netdev.c 147.4 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
39
#include <linux/slab.h>
40 41 42 43 44 45 46
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
47
#include <linux/pm_qos_params.h>
J
Jesse Brandeburg 已提交
48
#include <linux/aer.h>
49 50 51

#include "e1000.h"

B
Bruce Allan 已提交
52
#define DRV_VERSION "1.0.2-k2"
53 54 55 56 57 58 59
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;

static const struct e1000_info *e1000_info_tbl[] = {
	[board_82571]		= &e1000_82571_info,
	[board_82572]		= &e1000_82572_info,
	[board_82573]		= &e1000_82573_info,
60
	[board_82574]		= &e1000_82574_info,
61
	[board_82583]		= &e1000_82583_info,
62 63 64
	[board_80003es2lan]	= &e1000_es2_info,
	[board_ich8lan]		= &e1000_ich8_info,
	[board_ich9lan]		= &e1000_ich9_info,
65
	[board_ich10lan]	= &e1000_ich10_info,
66
	[board_pchlan]		= &e1000_pch_info,
67 68 69 70 71 72 73 74 75 76 77 78 79 80
};

/**
 * e1000_desc_unused - calculate if we have unused descriptors
 **/
static int e1000_desc_unused(struct e1000_ring *ring)
{
	if (ring->next_to_clean > ring->next_to_use)
		return ring->next_to_clean - ring->next_to_use - 1;

	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}

/**
81
 * e1000_receive_skb - helper function to handle Rx indications
82 83 84 85 86 87 88 89
 * @adapter: board private structure
 * @status: descriptor status field as written by hardware
 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 * @skb: pointer to sk_buff to be indicated to stack
 **/
static void e1000_receive_skb(struct e1000_adapter *adapter,
			      struct net_device *netdev,
			      struct sk_buff *skb,
A
Al Viro 已提交
90
			      u8 status, __le16 vlan)
91 92 93 94
{
	skb->protocol = eth_type_trans(skb, netdev);

	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
H
Herbert Xu 已提交
95 96
		vlan_gro_receive(&adapter->napi, adapter->vlgrp,
				 le16_to_cpu(vlan), skb);
97
	else
H
Herbert Xu 已提交
98
		napi_gro_receive(&adapter->napi, skb);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
}

/**
 * e1000_rx_checksum - Receive Checksum Offload for 82543
 * @adapter:     board private structure
 * @status_err:  receive descriptor status and error fields
 * @csum:	receive descriptor csum field
 * @sk_buff:     socket buffer with received data
 **/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
			      u32 csum, struct sk_buff *skb)
{
	u16 status = (u16)status_err;
	u8 errors = (u8)(status_err >> 24);
	skb->ip_summed = CHECKSUM_NONE;

	/* Ignore Checksum bit is set */
	if (status & E1000_RXD_STAT_IXSM)
		return;
	/* TCP/UDP checksum error bit is set */
	if (errors & E1000_RXD_ERR_TCPE) {
		/* let the stack verify checksum errors */
		adapter->hw_csum_err++;
		return;
	}

	/* TCP/UDP Checksum has not been calculated */
	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
		return;

	/* It must be a TCP or UDP packet with a valid checksum */
	if (status & E1000_RXD_STAT_TCPCS) {
		/* TCP checksum is good */
		skb->ip_summed = CHECKSUM_UNNECESSARY;
	} else {
134 135 136
		/*
		 * IP fragment with UDP payload
		 * Hardware complements the payload checksum, so we undo it
137 138
		 * and then put the value in host order for further stack use.
		 */
A
Al Viro 已提交
139 140
		__sum16 sum = (__force __sum16)htons(csum);
		skb->csum = csum_unfold(~sum);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
	adapter->hw_csum_good++;
}

/**
 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
				   int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
160
	unsigned int bufsz = adapter->rx_buffer_len;
161 162 163 164 165 166 167 168 169 170 171

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto map_skb;
		}

172
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
173 174 175 176 177 178 179 180 181 182 183
		if (!skb) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
map_skb:
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_buffer_len,
						  PCI_DMA_FROMDEVICE);
184
		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			break;
		}

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;
		if (i-- == 0)
			i = (rx_ring->count - 1);

204 205
		/*
		 * Force memory writes to complete before letting h/w
206 207
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
208 209
		 * such as IA-64).
		 */
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

/**
 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 * @adapter: address of board private structure
 **/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
				      int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	union e1000_rx_desc_packet_split *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
238 239 240
			ps_page = &buffer_info->ps_pages[j];
			if (j >= adapter->rx_ps_pages) {
				/* all unused desc entries get hw null ptr */
A
Al Viro 已提交
241
				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
A
Auke Kok 已提交
242 243 244 245
				continue;
			}
			if (!ps_page->page) {
				ps_page->page = alloc_page(GFP_ATOMIC);
246
				if (!ps_page->page) {
A
Auke Kok 已提交
247 248 249 250 251 252 253
					adapter->alloc_rx_buff_failed++;
					goto no_buffers;
				}
				ps_page->dma = pci_map_page(pdev,
						   ps_page->page,
						   0, PAGE_SIZE,
						   PCI_DMA_FROMDEVICE);
254
				if (pci_dma_mapping_error(pdev, ps_page->dma)) {
A
Auke Kok 已提交
255 256 257 258
					dev_err(&adapter->pdev->dev,
					  "RX DMA page map failed\n");
					adapter->rx_dma_failed++;
					goto no_buffers;
259 260
				}
			}
A
Auke Kok 已提交
261 262 263 264 265 266 267
			/*
			 * Refresh the desc even if buffer_addrs
			 * didn't change because each write-back
			 * erases this info.
			 */
			rx_desc->read.buffer_addr[j+1] =
			     cpu_to_le64(ps_page->dma);
268 269
		}

270 271
		skb = netdev_alloc_skb_ip_align(netdev,
						adapter->rx_ps_bsize0);
272 273 274 275 276 277 278 279 280 281

		if (!skb) {
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
		buffer_info->dma = pci_map_single(pdev, skb->data,
						  adapter->rx_ps_bsize0,
						  PCI_DMA_FROMDEVICE);
282
		if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
			dev_err(&pdev->dev, "RX DMA map failed\n");
			adapter->rx_dma_failed++;
			/* cleanup skb */
			dev_kfree_skb_any(skb);
			buffer_info->skb = NULL;
			break;
		}

		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);

		i++;
		if (i == rx_ring->count)
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

no_buffers:
	if (rx_ring->next_to_use != i) {
		rx_ring->next_to_use = i;

		if (!(i--))
			i = (rx_ring->count - 1);

306 307
		/*
		 * Force memory writes to complete before letting h/w
308 309
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
310 311
		 * such as IA-64).
		 */
312
		wmb();
313 314
		/*
		 * Hardware increments by 16 bytes, but packet split
315 316 317 318 319 320 321
		 * descriptors are 32 bytes...so we increment tail
		 * twice as much.
		 */
		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
	}
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
/**
 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 * @adapter: address of board private structure
 * @cleaned_count: number of buffers to allocate this pass
 **/

static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
                                         int cleaned_count)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_rx_desc *rx_desc;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct sk_buff *skb;
	unsigned int i;
338
	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
339 340 341 342 343 344 345 346 347 348 349

	i = rx_ring->next_to_use;
	buffer_info = &rx_ring->buffer_info[i];

	while (cleaned_count--) {
		skb = buffer_info->skb;
		if (skb) {
			skb_trim(skb, 0);
			goto check_page;
		}

350
		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
		if (unlikely(!skb)) {
			/* Better luck next round */
			adapter->alloc_rx_buff_failed++;
			break;
		}

		buffer_info->skb = skb;
check_page:
		/* allocate a new page if necessary */
		if (!buffer_info->page) {
			buffer_info->page = alloc_page(GFP_ATOMIC);
			if (unlikely(!buffer_info->page)) {
				adapter->alloc_rx_buff_failed++;
				break;
			}
		}

		if (!buffer_info->dma)
			buffer_info->dma = pci_map_page(pdev,
			                                buffer_info->page, 0,
			                                PAGE_SIZE,
			                                PCI_DMA_FROMDEVICE);

		rx_desc = E1000_RX_DESC(*rx_ring, i);
		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);

		if (unlikely(++i == rx_ring->count))
			i = 0;
		buffer_info = &rx_ring->buffer_info[i];
	}

	if (likely(rx_ring->next_to_use != i)) {
		rx_ring->next_to_use = i;
		if (unlikely(i-- == 0))
			i = (rx_ring->count - 1);

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64). */
		wmb();
		writel(i, adapter->hw.hw_addr + rx_ring->tail);
	}
}

396 397 398 399 400 401 402 403 404 405 406 407
/**
 * e1000_clean_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
			       int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
408
	struct e1000_hw *hw = &adapter->hw;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
		pci_unmap_single(pdev,
				 buffer_info->dma,
				 adapter->rx_buffer_len,
				 PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

454 455 456 457 458 459 460 461 462 463 464
		/*
		 * !EOP means multiple descriptors were used to store a single
		 * packet, if that's the case we need to toss it.  In fact, we
		 * need to toss every packet with the EOP bit clear and the
		 * next frame that _does_ have the EOP bit set, as it is by
		 * definition only a frame fragment
		 */
		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
465
			/* All receives must fit into a single buffer */
466
			e_dbg("Receive packet consumed multiple buffers\n");
467 468
			/* recycle */
			buffer_info->skb = skb;
469 470
			if (status & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
471 472 473 474 475 476 477 478 479
			goto next_desc;
		}

		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
			/* recycle */
			buffer_info->skb = skb;
			goto next_desc;
		}

J
Jeff Kirsher 已提交
480 481 482 483
		/* adjust length to remove Ethernet CRC */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			length -= 4;

484 485 486
		total_rx_bytes += length;
		total_rx_packets++;

487 488
		/*
		 * code added for copybreak, this should improve
489
		 * performance for small packets with large amounts
490 491
		 * of reassembly being done in the stack
		 */
492 493
		if (length < copybreak) {
			struct sk_buff *new_skb =
494
			    netdev_alloc_skb_ip_align(netdev, length);
495
			if (new_skb) {
496 497 498 499 500 501
				skb_copy_to_linear_data_offset(new_skb,
							       -NET_IP_ALIGN,
							       (skb->data -
								NET_IP_ALIGN),
							       (length +
								NET_IP_ALIGN));
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
				/* save the skb in buffer_info as good */
				buffer_info->skb = skb;
				skb = new_skb;
			}
			/* else just continue with the old one */
		}
		/* end copybreak code */
		skb_put(skb, length);

		/* Receive Checksum Offload */
		e1000_rx_checksum(adapter,
				  (u32)(status) |
				  ((u32)(rx_desc->errors) << 24),
				  le16_to_cpu(rx_desc->csum), skb);

		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
539
	adapter->total_rx_packets += total_rx_packets;
540 541
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
542 543 544 545 546 547
	return cleaned;
}

static void e1000_put_txbuf(struct e1000_adapter *adapter,
			     struct e1000_buffer *buffer_info)
{
548 549 550 551 552 553 554 555 556 557
	if (buffer_info->dma) {
		if (buffer_info->mapped_as_page)
			pci_unmap_page(adapter->pdev, buffer_info->dma,
				       buffer_info->length, PCI_DMA_TODEVICE);
		else
			pci_unmap_single(adapter->pdev,	buffer_info->dma,
					 buffer_info->length,
					 PCI_DMA_TODEVICE);
		buffer_info->dma = 0;
	}
558 559 560 561
	if (buffer_info->skb) {
		dev_kfree_skb_any(buffer_info->skb);
		buffer_info->skb = NULL;
	}
562
	buffer_info->time_stamp = 0;
563 564
}

565
static void e1000_print_hw_hang(struct work_struct *work)
566
{
567 568 569
	struct e1000_adapter *adapter = container_of(work,
	                                             struct e1000_adapter,
	                                             print_hang_task);
570 571 572 573
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int i = tx_ring->next_to_clean;
	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
574 575 576 577 578 579 580
	struct e1000_hw *hw = &adapter->hw;
	u16 phy_status, phy_1000t_status, phy_ext_status;
	u16 pci_status;

	e1e_rphy(hw, PHY_STATUS, &phy_status);
	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
581

582 583 584 585
	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);

	/* detected Hardware unit hang */
	e_err("Detected Hardware Unit Hang:\n"
586 587 588 589 590 591 592 593
	      "  TDH                  <%x>\n"
	      "  TDT                  <%x>\n"
	      "  next_to_use          <%x>\n"
	      "  next_to_clean        <%x>\n"
	      "buffer_info[next_to_clean]:\n"
	      "  time_stamp           <%lx>\n"
	      "  next_to_watch        <%x>\n"
	      "  jiffies              <%lx>\n"
594 595 596 597 598 599
	      "  next_to_watch.status <%x>\n"
	      "MAC Status             <%x>\n"
	      "PHY Status             <%x>\n"
	      "PHY 1000BASE-T Status  <%x>\n"
	      "PHY Extended Status    <%x>\n"
	      "PCI Status             <%x>\n",
600 601 602 603 604 605 606
	      readl(adapter->hw.hw_addr + tx_ring->head),
	      readl(adapter->hw.hw_addr + tx_ring->tail),
	      tx_ring->next_to_use,
	      tx_ring->next_to_clean,
	      tx_ring->buffer_info[eop].time_stamp,
	      eop,
	      jiffies,
607 608 609 610 611 612
	      eop_desc->upper.fields.status,
	      er32(STATUS),
	      phy_status,
	      phy_1000t_status,
	      phy_ext_status,
	      pci_status);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
}

/**
 * e1000_clean_tx_irq - Reclaim resources after transmit completes
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc, *eop_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i, eop;
	unsigned int count = 0;
	unsigned int total_tx_bytes = 0, total_tx_packets = 0;

	i = tx_ring->next_to_clean;
	eop = tx_ring->buffer_info[i].next_to_watch;
	eop_desc = E1000_TX_DESC(*tx_ring, eop);

637 638
	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
	       (count < tx_ring->count)) {
639 640
		bool cleaned = false;
		for (; !cleaned; count++) {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
			tx_desc = E1000_TX_DESC(*tx_ring, i);
			buffer_info = &tx_ring->buffer_info[i];
			cleaned = (i == eop);

			if (cleaned) {
				struct sk_buff *skb = buffer_info->skb;
				unsigned int segs, bytecount;
				segs = skb_shinfo(skb)->gso_segs ?: 1;
				/* multiply data chunks by size of headers */
				bytecount = ((segs - 1) * skb_headlen(skb)) +
					    skb->len;
				total_tx_packets += segs;
				total_tx_bytes += bytecount;
			}

			e1000_put_txbuf(adapter, buffer_info);
			tx_desc->upper.data = 0;

			i++;
			if (i == tx_ring->count)
				i = 0;
		}

664 665
		if (i == tx_ring->next_to_use)
			break;
666 667 668 669 670 671 672
		eop = tx_ring->buffer_info[i].next_to_watch;
		eop_desc = E1000_TX_DESC(*tx_ring, eop);
	}

	tx_ring->next_to_clean = i;

#define TX_WAKE_THRESHOLD 32
673 674
	if (count && netif_carrier_ok(netdev) &&
	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
675 676 677 678 679 680 681 682 683 684 685 686 687
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();

		if (netif_queue_stopped(netdev) &&
		    !(test_bit(__E1000_DOWN, &adapter->state))) {
			netif_wake_queue(netdev);
			++adapter->restart_queue;
		}
	}

	if (adapter->detect_tx_hung) {
688 689 690 691
		/*
		 * Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
692
		adapter->detect_tx_hung = 0;
693 694
		if (tx_ring->buffer_info[i].time_stamp &&
		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
695 696
			       + (adapter->tx_timeout_factor * HZ)) &&
		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
697
			schedule_work(&adapter->print_hang_task);
698 699 700 701 702
			netif_stop_queue(netdev);
		}
	}
	adapter->total_tx_bytes += total_tx_bytes;
	adapter->total_tx_packets += total_tx_packets;
703 704
	netdev->stats.tx_bytes += total_tx_bytes;
	netdev->stats.tx_packets += total_tx_packets;
705
	return (count < tx_ring->count);
706 707 708 709 710 711 712 713 714 715 716 717
}

