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2016 2017
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2018
		napi_complete(napi);
2019 2020 2021 2022 2023 2024
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
2041

2042
	/* add VID to filter table */
2043 2044 2045 2046 2047 2048
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2049 2050 2051 2052 2053 2054 2055 2056
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

J
Jesse Brandeburg 已提交
2057 2058
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2059
	vlan_group_set_device(adapter->vlgrp, vid, NULL);
J
Jesse Brandeburg 已提交
2060 2061 2062

	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		e1000_release_hw_control(adapter);
		return;
	}

	/* remove VID from filter table */
2073 2074 2075 2076 2077 2078
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}

static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (!adapter->vlgrp)
		return;

	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
		if (adapter->hw.mng_cookie.status &
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
			e1000_vlan_rx_add_vid(netdev, vid);
			adapter->mng_vlan_id = vid;
		}

		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
				(vid != old_vid) &&
		    !vlan_group_get_device(adapter->vlgrp, old_vid))
			e1000_vlan_rx_kill_vid(netdev, old_vid);
	} else {
		adapter->mng_vlan_id = vid;
	}
}


static void e1000_vlan_rx_register(struct net_device *netdev,
				   struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

J
Jesse Brandeburg 已提交
2115 2116
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			/* enable VLAN receive filtering */
			rctl = er32(RCTL);
			rctl &= ~E1000_RCTL_CFIEN;
			ew32(RCTL, rctl);
			e1000_update_mng_vlan(adapter);
		}
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			if (adapter->mng_vlan_id !=
			    (u16)E1000_MNG_VLAN_NONE) {
				e1000_vlan_rx_kill_vid(netdev,
						       adapter->mng_vlan_id);
				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
			}
		}
	}

J
Jesse Brandeburg 已提交
2148 2149
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (!adapter->vlgrp)
		return;

	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
		if (!vlan_group_get_device(adapter->vlgrp, vid))
			continue;
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
	}
}

static void e1000_init_manageability(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 manc, manc2h;

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2178 2179
	/*
	 * enable receiving management packets to the host. this will probably
2180
	 * generate destination unreachable messages from the host OS, but
2181 2182
	 * the packets will be handled on SMBUS
	 */
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
#define E1000_MNG2HOST_PORT_623 (1 << 5)
#define E1000_MNG2HOST_PORT_664 (1 << 6)
	manc2h |= E1000_MNG2HOST_PORT_623;
	manc2h |= E1000_MNG2HOST_PORT_664;
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2210
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2232
	/* Tx irq moderation */
2233 2234 2235 2236 2237 2238 2239 2240 2241
	ew32(TADV, adapter->tx_abs_int_delay);

	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2242
		tarc = er32(TARC(0));
2243 2244 2245 2246
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2247 2248
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2249
		ew32(TARC(0), tarc);
2250 2251 2252 2253
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2254
		tarc = er32(TARC(0));
2255
		tarc |= 1;
2256 2257
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2258
		tarc |= 1;
2259
		ew32(TARC(1), tarc);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2274 2275
	e1000e_config_collision_dist(hw);

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	adapter->tx_queue_len = adapter->netdev->tx_queue_len;
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 psrctl = 0;
	u32 pages = 0;

	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2308 2309 2310 2311 2312 2313
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2314

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 256:
		rctl |= E1000_RCTL_SZ_256;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 512:
		rctl |= E1000_RCTL_SZ_512;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 1024:
		rctl |= E1000_RCTL_SZ_1024;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2380 2381
	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2382
		adapter->rx_ps_pages = pages;
2383 2384
	else
		adapter->rx_ps_pages = 0;
2385 2386 2387 2388 2389

	if (adapter->rx_ps_pages) {
		/* Configure extra packet-split registers */
		rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_EXTEN;
2390 2391 2392 2393
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2394 2395 2396 2397 2398
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

		ew32(RFCTL, rfctl);

A
Auke Kok 已提交
2399 2400
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

	ew32(RCTL, rctl);
2422 2423
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
			sizeof(union e1000_rx_desc_packet_split);
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2445 2446 2447 2448
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2449
	} else {
2450
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	e1e_flush();
	msleep(10);

	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
	if (adapter->itr_setting != 0)
2467
		ew32(ITR, 1000000000 / (adapter->itr * 256));
2468 2469 2470 2471 2472 2473 2474 2475

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

2476 2477 2478 2479
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
2480
	rdba = rx_ring->dma;
2481
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
		rxcsum |= E1000_RXCSUM_TUOFL;

2494 2495 2496 2497
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
2498 2499 2500 2501 2502 2503 2504 2505
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

2506 2507
	/*
	 * Enable early receives on supported devices, only takes effect when
2508
	 * packet size is equal or larger than the specified value (in 8 byte
2509 2510
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	if (adapter->flags & FLAG_HAS_ERT) {
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
			ew32(ERT, E1000_ERT_2048 | (1 << 13));
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
			pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
						  adapter->netdev->name, 55);
		} else {
			pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
						  adapter->netdev->name,
						  PM_QOS_DEFAULT_VALUE);
		}
2528
	}
2529 2530 2531 2532 2533 2534

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
2535
 *  e1000_update_mc_addr_list - Update Multicast addresses
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *  @rar_used_count: the first RAR register free to program
 *  @rar_count: total number of supported Receive Address Registers
 *
 *  Updates the Receive Address Registers and Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 *  The parameter rar_count will usually be hw->mac.rar_entry_count
 *  unless there are workarounds that change this.  Currently no func pointer
 *  exists and all implementations are handled in the generic version of this
 *  function.
 **/
2549 2550 2551
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
				      u32 mc_addr_count, u32 rar_used_count,
				      u32 rar_count)
2552
{
2553
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
				        rar_used_count, rar_count);
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct dev_mc_list *mc_ptr;
	u8  *mta_list;
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2582
		rctl &= ~E1000_RCTL_VFE;
2583
	} else {
2584 2585 2586 2587 2588 2589
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
2590
		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2591
			rctl |= E1000_RCTL_VFE;
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	}

	ew32(RCTL, rctl);

	if (netdev->mc_count) {
		mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
		mc_ptr = netdev->mc_list;

		for (i = 0; i < netdev->mc_count; i++) {
			if (!mc_ptr)
				break;
			memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
			       ETH_ALEN);
			mc_ptr = mc_ptr->next;
		}

2612
		e1000_update_mc_addr_list(hw, mta_list, i, 1,
2613 2614 2615 2616 2617 2618 2619
					  mac->rar_entry_count);
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
2620
		e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2621 2622 2623 2624
	}
}

/**
2625
 * e1000_configure - configure the hardware for Rx and Tx
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
	e1000_init_manageability(adapter);

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
2638
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
2651 2652
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
2653 2654 2655 2656 2657 2658 2659

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
2660 2661
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
2662 2663 2664 2665
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
2666
	if (adapter->wol)
2667 2668
		return;

2669 2670
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
2671 2672 2673 2674 2675 2676 2677 2678
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
2679
 * properly configured for Rx, Tx etc.
2680 2681 2682 2683
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
2684
	struct e1000_fc_info *fc = &adapter->hw.fc;
2685 2686
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
2687
	u32 pba = adapter->pba;
2688 2689
	u16 hwm;

2690
	/* reset Packet Buffer Allocation to default */
2691
	ew32(PBA, pba);
2692

2693
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2694 2695
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
2696 2697 2698 2699
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
2700 2701
		 * expressed in KB.
		 */
2702
		pba = er32(PBA);
2703
		/* upper 16 bits has Tx packet buffer allocation size in KB */
2704
		tx_space = pba >> 16;
2705
		/* lower 16 bits has Rx packet buffer allocation size in KB */
2706
		pba &= 0xffff;
2707 2708 2709
		/*
		 * the Tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it
2710 2711
		 */
		min_tx_space = (adapter->max_frame_size +
2712 2713 2714 2715 2716
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
2717
		min_rx_space = adapter->max_frame_size;
2718 2719 2720
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

2721 2722
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
2723
		 * and the min Tx FIFO size is less than the current Rx FIFO
2724 2725
		 * allocation, take space away from current Rx allocation
		 */
2726 2727 2728
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
2729

2730 2731 2732 2733
			/*
			 * if short on Rx space, Rx wins and must trump tx
			 * adjustment or use Early Receive if available
			 */
2734
			if ((pba < min_rx_space) &&
2735 2736
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
2737
				pba = min_rx_space;
2738
		}
2739 2740

		ew32(PBA, pba);
2741 2742 2743
	}


2744 2745 2746
	/*
	 * flow control settings
	 *
2747
	 * The high water mark must be low enough to fit one full frame
2748 2749 2750 2751 2752
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
2753
	 * - the full Rx FIFO size minus one full frame
2754
	 */
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	if (hw->mac.type == e1000_pchlan) {
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
	} else {
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));
2775