/**
 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
				  int *work_done, int work_to_do)
{
718
	struct e1000_hw *hw = &adapter->hw;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info, *next_buffer;
	struct e1000_ps_page *ps_page;
	struct sk_buff *skb;
	unsigned int i, j;
	u32 length, staterr;
	int cleaned_count = 0;
	bool cleaned = 0;
	unsigned int total_rx_bytes = 0, total_rx_packets = 0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	buffer_info = &rx_ring->buffer_info[i];

	while (staterr & E1000_RXD_STAT_DD) {
		if (*work_done >= work_to_do)
			break;
		(*work_done)++;
		skb = buffer_info->skb;

		/* in the packet split case this is header only */
		prefetch(skb->data - NET_IP_ALIGN);

		i++;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = 1;
		cleaned_count++;
		pci_unmap_single(pdev, buffer_info->dma,
				 adapter->rx_ps_bsize0,
				 PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

761 762 763 764 765
		/* see !EOP comment in other rx routine */
		if (!(staterr & E1000_RXD_STAT_EOP))
			adapter->flags2 |= FLAG2_IS_DISCARDING;

		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
766 767
			e_dbg("Packet Split buffers didn't pick up the full "
			      "packet\n");
768
			dev_kfree_skb_irq(skb);
769 770
			if (staterr & E1000_RXD_STAT_EOP)
				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
771 772 773 774 775 776 777 778 779 780 781
			goto next_desc;
		}

		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		length = le16_to_cpu(rx_desc->wb.middle.length0);

		if (!length) {
782 783
			e_dbg("Last part of the packet spanning multiple "
			      "descriptors\n");
784 785 786 787 788 789 790 791
			dev_kfree_skb_irq(skb);
			goto next_desc;
		}

		/* Good Receive */
		skb_put(skb, length);

		{
792 793 794 795
		/*
		 * this looks ugly, but it seems compiler issues make it
		 * more efficient than reusing j
		 */
796 797
		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);

798 799 800 801 802
		/*
		 * page alloc/put takes too long and effects small packet
		 * throughput, so unsplit small packets and save the alloc/put
		 * only valid in softirq (napi) context to call kmap_*
		 */
803 804 805 806
		if (l1 && (l1 <= copybreak) &&
		    ((length + l1) <= adapter->rx_ps_bsize0)) {
			u8 *vaddr;

A
Auke Kok 已提交
807
			ps_page = &buffer_info->ps_pages[0];
808

809 810
			/*
			 * there is no documentation about how to call
811
			 * kmap_atomic, so we can't hold the mapping
812 813
			 * very long
			 */
814 815 816 817 818 819 820
			pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
				PAGE_SIZE, PCI_DMA_FROMDEVICE);
			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
			memcpy(skb_tail_pointer(skb), vaddr, l1);
			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
			pci_dma_sync_single_for_device(pdev, ps_page->dma,
				PAGE_SIZE, PCI_DMA_FROMDEVICE);
A
Auke Kok 已提交
821

J
Jeff Kirsher 已提交
822 823 824 825
			/* remove the CRC */
			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
				l1 -= 4;

826 827 828 829 830 831 832 833 834 835
			skb_put(skb, l1);
			goto copydone;
		} /* if */
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
			if (!length)
				break;

A
Auke Kok 已提交
836
			ps_page = &buffer_info->ps_pages[j];
837 838 839 840 841 842 843 844 845 846
			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
			ps_page->dma = 0;
			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
			ps_page->page = NULL;
			skb->len += length;
			skb->data_len += length;
			skb->truesize += length;
		}

J
Jeff Kirsher 已提交
847 848 849 850 851 852
		/* strip the ethernet crc, problem is we're using pages now so
		 * this whole operation can get a little cpu intensive
		 */
		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
			pskb_trim(skb, skb->len - 4);

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
copydone:
		total_rx_bytes += skb->len;
		total_rx_packets++;

		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);

		if (rx_desc->wb.upper.header_status &
			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
			adapter->rx_hdr_split++;

		e1000_receive_skb(adapter, netdev, skb,
				  staterr, rx_desc->wb.middle.vlan);

next_desc:
		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
		buffer_info->skb = NULL;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;

		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
890
	adapter->total_rx_packets += total_rx_packets;
891 892
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
893 894 895
	return cleaned;
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/**
 * e1000_consume_page - helper function
 **/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
                               u16 length)
{
	bi->page = NULL;
	skb->len += length;
	skb->data_len += length;
	skb->truesize += length;
}

/**
 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
 * @adapter: board private structure
 *
 * the return value indicates whether actual cleaning was done, there
 * is no guarantee that everything was cleaned
 **/

static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
                                     int *work_done, int work_to_do)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_rx_desc *rx_desc, *next_rxd;
	struct e1000_buffer *buffer_info, *next_buffer;
	u32 length;
	unsigned int i;
	int cleaned_count = 0;
	bool cleaned = false;
	unsigned int total_rx_bytes=0, total_rx_packets=0;

	i = rx_ring->next_to_clean;
	rx_desc = E1000_RX_DESC(*rx_ring, i);
	buffer_info = &rx_ring->buffer_info[i];

	while (rx_desc->status & E1000_RXD_STAT_DD) {
		struct sk_buff *skb;
		u8 status;

		if (*work_done >= work_to_do)
			break;
		(*work_done)++;

		status = rx_desc->status;
		skb = buffer_info->skb;
		buffer_info->skb = NULL;

		++i;
		if (i == rx_ring->count)
			i = 0;
		next_rxd = E1000_RX_DESC(*rx_ring, i);
		prefetch(next_rxd);

		next_buffer = &rx_ring->buffer_info[i];

		cleaned = true;
		cleaned_count++;
		pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
		               PCI_DMA_FROMDEVICE);
		buffer_info->dma = 0;

		length = le16_to_cpu(rx_desc->length);

		/* errors is only valid for DD + EOP descriptors */
		if (unlikely((status & E1000_RXD_STAT_EOP) &&
		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
				/* recycle both page and skb */
				buffer_info->skb = skb;
				/* an error means any chain goes out the window
				 * too */
				if (rx_ring->rx_skb_top)
					dev_kfree_skb(rx_ring->rx_skb_top);
				rx_ring->rx_skb_top = NULL;
				goto next_desc;
		}

#define rxtop rx_ring->rx_skb_top
		if (!(status & E1000_RXD_STAT_EOP)) {
			/* this descriptor is only the beginning (or middle) */
			if (!rxtop) {
				/* this is the beginning of a chain */
				rxtop = skb;
				skb_fill_page_desc(rxtop, 0, buffer_info->page,
				                   0, length);
			} else {
				/* this is the middle of a chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the skb, only consumed the page */
				buffer_info->skb = skb;
			}
			e1000_consume_page(buffer_info, rxtop, length);
			goto next_desc;
		} else {
			if (rxtop) {
				/* end of the chain */
				skb_fill_page_desc(rxtop,
				    skb_shinfo(rxtop)->nr_frags,
				    buffer_info->page, 0, length);
				/* re-use the current skb, we only consumed the
				 * page */
				buffer_info->skb = skb;
				skb = rxtop;
				rxtop = NULL;
				e1000_consume_page(buffer_info, skb, length);
			} else {
				/* no chain, got EOP, this buf is the packet
				 * copybreak to save the put_page/alloc_page */
				if (length <= copybreak &&
				    skb_tailroom(skb) >= length) {
					u8 *vaddr;
					vaddr = kmap_atomic(buffer_info->page,
					                   KM_SKB_DATA_SOFTIRQ);
					memcpy(skb_tail_pointer(skb), vaddr,
					       length);
					kunmap_atomic(vaddr,
					              KM_SKB_DATA_SOFTIRQ);
					/* re-use the page, so don't erase
					 * buffer_info->page */
					skb_put(skb, length);
				} else {
					skb_fill_page_desc(skb, 0,
					                   buffer_info->page, 0,
				                           length);
					e1000_consume_page(buffer_info, skb,
					                   length);
				}
			}
		}

		/* Receive Checksum Offload XXX recompute due to CRC strip? */
		e1000_rx_checksum(adapter,
		                  (u32)(status) |
		                  ((u32)(rx_desc->errors) << 24),
		                  le16_to_cpu(rx_desc->csum), skb);

		/* probably a little skewed due to removing CRC */
		total_rx_bytes += skb->len;
		total_rx_packets++;

		/* eth type trans needs skb->data to point to something */
		if (!pskb_may_pull(skb, ETH_HLEN)) {
1042
			e_err("pskb_may_pull failed.\n");
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			dev_kfree_skb(skb);
			goto next_desc;
		}

		e1000_receive_skb(adapter, netdev, skb, status,
		                  rx_desc->special);

next_desc:
		rx_desc->status = 0;

		/* return some buffers to hardware, one at a time is too slow */
		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
			adapter->alloc_rx_buf(adapter, cleaned_count);
			cleaned_count = 0;
		}

		/* use prefetched values */
		rx_desc = next_rxd;
		buffer_info = next_buffer;
	}
	rx_ring->next_to_clean = i;

	cleaned_count = e1000_desc_unused(rx_ring);
	if (cleaned_count)
		adapter->alloc_rx_buf(adapter, cleaned_count);

	adapter->total_rx_bytes += total_rx_bytes;
	adapter->total_rx_packets += total_rx_packets;
1071 1072
	netdev->stats.rx_bytes += total_rx_bytes;
	netdev->stats.rx_packets += total_rx_packets;
1073 1074 1075
	return cleaned;
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/**
 * e1000_clean_rx_ring - Free Rx Buffers per Queue
 * @adapter: board private structure
 **/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_buffer *buffer_info;
	struct e1000_ps_page *ps_page;
	struct pci_dev *pdev = adapter->pdev;
	unsigned int i, j;

	/* Free all the Rx ring sk_buffs */
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		if (buffer_info->dma) {
			if (adapter->clean_rx == e1000_clean_rx_irq)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_buffer_len,
						 PCI_DMA_FROMDEVICE);
1096 1097 1098 1099
			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
				pci_unmap_page(pdev, buffer_info->dma,
				               PAGE_SIZE,
				               PCI_DMA_FROMDEVICE);
1100 1101 1102 1103 1104 1105 1106
			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
				pci_unmap_single(pdev, buffer_info->dma,
						 adapter->rx_ps_bsize0,
						 PCI_DMA_FROMDEVICE);
			buffer_info->dma = 0;
		}

1107 1108 1109 1110 1111
		if (buffer_info->page) {
			put_page(buffer_info->page);
			buffer_info->page = NULL;
		}

1112 1113 1114 1115 1116 1117
		if (buffer_info->skb) {
			dev_kfree_skb(buffer_info->skb);
			buffer_info->skb = NULL;
		}

		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
A
Auke Kok 已提交
1118
			ps_page = &buffer_info->ps_pages[j];
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			if (!ps_page->page)
				break;
			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
			ps_page->dma = 0;
			put_page(ps_page->page);
			ps_page->page = NULL;
		}
	}

	/* there also may be some cached data from a chained receive */
	if (rx_ring->rx_skb_top) {
		dev_kfree_skb(rx_ring->rx_skb_top);
		rx_ring->rx_skb_top = NULL;
	}

	/* Zero out the descriptor ring */
	memset(rx_ring->desc, 0, rx_ring->size);

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
1140
	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1141 1142 1143 1144 1145

	writel(0, adapter->hw.hw_addr + rx_ring->head);
	writel(0, adapter->hw.hw_addr + rx_ring->tail);
}

1146 1147 1148 1149 1150 1151 1152 1153
static void e1000e_downshift_workaround(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, downshift_task);

	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/**
 * e1000_intr_msi - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

1166 1167 1168
	/*
	 * read ICR disables interrupts using IAM
	 */
1169

1170
	if (icr & E1000_ICR_LSC) {
1171
		hw->mac.get_link_status = 1;
1172 1173 1174 1175
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1176 1177
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1178
			schedule_work(&adapter->downshift_task);
1179

1180 1181
		/*
		 * 80003ES2LAN workaround-- For packet buffer work-around on
1182
		 * link down event; disable receives here in the ISR and reset
1183 1184
		 * adapter in watchdog
		 */
1185 1186 1187 1188 1189
		if (netif_carrier_ok(netdev) &&
		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
			/* disable receives */
			u32 rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1190
			adapter->flags |= FLAG_RX_RESTART_NOW;
1191 1192 1193 1194 1195 1196
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1197
	if (napi_schedule_prep(&adapter->napi)) {
1198 1199 1200 1201
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1202
		__napi_schedule(&adapter->napi);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	}

	return IRQ_HANDLED;
}

/**
 * e1000_intr - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, icr = er32(ICR);
1219

1220
	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1221 1222
		return IRQ_NONE;  /* Not our interrupt */

1223 1224 1225 1226
	/*
	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
1227 1228 1229
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

1230 1231 1232 1233 1234
	/*
	 * Interrupt Auto-Mask...upon reading ICR,
	 * interrupts are masked.  No need for the
	 * IMC write
	 */
1235

1236
	if (icr & E1000_ICR_LSC) {
1237
		hw->mac.get_link_status = 1;
1238 1239 1240 1241
		/*
		 * ICH8 workaround-- Call gig speed drop workaround on cable
		 * disconnect (LSC) before accessing any PHY registers
		 */
1242 1243
		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
		    (!(er32(STATUS) & E1000_STATUS_LU)))
1244
			schedule_work(&adapter->downshift_task);
1245

1246 1247
		/*
		 * 80003ES2LAN workaround--
1248 1249 1250 1251 1252 1253 1254 1255 1256
		 * For packet buffer work-around on link down event;
		 * disable receives here in the ISR and
		 * reset adapter in watchdog
		 */
		if (netif_carrier_ok(netdev) &&
		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
			/* disable receives */
			rctl = er32(RCTL);
			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1257
			adapter->flags |= FLAG_RX_RESTART_NOW;
1258 1259 1260 1261 1262 1263
		}
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

1264
	if (napi_schedule_prep(&adapter->napi)) {
1265 1266 1267 1268
		adapter->total_tx_bytes = 0;
		adapter->total_tx_packets = 0;
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1269
		__napi_schedule(&adapter->napi);
1270 1271 1272 1273 1274
	}

	return IRQ_HANDLED;
}

1275 1276 1277 1278 1279 1280 1281 1282
static irqreturn_t e1000_msix_other(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1283 1284
		if (!test_bit(__E1000_DOWN, &adapter->state))
			ew32(IMS, E1000_IMS_OTHER);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		return IRQ_NONE;
	}

	if (icr & adapter->eiac_mask)
		ew32(ICS, (icr & adapter->eiac_mask));

	if (icr & E1000_ICR_OTHER) {
		if (!(icr & E1000_ICR_LSC))
			goto no_link_interrupt;
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__E1000_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

no_link_interrupt:
1301 1302
	if (!test_bit(__E1000_DOWN, &adapter->state))
		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

	return IRQ_HANDLED;
}


static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;


	adapter->total_tx_bytes = 0;
	adapter->total_tx_packets = 0;

	if (!e1000_clean_tx_irq(adapter))
		/* Ring was not completely cleaned, so fire another interrupt */
		ew32(ICS, tx_ring->ims_val);

	return IRQ_HANDLED;
}

static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Write the ITR value calculated at the end of the
	 * previous interrupt.
	 */
	if (adapter->rx_ring->set_itr) {
		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
		adapter->rx_ring->set_itr = 0;
	}

1340
	if (napi_schedule_prep(&adapter->napi)) {
1341 1342
		adapter->total_rx_bytes = 0;
		adapter->total_rx_packets = 0;
1343
		__napi_schedule(&adapter->napi);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	}
	return IRQ_HANDLED;
}