2776 2777 2778
		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	}
2779 2780

	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2781
		fc->pause_time = 0xFFFF;
2782
	else
2783 2784
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
2785
	fc->current_mode = fc->requested_mode;
2786 2787 2788

	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
2789 2790 2791 2792 2793

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
2794
	if (adapter->flags & FLAG_HAS_AMT)
2795 2796
		e1000_get_hw_control(adapter);

2797
	ew32(WUC, 0);
2798 2799
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
		e1e_wphy(&adapter->hw, BM_WUC, 0);
2800 2801

	if (mac->ops.init_hw(hw))
2802
		e_err("Hardware Error\n");
2803

2804 2805 2806 2807
	/* additional part of the flow-control workaround above */
	if (hw->mac.type == e1000_pchlan)
		ew32(FCRTV_PCH, 0x1000);

2808 2809 2810 2811 2812 2813 2814 2815
	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
	e1000_get_phy_info(hw);

2816 2817
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2818
		u16 phy_data = 0;
2819 2820
		/*
		 * speed up time to link by disabling smart power down, ignore
2821
		 * the return value of this function because there is nothing
2822 2823
		 * different we would do if it failed
		 */
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2834 2835 2836 2837 2838 2839
	/* DMA latency requirement to workaround early-receive/jumbo issue */
	if (adapter->flags & FLAG_HAS_ERT)
		pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
		                       adapter->netdev->name,
				       PM_QOS_DEFAULT_VALUE);

2840 2841 2842 2843 2844 2845
	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
2846 2847
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
2848 2849
	e1000_irq_enable(adapter);

2850 2851
	netif_wake_queue(adapter->netdev);

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
	/* fire a link change interrupt to start the watchdog */
	ew32(ICS, E1000_ICS_LSC);
	return 0;
}

void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

2863 2864 2865 2866
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
2867 2868 2869 2870 2871 2872 2873
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

2874
	netif_stop_queue(netdev);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	/* flush both disables and wait for them to finish */
	e1e_flush();
	msleep(10);

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netdev->tx_queue_len = adapter->tx_queue_len;
	netif_carrier_off(netdev);
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

2895 2896
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
2897 2898 2899
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

2900 2901 2902 2903
	if (adapter->flags & FLAG_HAS_ERT)
		pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
		                          adapter->netdev->name);

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
2934 2935
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2936

2937
	e1000e_set_interrupt_capability(adapter);
2938

2939 2940
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
2941 2942 2943 2944 2945 2946 2947 2948

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

2961
	e_dbg("icr is %08X\n", icr);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
2988
	e1000e_reset_interrupt_capability(adapter);
2989 2990 2991 2992 2993 2994 2995 2996 2997

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

2998
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3019
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		err = -EIO;
		e_info("MSI interrupt test failed!\n");
	}

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

	if (err == -EIO)
		goto msi_test_failed;

	/* okay so the test worked, restore settings */
3031
	e_dbg("MSI interrupt test succeeded!\n");
3032
msi_test_failed:
3033
	e1000e_set_interrupt_capability(adapter);
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	e1000_request_irq(adapter);
	return err;
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
	pci_write_config_word(adapter->pdev, PCI_COMMAND,
			      pci_cmd & ~PCI_COMMAND_SERR);

	err = e1000_test_msi_interrupt(adapter);

	/* restore previous setting of command word */
	pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);

	/* success ! */
	if (!err)
		return 0;

	/* EIO means MSI test failed */
	if (err != -EIO)
		return err;

	/* back to INTx mode */
	e_warn("MSI interrupt test failed, using legacy interrupt.\n");

	e1000_free_irq(adapter);

	err = e1000_request_irq(adapter);

	return err;
}

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3102 3103
	netif_carrier_off(netdev);

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3121 3122 3123 3124
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open
	 */
J
Jesse Brandeburg 已提交
3125
	if (adapter->flags & FLAG_HAS_AMT)
3126 3127
		e1000_get_hw_control(adapter);

3128 3129
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3130 3131
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3132 3133
	 * clean_rx handler before we do so.
	 */
3134 3135 3136 3137 3138 3139
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3140 3141 3142 3143 3144
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3145
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3146 3147 3148 3149 3150 3151 3152
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3153 3154 3155 3156 3157 3158 3159
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3160
	netif_start_queue(netdev);
3161

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
	/* fire a link status change interrupt to start the watchdog */
	ew32(ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	e1000_release_hw_control(adapter);
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
	e1000e_down(adapter);
	e1000_power_down_phy(adapter);
	e1000_free_irq(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3202 3203 3204 3205
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
3206 3207 3208 3209 3210 3211
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3212 3213 3214 3215
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
J
Jesse Brandeburg 已提交
3216
	if (adapter->flags & FLAG_HAS_AMT)
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		e1000_release_hw_control(adapter);

	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3245 3246
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3247 3248 3249 3250
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3251 3252
		 * RAR[14]
		 */
3253 3254 3255 3256 3257 3258 3259 3260
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
	e1000_get_phy_info(&adapter->hw);
}

3276 3277 3278 3279
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3280 3281 3282
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3283
	schedule_work(&adapter->update_phy_task);
3284 3285 3286 3287 3288 3289 3290 3291
}

/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
void e1000e_update_stats(struct e1000_adapter *adapter)
{
3292
	struct net_device *netdev = adapter->netdev;
3293 3294
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
3295
	u16 phy_data;
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
3308 3309
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
3310 3311 3312 3313 3314
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
3315 3316 3317
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3318 3319
		if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
			adapter->stats.scc += phy_data;
3320 3321

		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3322 3323
		if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
			adapter->stats.ecol += phy_data;
3324 3325

		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3326 3327
		if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
			adapter->stats.mcc += phy_data;
3328 3329

		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3330 3331
		if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
			adapter->stats.latecol += phy_data;
3332 3333

		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3334 3335
		if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
			adapter->stats.dc += phy_data;
3336 3337 3338 3339 3340 3341 3342
	} else {
		adapter->stats.scc += er32(SCC);
		adapter->stats.ecol += er32(ECOL);
		adapter->stats.mcc += er32(MCC);
		adapter->stats.latecol += er32(LATECOL);
		adapter->stats.dc += er32(DC);
	}
3343 3344 3345 3346 3347
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
3348 3349
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
3360 3361 3362
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3363 3364
		if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
			hw->mac.collision_delta = phy_data;
3365 3366 3367
	} else {
		hw->mac.collision_delta = er32(COLC);
	}
3368 3369 3370 3371
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
3372 3373 3374
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3375 3376
		if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
			adapter->stats.tncrs += phy_data;
3377 3378 3379 3380 3381
	} else {
		if ((hw->mac.type != e1000_82574) &&
		    (hw->mac.type != e1000_82583))
			adapter->stats.tncrs += er32(TNCRS);
	}
3382 3383 3384 3385 3386
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
3387 3388
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3389 3390 3391

	/* Rx Errors */

3392 3393 3394 3395
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
3396
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3397 3398 3399
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3400
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3401
					      adapter->stats.roc;
3402 3403 3404
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3405 3406

	/* Tx Errors */
3407
	netdev->stats.tx_errors = adapter->stats.ecol +
3408
				       adapter->stats.latecol;
3409 3410 3411
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3412 3413 3414 3415 3416 3417 3418 3419 3420

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;
	int ret_val;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
3442
			e_warn("Error reading PHY register\n");
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

3462 3463 3464 3465 3466
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

3467 3468 3469 3470
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
3471 3472 3473 3474 3475 3476 3477
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
	                        "Full Duplex" : "Half Duplex",
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
	                        "RX/TX" :
	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3478 3479
}

3480
bool e1000_has_link(struct e1000_adapter *adapter)
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3517
		e_info("Gigabit has been disabled, downgrading speed\n");
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
3555
	struct e1000_phy_info *phy = &adapter->hw.phy;
3556 3557 3558 3559 3560
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;
	int tx_pending = 0;

3561 3562 3563
	link = e1000_has_link(adapter);
	if ((netif_carrier_ok(netdev)) && link) {
		e1000e_enable_receives(adapter);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
3574
			/* update snapshot of PHY registers on LSC */
3575
			e1000_phy_read_status(adapter);
3576 3577 3578 3579
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

3601 3602 3603 3604
			/*
			 * tweak tx_queue_len according to speed/duplex
			 * and adjust the timeout factor
			 */
3605 3606 3607 3608 3609 3610
			netdev->tx_queue_len = adapter->tx_queue_len;
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
				netdev->tx_queue_len = 10;
3611
				adapter->tx_timeout_factor = 16;
3612 3613 3614 3615
				break;
			case SPEED_100:
				txb2b = 0;
				netdev->tx_queue_len = 100;
3616
				adapter->tx_timeout_factor = 10;
3617 3618 3619
				break;
			}