/**
 * e1000_configure_msix - Configure MSI-X hardware
 *
 * e1000_configure_msix sets up the hardware to properly
 * generate MSI-X interrupts.
 **/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int vector = 0;
	u32 ctrl_ext, ivar = 0;

	adapter->eiac_mask = 0;

	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
	if (hw->mac.type == e1000_82574) {
		u32 rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_ACK_DIS;
		ew32(RFCTL, rfctl);
	}

#define E1000_IVAR_INT_ALLOC_VALID	0x8
	/* Configure Rx vector */
	rx_ring->ims_val = E1000_IMS_RXQ0;
	adapter->eiac_mask |= rx_ring->ims_val;
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + rx_ring->itr_register);
	else
		writel(1, hw->hw_addr + rx_ring->itr_register);
	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;

	/* Configure Tx vector */
	tx_ring->ims_val = E1000_IMS_TXQ0;
	vector++;
	if (tx_ring->itr_val)
		writel(1000000000 / (tx_ring->itr_val * 256),
		       hw->hw_addr + tx_ring->itr_register);
	else
		writel(1, hw->hw_addr + tx_ring->itr_register);
	adapter->eiac_mask |= tx_ring->ims_val;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);

	/* set vector for Other Causes, e.g. link changes */
	vector++;
	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
	if (rx_ring->itr_val)
		writel(1000000000 / (rx_ring->itr_val * 256),
		       hw->hw_addr + E1000_EITR_82574(vector));
	else
		writel(1, hw->hw_addr + E1000_EITR_82574(vector));

	/* Cause Tx interrupts on every write back */
	ivar |= (1 << 31);

	ew32(IVAR, ivar);

	/* enable MSI-X PBA support */
	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;

	/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574   0x01F00000
	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
	ctrl_ext |= E1000_CTRL_EXT_EIAME;
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();
}

void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
	if (adapter->msix_entries) {
		pci_disable_msix(adapter->pdev);
		kfree(adapter->msix_entries);
		adapter->msix_entries = NULL;
	} else if (adapter->flags & FLAG_MSI_ENABLED) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~FLAG_MSI_ENABLED;
	}

	return;
}

/**
 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 *
 * Attempt to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
	int err;
	int numvecs, i;


	switch (adapter->int_mode) {
	case E1000E_INT_MODE_MSIX:
		if (adapter->flags & FLAG_HAS_MSIX) {
			numvecs = 3; /* RxQ0, TxQ0 and other */
			adapter->msix_entries = kcalloc(numvecs,
						      sizeof(struct msix_entry),
						      GFP_KERNEL);
			if (adapter->msix_entries) {
				for (i = 0; i < numvecs; i++)
					adapter->msix_entries[i].entry = i;

				err = pci_enable_msix(adapter->pdev,
						      adapter->msix_entries,
						      numvecs);
				if (err == 0)
					return;
			}
			/* MSI-X failed, so fall through and try MSI */
			e_err("Failed to initialize MSI-X interrupts.  "
			      "Falling back to MSI interrupts.\n");
			e1000e_reset_interrupt_capability(adapter);
		}
		adapter->int_mode = E1000E_INT_MODE_MSI;
		/* Fall through */
	case E1000E_INT_MODE_MSI:
		if (!pci_enable_msi(adapter->pdev)) {
			adapter->flags |= FLAG_MSI_ENABLED;
		} else {
			adapter->int_mode = E1000E_INT_MODE_LEGACY;
			e_err("Failed to initialize MSI interrupts.  Falling "
			      "back to legacy interrupts.\n");
		}
		/* Fall through */
	case E1000E_INT_MODE_LEGACY:
		/* Don't do anything; this is the system default */
		break;
	}

	return;
}

/**
 * e1000_request_msix - Initialize MSI-X interrupts
 *
 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
 * kernel.
 **/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err = 0, vector = 0;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1498
		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1499 1500 1501
	else
		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1502
			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1503 1504 1505 1506 1507 1508 1509 1510
			  netdev);
	if (err)
		goto out;
	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->rx_ring->itr_val = adapter->itr;
	vector++;

	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1511
		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1512 1513 1514
	else
		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
	err = request_irq(adapter->msix_entries[vector].vector,
1515
			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1516 1517 1518 1519 1520 1521 1522 1523
			  netdev);
	if (err)
		goto out;
	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
	adapter->tx_ring->itr_val = adapter->itr;
	vector++;

	err = request_irq(adapter->msix_entries[vector].vector,
1524
			  e1000_msix_other, 0, netdev->name, netdev);
1525 1526 1527 1528 1529 1530 1531 1532 1533
	if (err)
		goto out;

	e1000_configure_msix(adapter);
	return 0;
out:
	return err;
}

1534 1535 1536 1537 1538 1539
/**
 * e1000_request_irq - initialize interrupts
 *
 * Attempts to configure interrupts using the best available
 * capabilities of the hardware and kernel.
 **/
1540 1541 1542 1543 1544
static int e1000_request_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int err;

1545 1546 1547 1548 1549 1550 1551 1552
	if (adapter->msix_entries) {
		err = e1000_request_msix(adapter);
		if (!err)
			return err;
		/* fall back to MSI */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_MSI;
		e1000e_set_interrupt_capability(adapter);
1553
	}
1554
	if (adapter->flags & FLAG_MSI_ENABLED) {
1555
		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1556 1557 1558
				  netdev->name, netdev);
		if (!err)
			return err;
1559

1560 1561 1562
		/* fall back to legacy interrupt */
		e1000e_reset_interrupt_capability(adapter);
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
1563 1564
	}

1565
	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1566 1567 1568 1569
			  netdev->name, netdev);
	if (err)
		e_err("Unable to allocate interrupt, Error: %d\n", err);

1570 1571 1572 1573 1574 1575 1576
	return err;
}

static void e1000_free_irq(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	if (adapter->msix_entries) {
		int vector = 0;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		free_irq(adapter->msix_entries[vector].vector, netdev);
		vector++;

		/* Other Causes interrupt vector */
		free_irq(adapter->msix_entries[vector].vector, netdev);
		return;
1589
	}
1590 1591

	free_irq(adapter->pdev->irq, netdev);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

/**
 * e1000_irq_disable - Mask off interrupt generation on the NIC
 **/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	ew32(IMC, ~0);
1602 1603
	if (adapter->msix_entries)
		ew32(EIAC_82574, 0);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	e1e_flush();
	synchronize_irq(adapter->pdev->irq);
}

/**
 * e1000_irq_enable - Enable default interrupt generation settings
 **/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

1615 1616 1617 1618 1619 1620
	if (adapter->msix_entries) {
		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
	} else {
		ew32(IMS, IMS_ENABLE_MASK);
	}
J
Jesse Brandeburg 已提交
1621
	e1e_flush();
1622 1623 1624 1625 1626 1627
}

/**
 * e1000_get_hw_control - get control of the h/w from f/w
 * @adapter: address of board private structure
 *
1628
 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
 * For ASF and Pass Through versions of f/w this means that
 * the driver is loaded. For AMT version (only with 82573)
 * of the f/w this means that the network i/f is open.
 **/
static void e1000_get_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware know the driver has taken over */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
1645
		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1646 1647 1648 1649 1650 1651 1652
	}
}

/**
 * e1000_release_hw_control - release control of the h/w to f/w
 * @adapter: address of board private structure
 *
1653
 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 * For ASF and Pass Through versions of f/w this means that the
 * driver is no longer loaded. For AMT version (only with 82573) i
 * of the f/w this means that the network i/f is closed.
 *
 **/
static void e1000_release_hw_control(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;
	u32 swsm;

	/* Let firmware taken over control of h/w */
	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
		swsm = er32(SWSM);
		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
		ctrl_ext = er32(CTRL_EXT);
1671
		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	}
}

/**
 * @e1000_alloc_ring - allocate memory for a ring structure
 **/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
				struct e1000_ring *ring)
{
	struct pci_dev *pdev = adapter->pdev;

	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
					GFP_KERNEL);
	if (!ring->desc)
		return -ENOMEM;

	return 0;
}

/**
 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
 * @adapter: board private structure
 *
 * Return 0 on success, negative on failure
 **/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	int err = -ENOMEM, size;

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	tx_ring->buffer_info = vmalloc(size);
	if (!tx_ring->buffer_info)
		goto err;
	memset(tx_ring->buffer_info, 0, size);

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, tx_ring);
	if (err)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;
err:
	vfree(tx_ring->buffer_info);
1722
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	return err;
}

/**
 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
 * @adapter: board private structure
 *
 * Returns 0 on success, negative on failure
 **/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
1735 1736
	struct e1000_buffer *buffer_info;
	int i, size, desc_len, err = -ENOMEM;
1737 1738 1739 1740 1741 1742 1743

	size = sizeof(struct e1000_buffer) * rx_ring->count;
	rx_ring->buffer_info = vmalloc(size);
	if (!rx_ring->buffer_info)
		goto err;
	memset(rx_ring->buffer_info, 0, size);

A
Auke Kok 已提交
1744 1745 1746 1747 1748 1749 1750 1751
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
						sizeof(struct e1000_ps_page),
						GFP_KERNEL);
		if (!buffer_info->ps_pages)
			goto err_pages;
	}
1752 1753 1754 1755 1756 1757 1758 1759 1760

	desc_len = sizeof(union e1000_rx_desc_packet_split);

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * desc_len;
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	err = e1000_alloc_ring_dma(adapter, rx_ring);
	if (err)
A
Auke Kok 已提交
1761
		goto err_pages;
1762 1763 1764 1765 1766 1767

	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
	rx_ring->rx_skb_top = NULL;

	return 0;
A
Auke Kok 已提交
1768 1769 1770 1771 1772 1773

err_pages:
	for (i = 0; i < rx_ring->count; i++) {
		buffer_info = &rx_ring->buffer_info[i];
		kfree(buffer_info->ps_pages);
	}
1774 1775
err:
	vfree(rx_ring->buffer_info);
1776
	e_err("Unable to allocate memory for the transmit descriptor ring\n");
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	return err;
}

/**
 * e1000_clean_tx_ring - Free Tx Buffers
 * @adapter: board private structure
 **/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_buffer *buffer_info;
	unsigned long size;
	unsigned int i;

	for (i = 0; i < tx_ring->count; i++) {
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);
	}

	size = sizeof(struct e1000_buffer) * tx_ring->count;
	memset(tx_ring->buffer_info, 0, size);

	memset(tx_ring->desc, 0, tx_ring->size);

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	writel(0, adapter->hw.hw_addr + tx_ring->head);
	writel(0, adapter->hw.hw_addr + tx_ring->tail);
}

/**
 * e1000e_free_tx_resources - Free Tx Resources per Queue
 * @adapter: board private structure
 *
 * Free all transmit software resources
 **/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *tx_ring = adapter->tx_ring;

	e1000_clean_tx_ring(adapter);

	vfree(tx_ring->buffer_info);
	tx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
			  tx_ring->dma);
	tx_ring->desc = NULL;
}

/**
 * e1000e_free_rx_resources - Free Rx Resources
 * @adapter: board private structure
 *
 * Free all receive software resources
 **/

void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_ring *rx_ring = adapter->rx_ring;
A
Auke Kok 已提交
1840
	int i;
1841 1842 1843

	e1000_clean_rx_ring(adapter);

A
Auke Kok 已提交
1844 1845 1846 1847
	for (i = 0; i < rx_ring->count; i++) {
		kfree(rx_ring->buffer_info[i].ps_pages);
	}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	vfree(rx_ring->buffer_info);
	rx_ring->buffer_info = NULL;

	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
			  rx_ring->dma);
	rx_ring->desc = NULL;
}

/**
 * e1000_update_itr - update the dynamic ITR value based on statistics
1858 1859 1860 1861 1862
 * @adapter: pointer to adapter
 * @itr_setting: current adapter->itr
 * @packets: the number of packets during this measurement interval
 * @bytes: the number of bytes during this measurement interval
 *
1863 1864 1865 1866 1867 1868
 *      Stores a new ITR value based on packets and byte
 *      counts during the last interrupt.  The advantage of per interrupt
 *      computation is faster updates and more accurate ITR for the current
 *      traffic pattern.  Constants in this function were computed
 *      based on theoretical maximum wire speed and thresholds were set based
 *      on testing data as well as attempting to minimize response time
1869 1870
 *      while increasing bulk throughput.  This functionality is controlled
 *      by the InterruptThrottleRate module parameter.
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
 **/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
				     u16 itr_setting, int packets,
				     int bytes)
{
	unsigned int retval = itr_setting;

	if (packets == 0)
		goto update_itr_done;

	switch (itr_setting) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			retval = bulk_latency;
		else if ((packets < 5) && (bytes > 512)) {
			retval = low_latency;
		}
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000) {
				retval = bulk_latency;
			} else if ((packets < 10) || ((bytes/packets) > 1200)) {
				retval = bulk_latency;
			} else if ((packets > 35)) {
				retval = lowest_latency;
			}
		} else if (bytes/packets > 2000) {
			retval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			retval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35) {
				retval = low_latency;
			}
		} else if (bytes < 6000) {
			retval = low_latency;
		}
		break;
	}

update_itr_done:
	return retval;
}

static void e1000_set_itr(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 current_itr;
	u32 new_itr = adapter->itr;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = 4000;
		goto set_itr_now;
	}

	adapter->tx_itr = e1000_update_itr(adapter,
				    adapter->tx_itr,
				    adapter->total_tx_packets,
				    adapter->total_tx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
		adapter->tx_itr = low_latency;

	adapter->rx_itr = e1000_update_itr(adapter,
				    adapter->rx_itr,
				    adapter->total_rx_packets,
				    adapter->total_rx_bytes);
	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
		adapter->rx_itr = low_latency;

	current_itr = max(adapter->rx_itr, adapter->tx_itr);

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = 70000;
		break;
	case low_latency:
		new_itr = 20000; /* aka hwitr = ~200 */
		break;
	case bulk_latency:
		new_itr = 4000;
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != adapter->itr) {
1969 1970
		/*
		 * this attempts to bias the interrupt rate towards Bulk
1971
		 * by adding intermediate steps when interrupt rate is
1972 1973
		 * increasing
		 */
1974 1975 1976 1977
		new_itr = new_itr > adapter->itr ?
			     min(adapter->itr + (new_itr >> 2), new_itr) :
			     new_itr;
		adapter->itr = new_itr;
1978 1979 1980 1981 1982
		adapter->rx_ring->itr_val = new_itr;
		if (adapter->msix_entries)
			adapter->rx_ring->set_itr = 1;
		else
			ew32(ITR, 1000000000 / (new_itr * 256));
1983 1984 1985
	}
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
/**
 * e1000_alloc_queues - Allocate memory for all rings
 * @adapter: board private structure to initialize
 **/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->tx_ring)
		goto err;

	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
	if (!adapter->rx_ring)
		goto err;

	return 0;
err:
	e_err("Unable to allocate memory for queues\n");
	kfree(adapter->rx_ring);
	kfree(adapter->tx_ring);
	return -ENOMEM;
}

2008 2009
/**
 * e1000_clean - NAPI Rx polling callback
2010
 * @napi: struct associated with this polling callback
2011
 * @budget: amount of packets driver is allowed to process this poll
2012 2013 2014 2015
 **/
static int e1000_clean(struct napi_struct *napi, int budget)
{
	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2016
	struct e1000_hw *hw = &adapter->hw;
2017
	struct net_device *poll_dev = adapter->netdev;
2018
	int tx_cleaned = 1, work_done = 0;
2019

2020
	adapter = netdev_priv(poll_dev);
2021

2022 2023 2024 2025
	if (adapter->msix_entries &&
	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
		goto clean_rx;