3620 3621 3622 3623
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
3624 3625 3626
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
3627
				tarc0 = er32(TARC(0));
3628
				tarc0 &= ~SPEED_MODE_BIT;
3629
				ew32(TARC(0), tarc0);
3630 3631
			}

3632 3633 3634 3635
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
3636 3637 3638 3639
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
3640
					e_info("10/100 speed: disabling TSO\n");
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

3654 3655 3656 3657
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
3658 3659 3660 3661
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
3662 3663 3664 3665 3666 3667 3668
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3679 3680 3681
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
		}
	}

link_up:
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

3700 3701 3702 3703
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
3704 3705 3706 3707 3708 3709 3710

	e1000e_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
			       tx_ring->count);
		if (tx_pending) {
3711 3712
			/*
			 * We've lost link, so the controller stops DMA,
3713 3714
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
3715 3716
			 * (Do the reset outside of interrupt context).
			 */
3717 3718
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3719 3720
			/* return immediately since reset is imminent */
			return;
3721 3722 3723
		}
	}

3724
	/* Cause software interrupt to ensure Rx ring is cleaned */
3725 3726 3727 3728
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
3729 3730 3731 3732

	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

3733 3734 3735 3736
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;
	int err;

3765 3766
	if (!skb_is_gso(skb))
		return 0;
3767

3768 3769 3770 3771
	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
3772 3773
	}

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
	} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
3823 3824 3825 3826 3827 3828 3829 3830 3831
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
3832
	u32 cmd_len = E1000_TXD_CMD_DEXT;
3833
	__be16 protocol;
3834

3835 3836
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
3837

3838 3839 3840 3841 3842
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
3843
	switch (protocol) {
3844
	case cpu_to_be16(ETH_P_IP):
3845 3846 3847
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
3848
	case cpu_to_be16(ETH_P_IPV6):
3849 3850 3851 3852 3853 3854
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
3855 3856
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
3857
		break;
3858 3859
	}

3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
	css = skb_transport_offset(skb);

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
3894
	struct pci_dev *pdev = adapter->pdev;
3895
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
3896
	unsigned int len = skb_headlen(skb);
3897
	unsigned int offset = 0, size, count = 0, i;
3898 3899 3900 3901 3902
	unsigned int f;

	i = tx_ring->next_to_use;

	while (len) {
3903
		buffer_info = &tx_ring->buffer_info[i];
3904 3905 3906 3907 3908
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
3909 3910 3911 3912 3913
		buffer_info->dma = pci_map_single(pdev,	skb->data + offset,
						  size,	PCI_DMA_TODEVICE);
		buffer_info->mapped_as_page = false;
		if (pci_dma_mapping_error(pdev, buffer_info->dma))
			goto dma_error;
3914 3915 3916

		len -= size;
		offset += size;
3917
		count++;
3918 3919 3920 3921 3922 3923

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
3924 3925 3926 3927 3928 3929 3930
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
3931
		offset = frag->page_offset;
3932 3933

		while (len) {
3934 3935 3936 3937
			i++;
			if (i == tx_ring->count)
				i = 0;

3938 3939 3940 3941 3942 3943
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
3944 3945 3946 3947 3948 3949
			buffer_info->dma = pci_map_page(pdev, frag->page,
							offset, size,
							PCI_DMA_TODEVICE);
			buffer_info->mapped_as_page = true;
			if (pci_dma_mapping_error(pdev, buffer_info->dma))
				goto dma_error;
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960

			len -= size;
			offset += size;
			count++;
		}
	}

	tx_ring->buffer_info[i].skb = skb;
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976

dma_error:
	dev_err(&pdev->dev, "TX DMA map failed\n");
	buffer_info->dma = 0;
	count--;

	while (count >= 0) {
		count--;
		i--;
		if (i < 0)
			i += tx_ring->count;
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);;
	}

	return 0;
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4024 4025
	/*
	 * Force memory writes to complete before letting h/w
4026 4027
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4028 4029
	 * such as IA-64).
	 */
4030 4031 4032 4033
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
4034 4035 4036 4037
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4049 4050
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4085 4086
	/*
	 * Herbert's original patch had:
4087
	 *  smp_mb__after_netif_stop_queue();
4088 4089
	 * but since that doesn't exist yet, just open code it.
	 */
4090 4091
	smp_mb();