2026
	tx_cleaned = e1000_clean_tx_irq(adapter);
2027

2028
clean_rx:
2029
	adapter->clean_rx(adapter, &work_done, budget);
2030

2031
	if (!tx_cleaned)
2032
		work_done = budget;
2033

2034 2035
	/* If budget not fully consumed, exit the polling mode */
	if (work_done < budget) {
2036 2037
		if (adapter->itr_setting & 3)
			e1000_set_itr(adapter);
2038
		napi_complete(napi);
2039 2040 2041 2042 2043 2044
		if (!test_bit(__E1000_DOWN, &adapter->state)) {
			if (adapter->msix_entries)
				ew32(IMS, adapter->rx_ring->ims_val);
			else
				e1000_irq_enable(adapter);
		}
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	}

	return work_done;
}

static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

	/* don't update vlan cookie if already programmed */
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id))
		return;
2061

2062
	/* add VID to filter table */
2063 2064 2065 2066 2067 2068
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta |= (1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2069 2070 2071 2072 2073 2074 2075 2076
}

static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta, index;

J
Jesse Brandeburg 已提交
2077 2078
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2079
	vlan_group_set_device(adapter->vlgrp, vid, NULL);
J
Jesse Brandeburg 已提交
2080 2081 2082

	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	    (vid == adapter->mng_vlan_id)) {
		/* release control to f/w */
		e1000_release_hw_control(adapter);
		return;
	}

	/* remove VID from filter table */
2093 2094 2095 2096 2097 2098
	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
		index = (vid >> 5) & 0x7F;
		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
		vfta &= ~(1 << (vid & 0x1F));
		hw->mac.ops.write_vfta(hw, index, vfta);
	}
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
}

static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (!adapter->vlgrp)
		return;

	if (!vlan_group_get_device(adapter->vlgrp, vid)) {
		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
		if (adapter->hw.mng_cookie.status &
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
			e1000_vlan_rx_add_vid(netdev, vid);
			adapter->mng_vlan_id = vid;
		}

		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
				(vid != old_vid) &&
		    !vlan_group_get_device(adapter->vlgrp, old_vid))
			e1000_vlan_rx_kill_vid(netdev, old_vid);
	} else {
		adapter->mng_vlan_id = vid;
	}
}


static void e1000_vlan_rx_register(struct net_device *netdev,
				   struct vlan_group *grp)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;

J
Jesse Brandeburg 已提交
2135 2136
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_disable(adapter);
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	adapter->vlgrp = grp;

	if (grp) {
		/* enable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl |= E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			/* enable VLAN receive filtering */
			rctl = er32(RCTL);
			rctl &= ~E1000_RCTL_CFIEN;
			ew32(RCTL, rctl);
			e1000_update_mng_vlan(adapter);
		}
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = er32(CTRL);
		ctrl &= ~E1000_CTRL_VME;
		ew32(CTRL, ctrl);

		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
			if (adapter->mng_vlan_id !=
			    (u16)E1000_MNG_VLAN_NONE) {
				e1000_vlan_rx_kill_vid(netdev,
						       adapter->mng_vlan_id);
				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
			}
		}
	}

J
Jesse Brandeburg 已提交
2168 2169
	if (!test_bit(__E1000_DOWN, &adapter->state))
		e1000_irq_enable(adapter);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
}

static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
	u16 vid;

	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);

	if (!adapter->vlgrp)
		return;

	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
		if (!vlan_group_get_device(adapter->vlgrp, vid))
			continue;
		e1000_vlan_rx_add_vid(adapter->netdev, vid);
	}
}

static void e1000_init_manageability(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 manc, manc2h;

	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
		return;

	manc = er32(MANC);

2198 2199
	/*
	 * enable receiving management packets to the host. this will probably
2200
	 * generate destination unreachable messages from the host OS, but
2201 2202
	 * the packets will be handled on SMBUS
	 */
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
	manc |= E1000_MANC_EN_MNG2HOST;
	manc2h = er32(MANC2H);
#define E1000_MNG2HOST_PORT_623 (1 << 5)
#define E1000_MNG2HOST_PORT_664 (1 << 6)
	manc2h |= E1000_MNG2HOST_PORT_623;
	manc2h |= E1000_MNG2HOST_PORT_664;
	ew32(MANC2H, manc2h);
	ew32(MANC, manc);
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *tx_ring = adapter->tx_ring;
	u64 tdba;
	u32 tdlen, tctl, tipg, tarc;
	u32 ipgr1, ipgr2;

	/* Setup the HW Tx Head and Tail descriptor pointers */
	tdba = tx_ring->dma;
	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2230
	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	ew32(TDBAH, (tdba >> 32));
	ew32(TDLEN, tdlen);
	ew32(TDH, 0);
	ew32(TDT, 0);
	tx_ring->head = E1000_TDH;
	tx_ring->tail = E1000_TDT;

	/* Set the default values for the Tx Inter Packet Gap timer */
	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */

	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */

	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	ew32(TIPG, tipg);

	/* Set the Tx Interrupt Delay register */
	ew32(TIDV, adapter->tx_int_delay);
2252
	/* Tx irq moderation */
2253 2254 2255 2256 2257 2258 2259 2260 2261
	ew32(TADV, adapter->tx_abs_int_delay);

	/* Program the Transmit Control Register */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2262
		tarc = er32(TARC(0));
2263 2264 2265 2266
		/*
		 * set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later
		 */
2267 2268
#define SPEED_MODE_BIT (1 << 21)
		tarc |= SPEED_MODE_BIT;
2269
		ew32(TARC(0), tarc);
2270 2271 2272 2273
	}

	/* errata: program both queues to unweighted RR */
	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2274
		tarc = er32(TARC(0));
2275
		tarc |= 1;
2276 2277
		ew32(TARC(0), tarc);
		tarc = er32(TARC(1));
2278
		tarc |= 1;
2279
		ew32(TARC(1), tarc);
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	}

	/* Setup Transmit Descriptor Settings for eop descriptor */
	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* only set IDE if we are delaying interrupts using the timers */
	if (adapter->tx_int_delay)
		adapter->txd_cmd |= E1000_TXD_CMD_IDE;

	/* enable Report Status bit */
	adapter->txd_cmd |= E1000_TXD_CMD_RS;

	ew32(TCTL, tctl);

2294
	e1000e_config_collision_dist(hw);
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
}

/**
 * e1000_setup_rctl - configure the receive control registers
 * @adapter: Board private structure
 **/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl, rfctl;
	u32 psrctl = 0;
	u32 pages = 0;

	/* Program MC offset vector base */
	rctl = er32(RCTL);
	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* Do not Store bad packets */
	rctl &= ~E1000_RCTL_SBP;

	/* Enable Long Packet receive */
	if (adapter->netdev->mtu <= ETH_DATA_LEN)
		rctl &= ~E1000_RCTL_LPE;
	else
		rctl |= E1000_RCTL_LPE;

J
Jeff Kirsher 已提交
2326 2327 2328 2329 2330 2331
	/* Some systems expect that the CRC is included in SMBUS traffic. The
	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
	 * host memory when this is enabled
	 */
	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
		rctl |= E1000_RCTL_SECRC;
2332

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
		u16 phy_data;

		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
		phy_data &= 0xfff8;
		phy_data |= (1 << 2);
		e1e_wphy(hw, PHY_REG(770, 26), phy_data);

		e1e_rphy(hw, 22, &phy_data);
		phy_data &= 0x0fff;
		phy_data |= (1 << 14);
		e1e_wphy(hw, 0x10, 0x2823);
		e1e_wphy(hw, 0x11, 0x0003);
		e1e_wphy(hw, 22, phy_data);
	}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	/* Setup buffer sizes */
	rctl &= ~E1000_RCTL_SZ_4096;
	rctl |= E1000_RCTL_BSEX;
	switch (adapter->rx_buffer_len) {
	case 2048:
	default:
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~E1000_RCTL_BSEX;
		break;
	case 4096:
		rctl |= E1000_RCTL_SZ_4096;
		break;
	case 8192:
		rctl |= E1000_RCTL_SZ_8192;
		break;
	case 16384:
		rctl |= E1000_RCTL_SZ_16384;
		break;
	}

	/*
	 * 82571 and greater support packet-split where the protocol
	 * header is placed in skb->data and the packet data is
	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
	 * In the case of a non-split, skb->data is linearly filled,
	 * followed by the page buffers.  Therefore, skb->data is
	 * sized to hold the largest protocol header.
	 *
	 * allocations using alloc_page take too long for regular MTU
	 * so only enable packet split for jumbo frames
	 *
	 * Using pages when the page size is greater than 16k wastes
	 * a lot of memory, since we allocate 3 pages at all times
	 * per packet.
	 */
	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2386 2387
	if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2388
		adapter->rx_ps_pages = pages;
2389 2390
	else
		adapter->rx_ps_pages = 0;
2391 2392 2393 2394 2395

	if (adapter->rx_ps_pages) {
		/* Configure extra packet-split registers */
		rfctl = er32(RFCTL);
		rfctl |= E1000_RFCTL_EXTEN;
2396 2397 2398 2399
		/*
		 * disable packet split support for IPv6 extension headers,
		 * because some malformed IPv6 headers can hang the Rx
		 */
2400 2401 2402 2403 2404
		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
			  E1000_RFCTL_NEW_IPV6_EXT_DIS);

		ew32(RFCTL, rfctl);

A
Auke Kok 已提交
2405 2406
		/* Enable Packet split descriptors */
		rctl |= E1000_RCTL_DTYP_PS;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427

		psrctl |= adapter->rx_ps_bsize0 >>
			E1000_PSRCTL_BSIZE0_SHIFT;

		switch (adapter->rx_ps_pages) {
		case 3:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE3_SHIFT;
		case 2:
			psrctl |= PAGE_SIZE <<
				E1000_PSRCTL_BSIZE2_SHIFT;
		case 1:
			psrctl |= PAGE_SIZE >>
				E1000_PSRCTL_BSIZE1_SHIFT;
			break;
		}

		ew32(PSRCTL, psrctl);
	}

	ew32(RCTL, rctl);
2428 2429
	/* just started the receive unit, no need to restart */
	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
}

/**
 * e1000_configure_rx - Configure Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_ring *rx_ring = adapter->rx_ring;
	u64 rdba;
	u32 rdlen, rctl, rxcsum, ctrl_ext;

	if (adapter->rx_ps_pages) {
		/* this is a 32 byte descriptor */
		rdlen = rx_ring->count *
			sizeof(union e1000_rx_desc_packet_split);
		adapter->clean_rx = e1000_clean_rx_irq_ps;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2451 2452 2453 2454
	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2455
	} else {
2456
		rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
		adapter->clean_rx = e1000_clean_rx_irq;
		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
	}

	/* disable receives while setting up the descriptors */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	e1e_flush();
	msleep(10);

	/* set the Receive Delay Timer Register */
	ew32(RDTR, adapter->rx_int_delay);

	/* irq moderation */
	ew32(RADV, adapter->rx_abs_int_delay);
	if (adapter->itr_setting != 0)
2473
		ew32(ITR, 1000000000 / (adapter->itr * 256));
2474 2475 2476 2477 2478 2479 2480 2481

	ctrl_ext = er32(CTRL_EXT);
	/* Auto-Mask interrupts upon ICR access */
	ctrl_ext |= E1000_CTRL_EXT_IAME;
	ew32(IAM, 0xffffffff);
	ew32(CTRL_EXT, ctrl_ext);
	e1e_flush();

2482 2483 2484 2485
	/*
	 * Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
2486
	rdba = rx_ring->dma;
2487
	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	ew32(RDBAH, (rdba >> 32));
	ew32(RDLEN, rdlen);
	ew32(RDH, 0);
	ew32(RDT, 0);
	rx_ring->head = E1000_RDH;
	rx_ring->tail = E1000_RDT;

	/* Enable Receive Checksum Offload for TCP and UDP */
	rxcsum = er32(RXCSUM);
	if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
		rxcsum |= E1000_RXCSUM_TUOFL;

2500 2501 2502 2503
		/*
		 * IPv4 payload checksum for UDP fragments must be
		 * used in conjunction with packet-split.
		 */
2504 2505 2506 2507 2508 2509 2510 2511
		if (adapter->rx_ps_pages)
			rxcsum |= E1000_RXCSUM_IPPCSE;
	} else {
		rxcsum &= ~E1000_RXCSUM_TUOFL;
		/* no need to clear IPPCSE as it defaults to 0 */
	}
	ew32(RXCSUM, rxcsum);

2512 2513
	/*
	 * Enable early receives on supported devices, only takes effect when
2514
	 * packet size is equal or larger than the specified value (in 8 byte
2515 2516
	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
	 */
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
	if (adapter->flags & FLAG_HAS_ERT) {
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			u32 rxdctl = er32(RXDCTL(0));
			ew32(RXDCTL(0), rxdctl | 0x3);
			ew32(ERT, E1000_ERT_2048 | (1 << 13));
			/*
			 * With jumbo frames and early-receive enabled,
			 * excessive C-state transition latencies result in
			 * dropped transactions.
			 */
			pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
						  adapter->netdev->name, 55);
		} else {
			pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
						  adapter->netdev->name,
						  PM_QOS_DEFAULT_VALUE);
		}
2534
	}
2535 2536 2537 2538 2539 2540

	/* Enable Receives */
	ew32(RCTL, rctl);
}

/**
2541
 *  e1000_update_mc_addr_list - Update Multicast addresses
2542 2543 2544 2545
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *
2546
 *  Updates the Multicast Table Array.
2547 2548
 *  The caller must have a packed mc_addr_list of multicast addresses.
 **/
2549
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2550
				      u32 mc_addr_count)
2551
{
2552
	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
}

/**
 * e1000_set_multi - Multicast and Promiscuous mode set
 * @netdev: network interface device structure
 *
 * The set_multi entry point is called whenever the multicast address
 * list or the network interface flags are updated.  This routine is
 * responsible for configuring the hardware for proper multicast,
 * promiscuous mode, and all-multi behavior.
 **/
static void e1000_set_multi(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct dev_mc_list *mc_ptr;
	u8  *mta_list;
	u32 rctl;
	int i;

	/* Check for Promiscuous and All Multicast modes */

	rctl = er32(RCTL);

	if (netdev->flags & IFF_PROMISC) {
		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2579
		rctl &= ~E1000_RCTL_VFE;
2580
	} else {
2581 2582 2583 2584 2585 2586
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			rctl &= ~E1000_RCTL_UPE;
		} else {
			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
		}
2587
		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2588
			rctl |= E1000_RCTL_VFE;
2589 2590 2591 2592
	}

	ew32(RCTL, rctl);

2593 2594
	if (!netdev_mc_empty(netdev)) {
		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2595 2596 2597 2598
		if (!mta_list)
			return;

		/* prepare a packed array of only addresses. */
2599 2600 2601 2602
		i = 0;
		netdev_for_each_mc_addr(mc_ptr, netdev)
			memcpy(mta_list + (i++ * ETH_ALEN),
			       mc_ptr->dmi_addr, ETH_ALEN);
2603

2604
		e1000_update_mc_addr_list(hw, mta_list, i);
2605 2606 2607 2608 2609 2610
		kfree(mta_list);
	} else {
		/*
		 * if we're called from probe, we might not have
		 * anything to do here, so clear out the list
		 */
2611
		e1000_update_mc_addr_list(hw, NULL, 0);
2612 2613 2614 2615
	}
}

/**
2616
 * e1000_configure - configure the hardware for Rx and Tx
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
 * @adapter: private board structure
 **/
static void e1000_configure(struct e1000_adapter *adapter)
{
	e1000_set_multi(adapter->netdev);

	e1000_restore_vlan(adapter);
	e1000_init_manageability(adapter);

	e1000_configure_tx(adapter);
	e1000_setup_rctl(adapter);
	e1000_configure_rx(adapter);
2629
	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
}

/**
 * e1000e_power_up_phy - restore link in case the phy was powered down
 * @adapter: address of board private structure
 *
 * The phy may be powered down to save power and turn off link when the
 * driver is unloaded and wake on lan is not enabled (among others)
 * *** this routine MUST be followed by a call to e1000e_reset ***
 **/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
2642 2643
	if (adapter->hw.phy.ops.power_up)
		adapter->hw.phy.ops.power_up(&adapter->hw);
2644 2645 2646 2647 2648 2649 2650

	adapter->hw.mac.ops.setup_link(&adapter->hw);
}

/**
 * e1000_power_down_phy - Power down the PHY
 *
2651 2652
 * Power down the PHY so no link is implied when interface is down.
 * The PHY cannot be powered down if management or WoL is active.
2653 2654 2655 2656
 */
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
	/* WoL is enabled */
2657
	if (adapter->wol)
2658 2659
		return;