4092 4093 4094 4095
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4115 4116
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4117 4118 4119 4120 4121 4122 4123
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
4124 4125 4126
	unsigned int len = skb->len - skb->data_len;
	unsigned int nr_frags;
	unsigned int mss;
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4142 4143
	/*
	 * The controller does a simple calculation to
4144 4145 4146 4147
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4148 4149
	 * drops.
	 */
4150 4151 4152 4153 4154
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4155 4156 4157 4158 4159
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4160
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4161 4162 4163 4164
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4165
		if (skb->data_len && (hdr_len == len)) {
4166 4167 4168 4169
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4170
				e_err("__pskb_pull_tail failed.\n");
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
			len = skb->len - skb->data_len;
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4193 4194 4195 4196
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4197
	if (e1000_maybe_stop_tx(netdev, count + 2))
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
		return NETDEV_TX_BUSY;

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4218 4219
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4220
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4221 4222
	 * no longer assume, we must.
	 */
4223 4224 4225
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

4226
	/* if count is 0 then mapping error has occured */
4227
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4228 4229 4230 4231 4232 4233
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4234
		dev_kfree_skb_any(skb);
4235 4236
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

	e1000e_reinit_locked(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
{
	/* only return the current stats */
4273
	return &netdev->stats;
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

4288 4289 4290 4291
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
4292 4293 4294
		return -EINVAL;
	}

4295 4296 4297 4298
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
4299 4300 4301 4302 4303
		return -EINVAL;
	}

	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
4304
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4305
	adapter->max_frame_size = max_frame;
4306 4307
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
4308 4309 4310
	if (netif_running(netdev))
		e1000e_down(adapter);

4311 4312
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4313 4314
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
4315
	 * i.e. RXBUFFER_2048 --> size-4096 slab
4316 4317
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
4318
	 */
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

	if (max_frame <= 256)
		adapter->rx_buffer_len = 256;
	else if (max_frame <= 512)
		adapter->rx_buffer_len = 512;
	else if (max_frame <= 1024)
		adapter->rx_buffer_len = 1024;
	else if (max_frame <= 2048)
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4335
					 + ETH_FCS_LEN;
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

4353
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
4354 4355 4356 4357 4358 4359 4360
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
4361 4362
		e1000_phy_read_status(adapter);

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
	u16 phy_reg;
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
		mac_reg = er32(RAL(i));
		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
		mac_reg = er32(RAH(i));
		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* copy MAC MTA to PHY MTA */
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* configure PHY Rx Control register */
	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);

	/* activate PHY wakeup */
4470
	retval = hw->phy.ops.acquire(hw);
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
	if (retval) {
		e_err("Could not read PHY page 769\n");
		goto out;
	}
	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
4487
	hw->phy.ops.release(hw);
4488 4489 4490 4491

	return retval;
}

4492
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
	u32 wufc = adapter->wol;
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
4508
	e1000e_reset_interrupt_capability(adapter);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4534 4535 4536
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4537 4538
		ew32(CTRL, ctrl);

4539 4540 4541
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
4542 4543
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
4544
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4545 4546 4547
			ew32(CTRL_EXT, ctrl_ext);
		}

4548 4549 4550
		if (adapter->flags & FLAG_IS_ICH)
			e1000e_disable_gig_wol_ich8lan(&adapter->hw);

4551 4552 4553
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

4554
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4555 4556 4557 4558 4559 4560 4561 4562 4563
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
4564 4565 4566 4567 4568
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

4569 4570
	*enable_wake = !!wufc;

4571
	/* make sure adapter isn't asleep if manageability is enabled */
4572 4573
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
4574
		*enable_wake = true;
4575 4576 4577 4578

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

4579 4580 4581 4582
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
4583 4584 4585 4586
	e1000_release_hw_control(adapter);

	pci_disable_device(pdev);

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

4622
		e1000_power_off(pdev, sleep, wake);
4623 4624 4625

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
4626
		e1000_power_off(pdev, sleep, wake);
4627
	}
4628 4629
}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
static void e1000e_disable_l1aspm(struct pci_dev *pdev)
{
	int pos;
	u16 val;

	/*
	 * 82573 workaround - disable L1 ASPM on mobile chipsets
	 *
	 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
	 * resulting in lost data or garbage information on the pci-e link
	 * level. This could result in (false) bad EEPROM checksum errors,
	 * long ping times (up to 2s) or even a system freeze/hang.
	 *
	 * Unfortunately this feature saves about 1W power consumption when
	 * active.
	 */
	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
	if (val & 0x2) {
		dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
		val &= ~0x2;
		pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
	}
}

4655
#ifdef CONFIG_PM
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

4668 4669 4670 4671 4672 4673 4674 4675 4676
static int e1000_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
4677
	pci_save_state(pdev);
4678
	e1000e_disable_l1aspm(pdev);
T
Taku Izumi 已提交
4679

4680
	err = pci_enable_device_mem(pdev);
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
	if (err) {
		dev_err(&pdev->dev,
			"Cannot enable PCI device from suspend\n");
		return err;
	}

	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

4692
	e1000e_set_interrupt_capability(adapter);
4693 4694 4695 4696 4697 4698 4699
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

	e1000e_power_up_phy(adapter);
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

4730 4731 4732 4733 4734 4735 4736 4737 4738
	e1000e_reset(adapter);

	e1000_init_manageability(adapter);

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

4739 4740
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
4741
	 * is up.  For all other cases, let the f/w know that the h/w is now
4742 4743
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
4744
	if (!(adapter->flags & FLAG_HAS_AMT))
4745 4746 4747 4748 4749 4750 4751 4752
		e1000_get_hw_control(adapter);

	return 0;
}
#endif

static void e1000_shutdown(struct pci_dev *pdev)
{
4753 4754 4755 4756 4757 4758
	bool wake = false;

	__e1000_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	disable_irq(adapter->pdev->irq);
	e1000_intr(adapter->pdev->irq, netdev);

	enable_irq(adapter->pdev->irq);
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

4794 4795 4796
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
T
Taku Izumi 已提交
4817
	int err;
J
Jesse Brandeburg 已提交
4818
	pci_ers_result_t result;
4819

4820
	e1000e_disable_l1aspm(pdev);
4821
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
4822
	if (err) {
4823 4824
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
4825 4826 4827 4828
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
4829
		pci_save_state(pdev);
4830

J
Jesse Brandeburg 已提交
4831 4832
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
4833

J
Jesse Brandeburg 已提交
4834 4835 4836 4837
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
4838

J
Jesse Brandeburg 已提交
4839 4840 4841
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	e1000_init_manageability(adapter);

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

4869 4870
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
4871
	 * is up.  For all other cases, let the f/w know that the h/w is now
4872 4873
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
4874
	if (!(adapter->flags & FLAG_HAS_AMT))
4875 4876 4877 4878 4879 4880 4881 4882
		e1000_get_hw_control(adapter);

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
4883
	u32 pba_num;
4884 4885

	/* print bus type/speed/width info */
J
Johannes Berg 已提交
4886
	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4887 4888 4889 4890
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
4891
	       netdev->dev_addr);
4892 4893
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
J
Jeff Kirsher 已提交
4894
	e1000e_read_pba_num(hw, &pba_num);
4895 4896
	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4897 4898
}

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4909
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4910
		/* Deep Smart Power Down (DSPD) */
4911 4912
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
4913 4914 4915
	}

	ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4916
	if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4917
		/* ASPM enable */
4918 4919
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected ASPM enabled in EEPROM\n");
4920 4921 4922
	}
}

4923 4924 4925
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
4926
	.ndo_start_xmit		= e1000_xmit_frame,
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
	.ndo_get_stats		= e1000_get_stats,
	.ndo_set_multicast_list	= e1000_set_multi,
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
};

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4961 4962
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
4963 4964 4965 4966 4967 4968

	static int cards_found;
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

4969
	e1000e_disable_l1aspm(pdev);
T
Taku Izumi 已提交
4970

4971
	err = pci_enable_device_mem(pdev);
4972 4973 4974 4975
	if (err)
		return err;

	pci_using_dac = 0;
4976
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4977
	if (!err) {
4978
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4979 4980 4981
		if (!err)
			pci_using_dac = 1;
	} else {
4982
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4983 4984
		if (err) {
			err = pci_set_consistent_dma_mask(pdev,
4985
							  DMA_BIT_MASK(32));
4986 4987 4988 4989 4990 4991 4992 4993
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