2660 2661
	if (adapter->hw.phy.ops.power_down)
		adapter->hw.phy.ops.power_down(&adapter->hw);
2662 2663 2664 2665 2666 2667 2668 2669
}

/**
 * e1000e_reset - bring the hardware into a known good state
 *
 * This function boots the hardware and enables some settings that
 * require a configuration cycle of the hardware - those cannot be
 * set/changed during runtime. After reset the device needs to be
2670
 * properly configured for Rx, Tx etc.
2671 2672 2673 2674
 */
void e1000e_reset(struct e1000_adapter *adapter)
{
	struct e1000_mac_info *mac = &adapter->hw.mac;
2675
	struct e1000_fc_info *fc = &adapter->hw.fc;
2676 2677
	struct e1000_hw *hw = &adapter->hw;
	u32 tx_space, min_tx_space, min_rx_space;
2678
	u32 pba = adapter->pba;
2679 2680
	u16 hwm;

2681
	/* reset Packet Buffer Allocation to default */
2682
	ew32(PBA, pba);
2683

2684
	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2685 2686
		/*
		 * To maintain wire speed transmits, the Tx FIFO should be
2687 2688 2689 2690
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
2691 2692
		 * expressed in KB.
		 */
2693
		pba = er32(PBA);
2694
		/* upper 16 bits has Tx packet buffer allocation size in KB */
2695
		tx_space = pba >> 16;
2696
		/* lower 16 bits has Rx packet buffer allocation size in KB */
2697
		pba &= 0xffff;
2698 2699 2700
		/*
		 * the Tx fifo also stores 16 bytes of information about the tx
		 * but don't include ethernet FCS because hardware appends it
2701 2702
		 */
		min_tx_space = (adapter->max_frame_size +
2703 2704 2705 2706 2707
				sizeof(struct e1000_tx_desc) -
				ETH_FCS_LEN) * 2;
		min_tx_space = ALIGN(min_tx_space, 1024);
		min_tx_space >>= 10;
		/* software strips receive CRC, so leave room for it */
2708
		min_rx_space = adapter->max_frame_size;
2709 2710 2711
		min_rx_space = ALIGN(min_rx_space, 1024);
		min_rx_space >>= 10;

2712 2713
		/*
		 * If current Tx allocation is less than the min Tx FIFO size,
2714
		 * and the min Tx FIFO size is less than the current Rx FIFO
2715 2716
		 * allocation, take space away from current Rx allocation
		 */
2717 2718 2719
		if ((tx_space < min_tx_space) &&
		    ((min_tx_space - tx_space) < pba)) {
			pba -= min_tx_space - tx_space;
2720

2721 2722 2723 2724
			/*
			 * if short on Rx space, Rx wins and must trump tx
			 * adjustment or use Early Receive if available
			 */
2725
			if ((pba < min_rx_space) &&
2726 2727
			    (!(adapter->flags & FLAG_HAS_ERT)))
				/* ERT enabled in e1000_configure_rx */
2728
				pba = min_rx_space;
2729
		}
2730 2731

		ew32(PBA, pba);
2732 2733 2734
	}


2735 2736 2737
	/*
	 * flow control settings
	 *
2738
	 * The high water mark must be low enough to fit one full frame
2739 2740 2741 2742 2743
	 * (or the size used for early receive) above it in the Rx FIFO.
	 * Set it to the lower of:
	 * - 90% of the Rx FIFO size, and
	 * - the full Rx FIFO size minus the early receive size (for parts
	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
2744
	 * - the full Rx FIFO size minus one full frame
2745
	 */
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
	if (hw->mac.type == e1000_pchlan) {
		/*
		 * Workaround PCH LOM adapter hangs with certain network
		 * loads.  If hangs persist, try disabling Tx flow control.
		 */
		if (adapter->netdev->mtu > ETH_DATA_LEN) {
			fc->high_water = 0x3500;
			fc->low_water  = 0x1500;
		} else {
			fc->high_water = 0x5000;
			fc->low_water  = 0x3000;
		}
	} else {
		if ((adapter->flags & FLAG_HAS_ERT) &&
		    (adapter->netdev->mtu > ETH_DATA_LEN))
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - (E1000_ERT_2048 << 3)));
		else
			hwm = min(((pba << 10) * 9 / 10),
				  ((pba << 10) - adapter->max_frame_size));
2766

2767 2768 2769
		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
		fc->low_water = fc->high_water - 8;
	}
2770 2771

	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2772
		fc->pause_time = 0xFFFF;
2773
	else
2774 2775
		fc->pause_time = E1000_FC_PAUSE_TIME;
	fc->send_xon = 1;
2776
	fc->current_mode = fc->requested_mode;
2777 2778 2779

	/* Allow time for pending master requests to run */
	mac->ops.reset_hw(hw);
2780 2781 2782 2783 2784

	/*
	 * For parts with AMT enabled, let the firmware know
	 * that the network interface is in control
	 */
J
Jesse Brandeburg 已提交
2785
	if (adapter->flags & FLAG_HAS_AMT)
2786 2787
		e1000_get_hw_control(adapter);

2788
	ew32(WUC, 0);
2789 2790
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
		e1e_wphy(&adapter->hw, BM_WUC, 0);
2791 2792

	if (mac->ops.init_hw(hw))
2793
		e_err("Hardware Error\n");
2794

2795 2796 2797 2798
	/* additional part of the flow-control workaround above */
	if (hw->mac.type == e1000_pchlan)
		ew32(FCRTV_PCH, 0x1000);

2799 2800 2801 2802 2803 2804 2805 2806
	e1000_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	ew32(VET, ETH_P_8021Q);

	e1000e_reset_adaptive(hw);
	e1000_get_phy_info(hw);

2807 2808
	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2809
		u16 phy_data = 0;
2810 2811
		/*
		 * speed up time to link by disabling smart power down, ignore
2812
		 * the return value of this function because there is nothing
2813 2814
		 * different we would do if it failed
		 */
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
		phy_data &= ~IGP02E1000_PM_SPD;
		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
	}
}

int e1000e_up(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

2825 2826 2827 2828 2829 2830
	/* DMA latency requirement to workaround early-receive/jumbo issue */
	if (adapter->flags & FLAG_HAS_ERT)
		pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
		                       adapter->netdev->name,
				       PM_QOS_DEFAULT_VALUE);

2831 2832 2833 2834 2835 2836
	/* hardware has been reset, we need to reload some things */
	e1000_configure(adapter);

	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);
2837 2838
	if (adapter->msix_entries)
		e1000_configure_msix(adapter);
2839 2840
	e1000_irq_enable(adapter);

2841 2842
	netif_wake_queue(adapter->netdev);

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	/* fire a link change interrupt to start the watchdog */
	ew32(ICS, E1000_ICS_LSC);
	return 0;
}

void e1000e_down(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;

2854 2855 2856 2857
	/*
	 * signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
2858 2859 2860 2861 2862 2863 2864
	set_bit(__E1000_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = er32(RCTL);
	ew32(RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

2865
	netif_stop_queue(netdev);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884

	/* disable transmits in the hardware */
	tctl = er32(TCTL);
	tctl &= ~E1000_TCTL_EN;
	ew32(TCTL, tctl);
	/* flush both disables and wait for them to finish */
	e1e_flush();
	msleep(10);

	napi_disable(&adapter->napi);
	e1000_irq_disable(adapter);

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	netif_carrier_off(netdev);
	adapter->link_speed = 0;
	adapter->link_duplex = 0;

2885 2886
	if (!pci_channel_offline(adapter->pdev))
		e1000e_reset(adapter);
2887 2888 2889
	e1000_clean_tx_ring(adapter);
	e1000_clean_rx_ring(adapter);

2890 2891 2892 2893
	if (adapter->flags & FLAG_HAS_ERT)
		pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
		                          adapter->netdev->name);

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * TODO: for power management, we could drop the link and
	 * pci_disable_device here.
	 */
}

void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
	might_sleep();
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
	e1000e_down(adapter);
	e1000e_up(adapter);
	clear_bit(__E1000_RESETTING, &adapter->state);
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 * @adapter: board private structure to initialize
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
	adapter->rx_ps_bsize0 = 128;
2924 2925
	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2926

2927
	e1000e_set_interrupt_capability(adapter);
2928

2929 2930
	if (e1000_alloc_queues(adapter))
		return -ENOMEM;
2931 2932 2933 2934 2935 2936 2937 2938

	/* Explicitly disable IRQ since the NIC can be in any state. */
	e1000_irq_disable(adapter);

	set_bit(__E1000_DOWN, &adapter->state);
	return 0;
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/**
 * e1000_intr_msi_test - Interrupt Handler
 * @irq: interrupt number
 * @data: pointer to a network interface device structure
 **/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
	struct net_device *netdev = data;
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = er32(ICR);

2951
	e_dbg("icr is %08X\n", icr);
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	if (icr & E1000_ICR_RXSEQ) {
		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
		wmb();
	}

	return IRQ_HANDLED;
}

/**
 * e1000_test_msi_interrupt - Returns 0 for successful test
 * @adapter: board private struct
 *
 * code flow taken from tg3.c
 **/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* poll_enable hasn't been called yet, so don't need disable */
	/* clear any pending events */
	er32(ICR);

	/* free the real vector and request a test handler */
	e1000_free_irq(adapter);
2978
	e1000e_reset_interrupt_capability(adapter);
2979 2980 2981 2982 2983 2984 2985 2986 2987

	/* Assume that the test fails, if it succeeds then the test
	 * MSI irq handler will unset this flag */
	adapter->flags |= FLAG_MSI_TEST_FAILED;

	err = pci_enable_msi(adapter->pdev);
	if (err)
		goto msi_test_failed;

2988
	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
			  netdev->name, netdev);
	if (err) {
		pci_disable_msi(adapter->pdev);
		goto msi_test_failed;
	}

	wmb();

	e1000_irq_enable(adapter);

	/* fire an unusual interrupt on the test handler */
	ew32(ICS, E1000_ICS_RXSEQ);
	e1e_flush();
	msleep(50);

	e1000_irq_disable(adapter);

	rmb();

	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3009
		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
		err = -EIO;
		e_info("MSI interrupt test failed!\n");
	}

	free_irq(adapter->pdev->irq, netdev);
	pci_disable_msi(adapter->pdev);

	if (err == -EIO)
		goto msi_test_failed;

	/* okay so the test worked, restore settings */
3021
	e_dbg("MSI interrupt test succeeded!\n");
3022
msi_test_failed:
3023
	e1000e_set_interrupt_capability(adapter);
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	e1000_request_irq(adapter);
	return err;
}

/**
 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
 * @adapter: board private struct
 *
 * code flow taken from tg3.c, called with e1000 interrupts disabled.
 **/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
	int err;
	u16 pci_cmd;

	if (!(adapter->flags & FLAG_MSI_ENABLED))
		return 0;

	/* disable SERR in case the MSI write causes a master abort */
	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
	pci_write_config_word(adapter->pdev, PCI_COMMAND,
			      pci_cmd & ~PCI_COMMAND_SERR);

	err = e1000_test_msi_interrupt(adapter);

	/* restore previous setting of command word */
	pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);

	/* success ! */
	if (!err)
		return 0;

	/* EIO means MSI test failed */
	if (err != -EIO)
		return err;

	/* back to INTx mode */
	e_warn("MSI interrupt test failed, using legacy interrupt.\n");

	e1000_free_irq(adapter);

	err = e1000_request_irq(adapter);

	return err;
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
/**
 * e1000_open - Called when a network interface is made active
 * @netdev: network interface device structure
 *
 * Returns 0 on success, negative value on failure
 *
 * The open entry point is called when a network interface is made
 * active by the system (IFF_UP).  At this point all resources needed
 * for transmit and receive operations are allocated, the interrupt
 * handler is registered with the OS, the watchdog timer is started,
 * and the stack is notified that the interface is ready.
 **/
static int e1000_open(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* disallow open during test */
	if (test_bit(__E1000_TESTING, &adapter->state))
		return -EBUSY;

3092 3093
	netif_carrier_off(netdev);

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	/* allocate transmit descriptors */
	err = e1000e_setup_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = e1000e_setup_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	e1000e_power_up_phy(adapter);

	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
	if ((adapter->hw.mng_cookie.status &
	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
		e1000_update_mng_vlan(adapter);

3111 3112 3113 3114
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now open
	 */
J
Jesse Brandeburg 已提交
3115
	if (adapter->flags & FLAG_HAS_AMT)
3116 3117
		e1000_get_hw_control(adapter);

3118 3119
	/*
	 * before we allocate an interrupt, we must be ready to handle it.
3120 3121
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
3122 3123
	 * clean_rx handler before we do so.
	 */
3124 3125 3126 3127 3128 3129
	e1000_configure(adapter);

	err = e1000_request_irq(adapter);
	if (err)
		goto err_req_irq;

3130 3131 3132 3133 3134
	/*
	 * Work around PCIe errata with MSI interrupts causing some chipsets to
	 * ignore e1000e MSI messages, which means we need to test our MSI
	 * interrupt now
	 */
3135
	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3136 3137 3138 3139 3140 3141 3142
		err = e1000_test_msi(adapter);
		if (err) {
			e_err("Interrupt allocation failed\n");
			goto err_req_irq;
		}
	}

3143 3144 3145 3146 3147 3148 3149
	/* From here on the code is the same as e1000e_up() */
	clear_bit(__E1000_DOWN, &adapter->state);

	napi_enable(&adapter->napi);

	e1000_irq_enable(adapter);

3150
	netif_start_queue(netdev);
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
	/* fire a link status change interrupt to start the watchdog */
	ew32(ICS, E1000_ICS_LSC);

	return 0;

err_req_irq:
	e1000_release_hw_control(adapter);
	e1000_power_down_phy(adapter);
	e1000e_free_rx_resources(adapter);
err_setup_rx:
	e1000e_free_tx_resources(adapter);
err_setup_tx:
	e1000e_reset(adapter);

	return err;
}

/**
 * e1000_close - Disables a network interface
 * @netdev: network interface device structure
 *
 * Returns 0, this is not allowed to fail
 *
 * The close entry point is called when an interface is de-activated
 * by the OS.  The hardware is still under the drivers control, but
 * needs to be disabled.  A global MAC reset is issued to stop the
 * hardware, and all transmit and receive resources are freed.
 **/
static int e1000_close(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
	e1000e_down(adapter);
	e1000_power_down_phy(adapter);
	e1000_free_irq(adapter);

	e1000e_free_tx_resources(adapter);
	e1000e_free_rx_resources(adapter);

3192 3193 3194 3195
	/*
	 * kill manageability vlan ID if supported, but not if a vlan with
	 * the same ID is registered on the host OS (let 8021q kill it)
	 */
3196 3197 3198 3199 3200 3201
	if ((adapter->hw.mng_cookie.status &
			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
	     !(adapter->vlgrp &&
	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);

3202 3203 3204 3205
	/*
	 * If AMT is enabled, let the firmware know that the network
	 * interface is now closed
	 */
J
Jesse Brandeburg 已提交
3206
	if (adapter->flags & FLAG_HAS_AMT)
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
		e1000_release_hw_control(adapter);

	return 0;
}
/**
 * e1000_set_mac - Change the Ethernet Address of the NIC
 * @netdev: network interface device structure
 * @p: pointer to an address structure
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);

	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);

	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
		/* activate the work around */
		e1000e_set_laa_state_82571(&adapter->hw, 1);

3235 3236
		/*
		 * Hold a copy of the LAA in RAR[14] This is done so that
3237 3238 3239 3240
		 * between the time RAR[0] gets clobbered  and the time it
		 * gets fixed (in e1000_watchdog), the actual LAA is in one
		 * of the RARs and no incoming packets directed to this port
		 * are dropped. Eventually the LAA will be in RAR[0] and
3241 3242
		 * RAR[14]
		 */
3243 3244 3245 3246 3247 3248 3249 3250
		e1000e_rar_set(&adapter->hw,
			      adapter->hw.mac.addr,
			      adapter->hw.mac.rar_entry_count - 1);
	}

	return 0;
}

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
/**
 * e1000e_update_phy_task - work thread to update phy
 * @work: pointer to our work struct
 *
 * this worker thread exists because we must acquire a
 * semaphore to read the phy, which we could msleep while
 * waiting for it, and we can't msleep in a timer.
 **/
static void e1000e_update_phy_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, update_phy_task);
	e1000_get_phy_info(&adapter->hw);
}

3266 3267 3268 3269
/*
 * Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
3270 3271 3272
static void e1000_update_phy_info(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3273
	schedule_work(&adapter->update_phy_task);
3274 3275 3276 3277 3278 3279 3280 3281
}

/**
 * e1000e_update_stats - Update the board statistics counters
 * @adapter: board private structure
 **/
void e1000e_update_stats(struct e1000_adapter *adapter)
{
3282
	struct net_device *netdev = adapter->netdev;
3283 3284
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
3285
	u16 phy_data;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

	/*
	 * Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	adapter->stats.crcerrs += er32(CRCERRS);
	adapter->stats.gprc += er32(GPRC);
3298 3299
	adapter->stats.gorc += er32(GORCL);
	er32(GORCH); /* Clear gorc */
3300 3301 3302 3303 3304
	adapter->stats.bprc += er32(BPRC);
	adapter->stats.mprc += er32(MPRC);
	adapter->stats.roc += er32(ROC);

	adapter->stats.mpc += er32(MPC);
3305 3306 3307
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3308 3309
		if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
			adapter->stats.scc += phy_data;
3310 3311

		e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3312 3313
		if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
			adapter->stats.ecol += phy_data;
3314 3315

		e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3316 3317
		if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
			adapter->stats.mcc += phy_data;
3318 3319

		e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3320 3321
		if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
			adapter->stats.latecol += phy_data;
3322 3323

		e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3324 3325
		if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
			adapter->stats.dc += phy_data;
3326 3327 3328 3329 3330 3331 3332
	} else {
		adapter->stats.scc += er32(SCC);
		adapter->stats.ecol += er32(ECOL);
		adapter->stats.mcc += er32(MCC);
		adapter->stats.latecol += er32(LATECOL);
		adapter->stats.dc += er32(DC);
	}
3333 3334 3335 3336 3337
	adapter->stats.xonrxc += er32(XONRXC);
	adapter->stats.xontxc += er32(XONTXC);
	adapter->stats.xoffrxc += er32(XOFFRXC);
	adapter->stats.xofftxc += er32(XOFFTXC);
	adapter->stats.gptc += er32(GPTC);
3338 3339
	adapter->stats.gotc += er32(GOTCL);
	er32(GOTCH); /* Clear gotc */
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	adapter->stats.rnbc += er32(RNBC);
	adapter->stats.ruc += er32(RUC);

	adapter->stats.mptc += er32(MPTC);
	adapter->stats.bptc += er32(BPTC);

	/* used for adaptive IFS */

	hw->mac.tx_packet_delta = er32(TPT);
	adapter->stats.tpt += hw->mac.tx_packet_delta;
3350 3351 3352
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3353 3354
		if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
			hw->mac.collision_delta = phy_data;
3355 3356 3357
	} else {
		hw->mac.collision_delta = er32(COLC);
	}
3358 3359 3360 3361
	adapter->stats.colc += hw->mac.collision_delta;

	adapter->stats.algnerrc += er32(ALGNERRC);
	adapter->stats.rxerrc += er32(RXERRC);
3362 3363 3364
	if ((hw->phy.type == e1000_phy_82578) ||
	    (hw->phy.type == e1000_phy_82577)) {
		e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3365 3366
		if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
			adapter->stats.tncrs += phy_data;
3367 3368 3369 3370 3371
	} else {
		if ((hw->mac.type != e1000_82574) &&
		    (hw->mac.type != e1000_82583))
			adapter->stats.tncrs += er32(TNCRS);
	}
3372 3373 3374 3375 3376
	adapter->stats.cexterr += er32(CEXTERR);
	adapter->stats.tsctc += er32(TSCTC);
	adapter->stats.tsctfc += er32(TSCTFC);

	/* Fill out the OS statistics structure */
3377 3378
	netdev->stats.multicast = adapter->stats.mprc;
	netdev->stats.collisions = adapter->stats.colc;
3379 3380 3381

	/* Rx Errors */

3382 3383 3384 3385
	/*
	 * RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
3386
	netdev->stats.rx_errors = adapter->stats.rxerrc +
3387 3388 3389
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
3390
	netdev->stats.rx_length_errors = adapter->stats.ruc +
3391
					      adapter->stats.roc;
3392 3393 3394
	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3395 3396

	/* Tx Errors */
3397
	netdev->stats.tx_errors = adapter->stats.ecol +
3398
				       adapter->stats.latecol;
3399 3400 3401
	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
	netdev->stats.tx_window_errors = adapter->stats.latecol;
	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3402 3403 3404 3405 3406 3407 3408 3409 3410

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += er32(MGTPTC);
	adapter->stats.mgprc += er32(MGTPRC);
	adapter->stats.mgpdc += er32(MGTPDC);
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
/**
 * e1000_phy_read_status - Update the PHY register status snapshot
 * @adapter: board private structure
 **/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_regs *phy = &adapter->phy_regs;
	int ret_val;

	if ((er32(STATUS) & E1000_STATUS_LU) &&
	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
		if (ret_val)
3432
			e_warn("Error reading PHY register\n");
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	} else {
		/*
		 * Do not read PHY registers if link is not up
		 * Set values to typical power-on defaults
		 */
		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
			     BMSR_ERCAP);
		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
				  ADVERTISE_ALL | ADVERTISE_CSMA);
		phy->lpa = 0;
		phy->expansion = EXPANSION_ENABLENPAGE;
		phy->ctrl1000 = ADVERTISE_1000FULL;
		phy->stat1000 = 0;
		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
	}
}

3452 3453 3454 3455 3456
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl = er32(CTRL);

3457 3458 3459 3460
	/* Link status message must follow this format for user tools */
	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
	       "Flow Control: %s\n",
	       adapter->netdev->name,
3461 3462 3463 3464 3465 3466 3467
	       adapter->link_speed,
	       (adapter->link_duplex == FULL_DUPLEX) ?
	                        "Full Duplex" : "Half Duplex",
	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
	                        "RX/TX" :
	       ((ctrl & E1000_CTRL_RFCE) ? "RX" :
	       ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3468 3469
}

3470
bool e1000e_has_link(struct e1000_adapter *adapter)
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = 0;
	s32 ret_val = 0;

	/*
	 * get_link_status is set on LSC (link status) interrupt or
	 * Rx sequence error interrupt.  get_link_status will stay
	 * false until the check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (hw->mac.get_link_status) {
			ret_val = hw->mac.ops.check_for_link(hw);
			link_active = !hw->mac.get_link_status;
		} else {
			link_active = 1;
		}
		break;
	case e1000_media_type_fiber:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
		break;
	case e1000_media_type_internal_serdes:
		ret_val = hw->mac.ops.check_for_link(hw);
		link_active = adapter->hw.mac.serdes_has_link;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3507
		e_info("Gigabit has been disabled, downgrading speed\n");
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	}

	return link_active;
}

static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
	/* make sure the receive unit is started */
	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
		struct e1000_hw *hw = &adapter->hw;
		u32 rctl = er32(RCTL);
		ew32(RCTL, rctl | E1000_RCTL_EN);
		adapter->flags &= ~FLAG_RX_RESTART_NOW;
	}
}

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
/**
 * e1000_watchdog - Timer Call-back
 * @data: pointer to adapter cast into an unsigned long
 **/
static void e1000_watchdog(unsigned long data)
{
	struct e1000_adapter *adapter = (struct e1000_adapter *) data;

	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);

	/* TODO: make this use queue_delayed_work() */
}

static void e1000_watchdog_task(struct work_struct *work)
{
	struct e1000_adapter *adapter = container_of(work,
					struct e1000_adapter, watchdog_task);
	struct net_device *netdev = adapter->netdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;
B
Bruce Allan 已提交
3545
	struct e1000_phy_info *phy = &adapter->hw.phy;
3546 3547 3548 3549 3550
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_hw *hw = &adapter->hw;
	u32 link, tctl;
	int tx_pending = 0;

3551
	link = e1000e_has_link(adapter);
3552 3553
	if ((netif_carrier_ok(netdev)) && link) {
		e1000e_enable_receives(adapter);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		goto link_up;
	}

	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
		e1000_update_mng_vlan(adapter);

	if (link) {
		if (!netif_carrier_ok(netdev)) {
			bool txb2b = 1;
3564
			/* update snapshot of PHY registers on LSC */
3565
			e1000_phy_read_status(adapter);
3566 3567 3568 3569
			mac->ops.get_link_up_info(&adapter->hw,
						   &adapter->link_speed,
						   &adapter->link_duplex);
			e1000_print_link_info(adapter);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
			/*
			 * On supported PHYs, check for duplex mismatch only
			 * if link has autonegotiated at 10/100 half
			 */
			if ((hw->phy.type == e1000_phy_igp_3 ||
			     hw->phy.type == e1000_phy_bm) &&
			    (hw->mac.autoneg == true) &&
			    (adapter->link_speed == SPEED_10 ||
			     adapter->link_speed == SPEED_100) &&
			    (adapter->link_duplex == HALF_DUPLEX)) {
				u16 autoneg_exp;

				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);

				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
					e_info("Autonegotiated half duplex but"
					       " link partner cannot autoneg. "
					       " Try forcing full duplex if "
					       "link gets many collisions.\n");
			}

3591
			/* adjust timeout factor according to speed/duplex */
3592 3593 3594 3595
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				txb2b = 0;
3596
				adapter->tx_timeout_factor = 16;
3597 3598 3599
				break;
			case SPEED_100:
				txb2b = 0;
3600
				adapter->tx_timeout_factor = 10;
3601 3602 3603
				break;
			}

3604 3605 3606 3607
			/*
			 * workaround: re-program speed mode bit after
			 * link-up event
			 */
3608 3609 3610
			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
			    !txb2b) {
				u32 tarc0;
3611
				tarc0 = er32(TARC(0));
3612
				tarc0 &= ~SPEED_MODE_BIT;
3613
				ew32(TARC(0), tarc0);
3614 3615
			}

3616 3617 3618 3619
			/*
			 * disable TSO for pcie and 10/100 speeds, to avoid
			 * some hardware issues
			 */
3620 3621 3622 3623
			if (!(adapter->flags & FLAG_TSO_FORCE)) {
				switch (adapter->link_speed) {
				case SPEED_10:
				case SPEED_100:
3624
					e_info("10/100 speed: disabling TSO\n");
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
					netdev->features &= ~NETIF_F_TSO;
					netdev->features &= ~NETIF_F_TSO6;
					break;
				case SPEED_1000:
					netdev->features |= NETIF_F_TSO;
					netdev->features |= NETIF_F_TSO6;
					break;
				default:
					/* oops */
					break;
				}
			}

3638 3639 3640 3641
			/*
			 * enable transmits in the hardware, need to do this
			 * after setting TARC(0)
			 */
3642 3643 3644 3645
			tctl = er32(TCTL);
			tctl |= E1000_TCTL_EN;
			ew32(TCTL, tctl);

B
Bruce Allan 已提交
3646 3647 3648 3649 3650 3651 3652
                        /*
			 * Perform any post-link-up configuration before
			 * reporting link up.
			 */
			if (phy->ops.cfg_on_link_up)
				phy->ops.cfg_on_link_up(hw);

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
			netif_carrier_on(netdev);

			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;
3663 3664 3665
			/* Link status message must follow this format */
			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
			       adapter->netdev->name);
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
			netif_carrier_off(netdev);
			if (!test_bit(__E1000_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
				schedule_work(&adapter->reset_task);
		}
	}

link_up:
	e1000e_update_stats(adapter);

	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
	adapter->tpt_old = adapter->stats.tpt;
	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
	adapter->colc_old = adapter->stats.colc;

3684 3685 3686 3687
	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
	adapter->gorc_old = adapter->stats.gorc;
	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
	adapter->gotc_old = adapter->stats.gotc;
3688 3689 3690 3691 3692 3693 3694

	e1000e_update_adaptive(&adapter->hw);

	if (!netif_carrier_ok(netdev)) {
		tx_pending = (e1000_desc_unused(tx_ring) + 1 <
			       tx_ring->count);
		if (tx_pending) {
3695 3696
			/*
			 * We've lost link, so the controller stops DMA,
3697 3698
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
3699 3700
			 * (Do the reset outside of interrupt context).
			 */
3701 3702
			adapter->tx_timeout_count++;
			schedule_work(&adapter->reset_task);
3703 3704
			/* return immediately since reset is imminent */
			return;
3705 3706 3707
		}
	}

3708
	/* Cause software interrupt to ensure Rx ring is cleaned */
3709 3710 3711 3712
	if (adapter->msix_entries)
		ew32(ICS, adapter->rx_ring->ims_val);
	else
		ew32(ICS, E1000_ICS_RXDMT0);
3713 3714 3715 3716

	/* Force detection of hung controller every watchdog period */
	adapter->detect_tx_hung = 1;

3717 3718 3719 3720
	/*
	 * With 82571 controllers, LAA may be overwritten due to controller
	 * reset from the other port. Set the appropriate LAA in RAR[0]
	 */
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	if (e1000e_get_laa_state_82571(hw))
		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);

	/* Reset the timer */
	if (!test_bit(__E1000_DOWN, &adapter->state))
		mod_timer(&adapter->watchdog_timer,
			  round_jiffies(jiffies + 2 * HZ));
}

#define E1000_TX_FLAGS_CSUM		0x00000001
#define E1000_TX_FLAGS_VLAN		0x00000002
#define E1000_TX_FLAGS_TSO		0x00000004
#define E1000_TX_FLAGS_IPV4		0x00000008
#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT	16

static int e1000_tso(struct e1000_adapter *adapter,
		     struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u32 cmd_length = 0;
	u16 ipcse = 0, tucse, mss;
	u8 ipcss, ipcso, tucss, tucso, hdr_len;
	int err;

3749 3750
	if (!skb_is_gso(skb))
		return 0;
3751

3752 3753 3754 3755
	if (skb_header_cloned(skb)) {
		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
		if (err)
			return err;
3756 3757
	}

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	mss = skb_shinfo(skb)->gso_size;
	if (skb->protocol == htons(ETH_P_IP)) {
		struct iphdr *iph = ip_hdr(skb);
		iph->tot_len = 0;
		iph->check = 0;
		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
		                                         0, IPPROTO_TCP, 0);
		cmd_length = E1000_TXD_CMD_IP;
		ipcse = skb_transport_offset(skb) - 1;
3768
	} else if (skb_is_gso_v6(skb)) {
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
		                                       &ipv6_hdr(skb)->daddr,
		                                       0, IPPROTO_TCP, 0);
		ipcse = 0;
	}
	ipcss = skb_network_offset(skb);
	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
	tucss = skb_transport_offset(skb);
	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
	tucse = 0;

	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));

	i = tx_ring->next_to_use;
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
	buffer_info = &tx_ring->buffer_info[i];

	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
	context_desc->upper_setup.tcp_fields.tucss = tucss;
	context_desc->upper_setup.tcp_fields.tucso = tucso;
	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
	context_desc->cmd_and_length = cpu_to_le32(cmd_length);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
3807 3808 3809 3810 3811 3812 3813 3814 3815
}

static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_context_desc *context_desc;
	struct e1000_buffer *buffer_info;
	unsigned int i;
	u8 css;
3816
	u32 cmd_len = E1000_TXD_CMD_DEXT;
3817
	__be16 protocol;
3818

3819 3820
	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;
3821

3822 3823 3824 3825 3826
	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
	else
		protocol = skb->protocol;

A
Arthur Jones 已提交
3827
	switch (protocol) {
3828
	case cpu_to_be16(ETH_P_IP):
3829 3830 3831
		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
3832
	case cpu_to_be16(ETH_P_IPV6):
3833 3834 3835 3836 3837 3838
		/* XXX not handling all IPV6 headers */
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			cmd_len |= E1000_TXD_CMD_TCP;
		break;
	default:
		if (unlikely(net_ratelimit()))
3839 3840
			e_warn("checksum_partial proto=%x!\n",
			       be16_to_cpu(protocol));
3841
		break;
3842 3843
	}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	css = skb_transport_offset(skb);

	i = tx_ring->next_to_use;
	buffer_info = &tx_ring->buffer_info[i];
	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);

	context_desc->lower_setup.ip_config = 0;
	context_desc->upper_setup.tcp_fields.tucss = css;
	context_desc->upper_setup.tcp_fields.tucso =
				css + skb->csum_offset;
	context_desc->upper_setup.tcp_fields.tucse = 0;
	context_desc->tcp_seg_setup.data = 0;
	context_desc->cmd_and_length = cpu_to_le32(cmd_len);

	buffer_info->time_stamp = jiffies;
	buffer_info->next_to_watch = i;

	i++;
	if (i == tx_ring->count)
		i = 0;
	tx_ring->next_to_use = i;

	return 1;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
}

#define E1000_MAX_PER_TXD	8192
#define E1000_MAX_TXD_PWR	12

static int e1000_tx_map(struct e1000_adapter *adapter,
			struct sk_buff *skb, unsigned int first,
			unsigned int max_per_txd, unsigned int nr_frags,
			unsigned int mss)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
3878
	struct pci_dev *pdev = adapter->pdev;
3879
	struct e1000_buffer *buffer_info;
J
Jesse Brandeburg 已提交
3880
	unsigned int len = skb_headlen(skb);
3881
	unsigned int offset = 0, size, count = 0, i;
3882 3883 3884 3885 3886
	unsigned int f;

	i = tx_ring->next_to_use;

	while (len) {
3887
		buffer_info = &tx_ring->buffer_info[i];
3888 3889 3890 3891 3892
		size = min(len, max_per_txd);

		buffer_info->length = size;
		buffer_info->time_stamp = jiffies;
		buffer_info->next_to_watch = i;
3893 3894 3895 3896 3897
		buffer_info->dma = pci_map_single(pdev,	skb->data + offset,
						  size,	PCI_DMA_TODEVICE);
		buffer_info->mapped_as_page = false;
		if (pci_dma_mapping_error(pdev, buffer_info->dma))
			goto dma_error;
3898 3899 3900

		len -= size;
		offset += size;
3901
		count++;
3902 3903 3904 3905 3906 3907

		if (len) {
			i++;
			if (i == tx_ring->count)
				i = 0;
		}
3908 3909 3910 3911 3912 3913 3914
	}

	for (f = 0; f < nr_frags; f++) {
		struct skb_frag_struct *frag;

		frag = &skb_shinfo(skb)->frags[f];
		len = frag->size;
3915
		offset = frag->page_offset;
3916 3917

		while (len) {
3918 3919 3920 3921
			i++;
			if (i == tx_ring->count)
				i = 0;

3922 3923 3924 3925 3926 3927
			buffer_info = &tx_ring->buffer_info[i];
			size = min(len, max_per_txd);

			buffer_info->length = size;
			buffer_info->time_stamp = jiffies;
			buffer_info->next_to_watch = i;
3928 3929 3930 3931 3932 3933
			buffer_info->dma = pci_map_page(pdev, frag->page,
							offset, size,
							PCI_DMA_TODEVICE);
			buffer_info->mapped_as_page = true;
			if (pci_dma_mapping_error(pdev, buffer_info->dma))
				goto dma_error;
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

			len -= size;
			offset += size;
			count++;
		}
	}

	tx_ring->buffer_info[i].skb = skb;
	tx_ring->buffer_info[first].next_to_watch = i;

	return count;
3945 3946 3947 3948

dma_error:
	dev_err(&pdev->dev, "TX DMA map failed\n");
	buffer_info->dma = 0;
3949
	if (count)
3950
		count--;
3951 3952 3953

	while (count--) {
		if (i==0)
3954
			i += tx_ring->count;
3955
		i--;
3956 3957 3958 3959 3960
		buffer_info = &tx_ring->buffer_info[i];
		e1000_put_txbuf(adapter, buffer_info);;
	}

	return 0;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
}

static void e1000_tx_queue(struct e1000_adapter *adapter,
			   int tx_flags, int count)
{
	struct e1000_ring *tx_ring = adapter->tx_ring;
	struct e1000_tx_desc *tx_desc = NULL;
	struct e1000_buffer *buffer_info;
	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
	unsigned int i;

	if (tx_flags & E1000_TX_FLAGS_TSO) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
			     E1000_TXD_CMD_TSE;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;

		if (tx_flags & E1000_TX_FLAGS_IPV4)
			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_CSUM) {
		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
	}

	if (tx_flags & E1000_TX_FLAGS_VLAN) {
		txd_lower |= E1000_TXD_CMD_VLE;
		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
	}

	i = tx_ring->next_to_use;

	while (count--) {
		buffer_info = &tx_ring->buffer_info[i];
		tx_desc = E1000_TX_DESC(*tx_ring, i);
		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
		tx_desc->lower.data =
			cpu_to_le32(txd_lower | buffer_info->length);
		tx_desc->upper.data = cpu_to_le32(txd_upper);

		i++;
		if (i == tx_ring->count)
			i = 0;
	}

	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);

4008 4009
	/*
	 * Force memory writes to complete before letting h/w
4010 4011
	 * know there are new descriptors to fetch.  (Only
	 * applicable for weak-ordered memory model archs,
4012 4013
	 * such as IA-64).
	 */
4014 4015 4016 4017
	wmb();

	tx_ring->next_to_use = i;
	writel(i, adapter->hw.hw_addr + tx_ring->tail);
4018 4019 4020 4021
	/*
	 * we need this if more than one processor can write to our tail
	 * at a time, it synchronizes IO on IA64/Altix systems
	 */
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
	mmiowb();
}

#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
				    struct sk_buff *skb)
{
	struct e1000_hw *hw =  &adapter->hw;
	u16 length, offset;

	if (vlan_tx_tag_present(skb)) {
4033 4034
		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
		    (adapter->hw.mng_cookie.status &
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
			return 0;
	}

	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
		return 0;

	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
		return 0;

	{
		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
		struct udphdr *udp;

		if (ip->protocol != IPPROTO_UDP)
			return 0;

		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
		if (ntohs(udp->dest) != 67)
			return 0;

		offset = (u8 *)udp + 8 - skb->data;
		length = skb->len - offset;
		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
	}

	return 0;
}

static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_stop_queue(netdev);
4069 4070
	/*
	 * Herbert's original patch had:
4071
	 *  smp_mb__after_netif_stop_queue();
4072 4073
	 * but since that doesn't exist yet, just open code it.
	 */
4074 4075
	smp_mb();

4076 4077 4078 4079
	/*
	 * We need to check again in a case another CPU has just
	 * made room available.
	 */
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	if (e1000_desc_unused(adapter->tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_start_queue(netdev);
	++adapter->restart_queue;
	return 0;
}

static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	if (e1000_desc_unused(adapter->tx_ring) >= size)
		return 0;
	return __e1000_maybe_stop_tx(netdev, size);
}

#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4099 4100
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
				    struct net_device *netdev)
4101 4102 4103 4104 4105 4106 4107
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_ring *tx_ring = adapter->tx_ring;
	unsigned int first;
	unsigned int max_per_txd = E1000_MAX_PER_TXD;
	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
	unsigned int tx_flags = 0;
4108 4109 4110
	unsigned int len = skb->len - skb->data_len;
	unsigned int nr_frags;
	unsigned int mss;
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
	int count = 0;
	int tso;
	unsigned int f;

	if (test_bit(__E1000_DOWN, &adapter->state)) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (skb->len <= 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	mss = skb_shinfo(skb)->gso_size;
4126 4127
	/*
	 * The controller does a simple calculation to
4128 4129 4130 4131
	 * make sure there is enough room in the FIFO before
	 * initiating the DMA for each buffer.  The calc is:
	 * 4 = ceil(buffer len/mss).  To make sure we don't
	 * overrun the FIFO, adjust the max buffer len if mss
4132 4133
	 * drops.
	 */
4134 4135 4136 4137 4138
	if (mss) {
		u8 hdr_len;
		max_per_txd = min(mss << 2, max_per_txd);
		max_txd_pwr = fls(max_per_txd) - 1;

4139 4140 4141 4142 4143
		/*
		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
		 * points to just header, pull a few bytes of payload from
		 * frags into skb->data
		 */
4144
		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4145 4146 4147 4148
		/*
		 * we do this workaround for ES2LAN, but it is un-necessary,
		 * avoiding it could save a lot of cycles
		 */
4149
		if (skb->data_len && (hdr_len == len)) {
4150 4151 4152 4153
			unsigned int pull_size;

			pull_size = min((unsigned int)4, skb->data_len);
			if (!__pskb_pull_tail(skb, pull_size)) {
4154
				e_err("__pskb_pull_tail failed.\n");
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
				dev_kfree_skb_any(skb);
				return NETDEV_TX_OK;
			}
			len = skb->len - skb->data_len;
		}
	}

	/* reserve a descriptor for the offload context */
	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
		count++;
	count++;

	count += TXD_USE_COUNT(len, max_txd_pwr);

	nr_frags = skb_shinfo(skb)->nr_frags;
	for (f = 0; f < nr_frags; f++)
		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
				       max_txd_pwr);

	if (adapter->hw.mac.tx_pkt_filtering)
		e1000_transfer_dhcp_info(adapter, skb);

4177 4178 4179 4180
	/*
	 * need: count + 2 desc gap to keep tail from touching
	 * head, otherwise try next time
	 */
4181
	if (e1000_maybe_stop_tx(netdev, count + 2))
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
		return NETDEV_TX_BUSY;

	if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
		tx_flags |= E1000_TX_FLAGS_VLAN;
		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
	}

	first = tx_ring->next_to_use;

	tso = e1000_tso(adapter, skb);
	if (tso < 0) {
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	if (tso)
		tx_flags |= E1000_TX_FLAGS_TSO;
	else if (e1000_tx_csum(adapter, skb))
		tx_flags |= E1000_TX_FLAGS_CSUM;

4202 4203
	/*
	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4204
	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4205 4206
	 * no longer assume, we must.
	 */
4207 4208 4209
	if (skb->protocol == htons(ETH_P_IP))
		tx_flags |= E1000_TX_FLAGS_IPV4;

4210
	/* if count is 0 then mapping error has occured */
4211
	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4212 4213 4214 4215 4216 4217
	if (count) {
		e1000_tx_queue(adapter, tx_flags, count);
		/* Make sure there is space in the ring for the next send. */
		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);

	} else {
4218
		dev_kfree_skb_any(skb);
4219 4220
		tx_ring->buffer_info[first].time_stamp = 0;
		tx_ring->next_to_use = first;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
	}

	return NETDEV_TX_OK;
}

/**
 * e1000_tx_timeout - Respond to a Tx Hang
 * @netdev: network interface device structure
 **/
static void e1000_tx_timeout(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;
	schedule_work(&adapter->reset_task);
}

static void e1000_reset_task(struct work_struct *work)
{
	struct e1000_adapter *adapter;
	adapter = container_of(work, struct e1000_adapter, reset_task);

	e1000e_reinit_locked(adapter);
}

/**
 * e1000_get_stats - Get System Network Statistics
 * @netdev: network interface device structure
 *
 * Returns the address of the device statistics structure.
 * The statistics are actually updated from the timer callback.
 **/
static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
{
	/* only return the current stats */
4257
	return &netdev->stats;
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
}

/**
 * e1000_change_mtu - Change the Maximum Transfer Unit
 * @netdev: network interface device structure
 * @new_mtu: new value for maximum frame size
 *
 * Returns 0 on success, negative on failure
 **/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;

4272 4273 4274 4275
	/* Jumbo frame support */
	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
		e_err("Jumbo Frames not supported.\n");
4276 4277 4278
		return -EINVAL;
	}

4279 4280 4281 4282
	/* Supported frame sizes */
	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
	    (max_frame > adapter->max_hw_frame_size)) {
		e_err("Unsupported MTU setting\n");
4283 4284 4285
		return -EINVAL;
	}

4286 4287 4288 4289 4290 4291 4292 4293
	/* 82573 Errata 17 */
	if (((adapter->hw.mac.type == e1000_82573) ||
	     (adapter->hw.mac.type == e1000_82574)) &&
	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
	}

4294 4295
	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
		msleep(1);
4296
	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4297
	adapter->max_frame_size = max_frame;
4298 4299
	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;
4300 4301 4302
	if (netif_running(netdev))
		e1000e_down(adapter);

4303 4304
	/*
	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4305 4306
	 * means we reserve 2 more, this pushes us to allocate from the next
	 * larger slab size.
4307
	 * i.e. RXBUFFER_2048 --> size-4096 slab
4308 4309
	 * However with the new *_jumbo_rx* routines, jumbo receives will use
	 * fragmented skbs
4310
	 */
4311

4312
	if (max_frame <= 2048)
4313 4314 4315 4316 4317 4318 4319 4320
		adapter->rx_buffer_len = 2048;
	else
		adapter->rx_buffer_len = 4096;

	/* adjust allocation if LPE protects us, and we aren't using SBP */
	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4321
					 + ETH_FCS_LEN;
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

	if (netif_running(netdev))
		e1000e_up(adapter);
	else
		e1000e_reset(adapter);

	clear_bit(__E1000_RESETTING, &adapter->state);

	return 0;
}

static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
			   int cmd)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

4339
	if (adapter->hw.phy.media_type != e1000_media_type_copper)
4340 4341 4342 4343 4344 4345 4346
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
4347 4348
		e1000_phy_read_status(adapter);

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
		switch (data->reg_num & 0x1F) {
		case MII_BMCR:
			data->val_out = adapter->phy_regs.bmcr;
			break;
		case MII_BMSR:
			data->val_out = adapter->phy_regs.bmsr;
			break;
		case MII_PHYSID1:
			data->val_out = (adapter->hw.phy.id >> 16);
			break;
		case MII_PHYSID2:
			data->val_out = (adapter->hw.phy.id & 0xFFFF);
			break;
		case MII_ADVERTISE:
			data->val_out = adapter->phy_regs.advertise;
			break;
		case MII_LPA:
			data->val_out = adapter->phy_regs.lpa;
			break;
		case MII_EXPANSION:
			data->val_out = adapter->phy_regs.expansion;
			break;
		case MII_CTRL1000:
			data->val_out = adapter->phy_regs.ctrl1000;
			break;
		case MII_STAT1000:
			data->val_out = adapter->phy_regs.stat1000;
			break;
		case MII_ESTATUS:
			data->val_out = adapter->phy_regs.estatus;
			break;
		default:
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
			return -EIO;
		}
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return e1000_mii_ioctl(netdev, ifr, cmd);
	default:
		return -EOPNOTSUPP;
	}
}

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, mac_reg;
	u16 phy_reg;
	int retval = 0;

	/* copy MAC RARs to PHY RARs */
	for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
		mac_reg = er32(RAL(i));
		e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
		mac_reg = er32(RAH(i));
		e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* copy MAC MTA to PHY MTA */
	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
		e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
		e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
	}

	/* configure PHY Rx Control register */
	e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
	mac_reg = er32(RCTL);
	if (mac_reg & E1000_RCTL_UPE)
		phy_reg |= BM_RCTL_UPE;
	if (mac_reg & E1000_RCTL_MPE)
		phy_reg |= BM_RCTL_MPE;
	phy_reg &= ~(BM_RCTL_MO_MASK);
	if (mac_reg & E1000_RCTL_MO_3)
		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
				<< BM_RCTL_MO_SHIFT);
	if (mac_reg & E1000_RCTL_BAM)
		phy_reg |= BM_RCTL_BAM;
	if (mac_reg & E1000_RCTL_PMCF)
		phy_reg |= BM_RCTL_PMCF;
	mac_reg = er32(CTRL);
	if (mac_reg & E1000_CTRL_RFCE)
		phy_reg |= BM_RCTL_RFCE;
	e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);

	/* enable PHY wakeup in MAC register */
	ew32(WUFC, wufc);
	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);

	/* configure and enable PHY wakeup in PHY registers */
	e1e_wphy(&adapter->hw, BM_WUFC, wufc);
	e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);

	/* activate PHY wakeup */
4456
	retval = hw->phy.ops.acquire(hw);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	if (retval) {
		e_err("Could not acquire PHY\n");
		return retval;
	}
	e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
	                         (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
	retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
	if (retval) {
		e_err("Could not read PHY page 769\n");
		goto out;
	}
	phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
	retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
	if (retval)
		e_err("Could not set PHY Host Wakeup bit\n");
out:
4473
	hw->phy.ops.release(hw);
4474 4475 4476 4477

	return retval;
}

4478
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, ctrl_ext, rctl, status;
	u32 wufc = adapter->wol;
	int retval = 0;

	netif_device_detach(netdev);

	if (netif_running(netdev)) {
		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
		e1000e_down(adapter);
		e1000_free_irq(adapter);
	}
4494
	e1000e_reset_interrupt_capability(adapter);
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

	retval = pci_save_state(pdev);
	if (retval)
		return retval;

	status = er32(STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		e1000_setup_rctl(adapter);
		e1000_set_multi(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = er32(RCTL);
			rctl |= E1000_RCTL_MPE;
			ew32(RCTL, rctl);
		}

		ctrl = er32(CTRL);
		/* advertise wake from D3Cold */
		#define E1000_CTRL_ADVD3WUC 0x00100000
		/* phy power management enable */
		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4520 4521 4522
		ctrl |= E1000_CTRL_ADVD3WUC;
		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4523 4524
		ew32(CTRL, ctrl);

4525 4526 4527
		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
		    adapter->hw.phy.media_type ==
		    e1000_media_type_internal_serdes) {
4528 4529
			/* keep the laser running in D3 */
			ctrl_ext = er32(CTRL_EXT);
4530
			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4531 4532 4533
			ew32(CTRL_EXT, ctrl_ext);
		}

4534 4535 4536
		if (adapter->flags & FLAG_IS_ICH)
			e1000e_disable_gig_wol_ich8lan(&adapter->hw);

4537 4538 4539
		/* Allow time for pending master requests to run */
		e1000e_disable_pcie_master(&adapter->hw);

4540
		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4541 4542 4543 4544 4545 4546 4547 4548 4549
			/* enable wakeup by the PHY */
			retval = e1000_init_phy_wakeup(adapter, wufc);
			if (retval)
				return retval;
		} else {
			/* enable wakeup by the MAC */
			ew32(WUFC, wufc);
			ew32(WUC, E1000_WUC_PME_EN);
		}
4550 4551 4552 4553 4554
	} else {
		ew32(WUC, 0);
		ew32(WUFC, 0);
	}

4555 4556
	*enable_wake = !!wufc;

4557
	/* make sure adapter isn't asleep if manageability is enabled */
4558 4559
	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
	    (hw->mac.ops.check_mng_mode(hw)))
4560
		*enable_wake = true;
4561 4562 4563 4564

	if (adapter->hw.phy.type == e1000_phy_igp_3)
		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);

4565 4566 4567 4568
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
4569 4570 4571 4572
	e1000_release_hw_control(adapter);

	pci_disable_device(pdev);

4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
	return 0;
}

static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
	if (sleep && wake) {
		pci_prepare_to_sleep(pdev);
		return;
	}

	pci_wake_from_d3(pdev, wake);
	pci_set_power_state(pdev, PCI_D3hot);
}

static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
                                    bool wake)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * The pci-e switch on some quad port adapters will report a
	 * correctable error when the MAC transitions from D0 to D3.  To
	 * prevent this we need to mask off the correctable errors on the
	 * downstream port of the pci-e switch.
	 */
	if (adapter->flags & FLAG_IS_QUAD_PORT) {
		struct pci_dev *us_dev = pdev->bus->self;
		int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
		u16 devctl;

		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
		                      (devctl & ~PCI_EXP_DEVCTL_CERE));

4608
		e1000_power_off(pdev, sleep, wake);
4609 4610 4611

		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
	} else {
4612
		e1000_power_off(pdev, sleep, wake);
4613
	}
4614 4615
}

4616 4617 4618 4619 4620 4621 4622
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
	pci_disable_link_state(pdev, state);
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
4623 4624
{
	int pos;
4625
	u16 reg16;
4626 4627

	/*
4628 4629
	 * Both device and parent should have the same ASPM setting.
	 * Disable ASPM in downstream component first and then upstream.
4630
	 */
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	pos = pci_pcie_cap(pdev);
	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);

	pos = pci_pcie_cap(pdev->bus->self);
	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
	reg16 &= ~state;
	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");

	__e1000e_disable_aspm(pdev, state);
4649 4650
}

4651
#ifdef CONFIG_PM
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int retval;
	bool wake;

	retval = __e1000_shutdown(pdev, &wake);
	if (!retval)
		e1000_complete_shutdown(pdev, true, wake);

	return retval;
}

4664 4665 4666 4667 4668 4669 4670 4671 4672
static int e1000_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
4673
	pci_save_state(pdev);
4674 4675
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
T
Taku Izumi 已提交
4676

4677
	err = pci_enable_device_mem(pdev);
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	if (err) {
		dev_err(&pdev->dev,
			"Cannot enable PCI device from suspend\n");
		return err;
	}

	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

4689
	e1000e_set_interrupt_capability(adapter);
4690 4691 4692 4693 4694 4695 4696
	if (netif_running(netdev)) {
		err = e1000_request_irq(adapter);
		if (err)
			return err;
	}

	e1000e_power_up_phy(adapter);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

	/* report the system wakeup cause from S3/S4 */
	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
		u16 phy_data;

		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
		if (phy_data) {
			e_info("PHY Wakeup cause - %s\n",
				phy_data & E1000_WUS_EX ? "Unicast Packet" :
				phy_data & E1000_WUS_MC ? "Multicast Packet" :
				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
				phy_data & E1000_WUS_MAG ? "Magic Packet" :
				phy_data & E1000_WUS_LNKC ? "Link Status "
				" Change" : "other");
		}
		e1e_wphy(&adapter->hw, BM_WUS, ~0);
	} else {
		u32 wus = er32(WUS);
		if (wus) {
			e_info("MAC Wakeup cause - %s\n",
				wus & E1000_WUS_EX ? "Unicast Packet" :
				wus & E1000_WUS_MC ? "Multicast Packet" :
				wus & E1000_WUS_BC ? "Broadcast Packet" :
				wus & E1000_WUS_MAG ? "Magic Packet" :
				wus & E1000_WUS_LNKC ? "Link Status Change" :
				"other");
		}
		ew32(WUS, ~0);
	}

4727 4728 4729 4730 4731 4732 4733 4734 4735
	e1000e_reset(adapter);

	e1000_init_manageability(adapter);

	if (netif_running(netdev))
		e1000e_up(adapter);

	netif_device_attach(netdev);

4736 4737
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
4738
	 * is up.  For all other cases, let the f/w know that the h/w is now
4739 4740
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
4741
	if (!(adapter->flags & FLAG_HAS_AMT))
4742 4743 4744 4745 4746 4747 4748 4749
		e1000_get_hw_control(adapter);

	return 0;
}
#endif

static void e1000_shutdown(struct pci_dev *pdev)
{
4750 4751 4752 4753 4754 4755
	bool wake = false;

	__e1000_shutdown(pdev, &wake);

	if (system_state == SYSTEM_POWER_OFF)
		e1000_complete_shutdown(pdev, false, wake);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 * Polling 'interrupt' - used by things like netconsole to send skbs
 * without having to re-enable interrupts. It's not called while
 * the interrupt routine is executing.
 */
static void e1000_netpoll(struct net_device *netdev)
{
	struct e1000_adapter *adapter = netdev_priv(netdev);

	disable_irq(adapter->pdev->irq);
	e1000_intr(adapter->pdev->irq, netdev);

	enable_irq(adapter->pdev->irq);
}
#endif

/**
 * e1000_io_error_detected - called when PCI error is detected
 * @pdev: Pointer to PCI device
 * @state: The current pci connection state
 *
 * This function is called after a PCI bus error affecting
 * this device has been detected.
 */
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
						pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

4791 4792 4793
	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	if (netif_running(netdev))
		e1000e_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 * e1000_io_slot_reset - called after the pci bus has been reset.
 * @pdev: Pointer to PCI device
 *
 * Restart the card from scratch, as if from a cold-boot. Implementation
 * resembles the first-half of the e1000_resume routine.
 */
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
T
Taku Izumi 已提交
4814
	int err;
J
Jesse Brandeburg 已提交
4815
	pci_ers_result_t result;
4816

4817 4818
	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
4819
	err = pci_enable_device_mem(pdev);
T
Taku Izumi 已提交
4820
	if (err) {
4821 4822
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
J
Jesse Brandeburg 已提交
4823 4824 4825 4826
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
4827
		pci_save_state(pdev);
4828

J
Jesse Brandeburg 已提交
4829 4830
		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);
4831

J
Jesse Brandeburg 已提交
4832 4833 4834 4835
		e1000e_reset(adapter);
		ew32(WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}
4836

J
Jesse Brandeburg 已提交
4837 4838 4839
	pci_cleanup_aer_uncorrect_error_status(pdev);

	return result;
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
}

/**
 * e1000_io_resume - called when traffic can start flowing again.
 * @pdev: Pointer to PCI device
 *
 * This callback is called when the error recovery driver tells us that
 * its OK to resume normal operation. Implementation resembles the
 * second-half of the e1000_resume routine.
 */
static void e1000_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

	e1000_init_manageability(adapter);

	if (netif_running(netdev)) {
		if (e1000e_up(adapter)) {
			dev_err(&pdev->dev,
				"can't bring device back up after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

4867 4868
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
4869
	 * is up.  For all other cases, let the f/w know that the h/w is now
4870 4871
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
4872
	if (!(adapter->flags & FLAG_HAS_AMT))
4873 4874 4875 4876 4877 4878 4879 4880
		e1000_get_hw_control(adapter);

}

static void e1000_print_device_info(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
J
Jeff Kirsher 已提交
4881
	u32 pba_num;
4882 4883

	/* print bus type/speed/width info */
J
Johannes Berg 已提交
4884
	e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4885 4886 4887 4888
	       /* bus width */
	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
	        "Width x1"),
	       /* MAC address */
J
Johannes Berg 已提交
4889
	       netdev->dev_addr);
4890 4891
	e_info("Intel(R) PRO/%s Network Connection\n",
	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
J
Jeff Kirsher 已提交
4892
	e1000e_read_pba_num(hw, &pba_num);
4893 4894
	e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
	       hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4895 4896
}

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;
	u16 buf = 0;

	if (hw->mac.type != e1000_82573)
		return;

	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4907
	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4908
		/* Deep Smart Power Down (DSPD) */
4909 4910
		dev_warn(&adapter->pdev->dev,
			 "Warning: detected DSPD enabled in EEPROM\n");
4911 4912 4913
	}
}

4914 4915 4916
static const struct net_device_ops e1000e_netdev_ops = {
	.ndo_open		= e1000_open,
	.ndo_stop		= e1000_close,
4917
	.ndo_start_xmit		= e1000_xmit_frame,
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
	.ndo_get_stats		= e1000_get_stats,
	.ndo_set_multicast_list	= e1000_set_multi,
	.ndo_set_mac_address	= e1000_set_mac,
	.ndo_change_mtu		= e1000_change_mtu,
	.ndo_do_ioctl		= e1000_ioctl,
	.ndo_tx_timeout		= e1000_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,

	.ndo_vlan_rx_register	= e1000_vlan_rx_register,
	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= e1000_netpoll,
#endif
};

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
/**
 * e1000_probe - Device Initialization Routine
 * @pdev: PCI device information struct
 * @ent: entry in e1000_pci_tbl
 *
 * Returns 0 on success, negative on failure
 *
 * e1000_probe initializes an adapter identified by a pci_dev structure.
 * The OS initialization, configuring of the adapter private structure,
 * and a hardware reset occur.
 **/
static int __devinit e1000_probe(struct pci_dev *pdev,
				 const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct e1000_adapter *adapter;
	struct e1000_hw *hw;
	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4952 4953
	resource_size_t mmio_start, mmio_len;
	resource_size_t flash_start, flash_len;
4954 4955 4956 4957 4958 4959

	static int cards_found;
	int i, err, pci_using_dac;
	u16 eeprom_data = 0;
	u16 eeprom_apme_mask = E1000_EEPROM_APME;

4960 4961
	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
		e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
T
Taku Izumi 已提交
4962

4963
	err = pci_enable_device_mem(pdev);
4964 4965 4966 4967
	if (err)
		return err;

	pci_using_dac = 0;
4968
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4969
	if (!err) {
4970
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4971 4972 4973
		if (!err)
			pci_using_dac = 1;
	} else {
4974
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4975 4976
		if (err) {
			err = pci_set_consistent_dma_mask(pdev,
4977
							  DMA_BIT_MASK(32));
4978 4979 4980 4981 4982 4983 4984 4985
			if (err) {
				dev_err(&pdev->dev, "No usable DMA "
					"configuration, aborting\n");
				goto err_dma;
			}
		}
	}

4986
	err = pci_request_selected_regions_exclusive(pdev,
4987 4988
	                                  pci_select_bars(pdev, IORESOURCE_MEM),
	                                  e1000e_driver_name);
4989 4990 4991
	if (err)
		goto err_pci_reg;

4992
	/* AER (Advanced Error Reporting) hooks */
4993
	pci_enable_pcie_error_reporting(pdev);
4994

4995
	pci_set_master(pdev);
4996 4997 4998 4999
	/* PCI config space info */
	err = pci_save_state(pdev);
	if (err)
		goto err_alloc_etherdev;
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015

	err = -ENOMEM;
	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	hw = &adapter->hw;
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	adapter->ei = ei;
	adapter->pba = ei->pba;
	adapter->flags = ei->flags;
J
Jeff Kirsher 已提交
5016
	adapter->flags2 = ei->flags2;
5017 5018
	adapter->hw.adapter = adapter;
	adapter->hw.mac.type = ei->mac;
5019
	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);

	err = -EIO;
	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
	if (!adapter->hw.hw_addr)
		goto err_ioremap;

	if ((adapter->flags & FLAG_HAS_FLASH) &&
	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
		flash_start = pci_resource_start(pdev, 1);
		flash_len = pci_resource_len(pdev, 1);
		adapter->hw.flash_address = ioremap(flash_start, flash_len);
		if (!adapter->hw.flash_address)
			goto err_flashmap;
	}

	/* construct the net_device struct */
5040
	netdev->netdev_ops		= &e1000e_netdev_ops;
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	e1000e_set_ethtool_ops(netdev);
	netdev->watchdog_timeo		= 5 * HZ;
	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = mmio_start;
	netdev->mem_end = mmio_start + mmio_len;

	adapter->bd_number = cards_found++;

5051 5052
	e1000e_check_options(adapter);

5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
	/* setup adapter struct */
	err = e1000_sw_init(adapter);
	if (err)
		goto err_sw_init;

	err = -EIO;

	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));

J
Jeff Kirsher 已提交
5064
	err = ei->get_variants(adapter);
5065 5066 5067
	if (err)
		goto err_hw_init;

5068 5069 5070 5071
	if