4994
	err = pci_request_selected_regions_exclusive(pdev,
4995 4996
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
4997 4998 4999
	if (err)
		goto err_pci_reg;

5000
	/* AER (Advanced Error Reporting) hooks */
5001
	pci_enable_pcie_error_reporting(pdev);
5002

5003
	pci_set_master(pdev);
5004 5005 5006 5007
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
5024
	adapter->flags2 = ei->flags2;
5025 5026
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
5027
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
5048
	netdev->netdev_ops		= &e1000e_netdev_ops;
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

5059 5060
	e1000e_check_options(adapter);

5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	err = -EIO;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
5072
	err = ei->get_variants(adapter);
5073 5074 5075
	if (err)
		goto err_hw_init;

5076 5077 5078 5079
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

5080 5081
	hw->mac.ops.get_bus_info(&adapter->hw);

5082
	adapter->hw.phy.autoneg_wait_to_complete = 0;
5083 5084

	/* Copper options */
5085
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5086 5087 5088 5089 5090 5091
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
5092
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104

	netdev->features = NETIF_F_SG |
			   NETIF_F_HW_CSUM |
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

5105 5106 5107 5108 5109
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_HW_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

5110 5111 5112 5113 5114 5115
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

5116 5117 5118 5119
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
5130
			e_err("The NVM Checksum Is Not Valid\n");
5131 5132 5133 5134 5135
			err = -EIO;
			goto err_eeprom;
		}
	}

5136 5137
	e1000_eeprom_checks(adapter);

5138 5139
	/* copy the MAC address out of the NVM */
	if (e1000e_read_mac_addr(&adapter->hw))
5140
		e_err("NVM Read Error while reading MAC address\n");
5141 5142 5143 5144 5145

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
5146
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
	adapter->watchdog_timer.function = &e1000_watchdog;
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
	adapter->phy_info_timer.function = &e1000_update_phy_info;
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5161 5162
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5163
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5164 5165 5166

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
5167
	adapter->fc_autoneg = 1;
5168 5169
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
5184 5185
		if (eeprom_data & E1000_WUC_PHY_WAKE)
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
5210
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5211

5212 5213 5214
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

5215 5216 5217
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

5218 5219
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5220
	 * is up.  For all other cases, let the f/w know that the h/w is now
5221 5222
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5223
	if (!(adapter->flags & FLAG_HAS_AMT))
5224 5225 5226 5227 5228 5229 5230
		e1000_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

5231 5232 5233
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

5234 5235 5236 5237 5238
	e1000_print_device_info(adapter);

	return 0;

err_register:
J
Jesse Brandeburg 已提交
5239 5240
	if (!(adapter->flags & FLAG_HAS_AMT))
		e1000_release_hw_control(adapter);
5241 5242 5243
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
5244
err_hw_init:
5245 5246 5247 5248

	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
5249 5250
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5251
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
5252
err_flashmap:
5253 5254 5255 5256
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
5257 5258
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5279 5280 5281 5282
	/*
	 * flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled
	 */
5283 5284 5285 5286
	set_bit(__E1000_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

5287 5288 5289 5290 5291
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
5292 5293
	flush_scheduled_work();

5294 5295 5296 5297 5298
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

	unregister_netdev(netdev);

5299 5300 5301 5302
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5303 5304
	e1000_release_hw_control(adapter);

5305
	e1000e_reset_interrupt_capability(adapter);
5306 5307 5308 5309 5310 5311
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5312 5313
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5314 5315 5316

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
5317
	/* AER disable */
5318
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
5319

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

5330
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5331 5332 5333 5334 5335 5336
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5337 5338 5339
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5340

5341 5342 5343 5344
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5345

5346 5347 5348
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5349

5350
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5351
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5352
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5353

5354 5355 5356 5357 5358 5359 5360 5361
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
5362

5363 5364 5365 5366 5367 5368 5369
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
5370
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5371

5372 5373 5374 5375 5376
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5377
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5378 5379 5380 5381 5382 5383 5384
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5385

5386 5387 5388
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },

5389 5390 5391 5392 5393
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
#ifdef CONFIG_PM
5405
	/* Power Management Hooks */
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	.suspend  = e1000_suspend,
	.resume   = e1000_resume,
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
	       e1000e_driver_name, e1000e_driver_version);
B
Bruce Allan 已提交
5424
	printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5425 5426
	       e1000e_driver_name);
	ret = pci_register_driver(&e1000_driver);
5427

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */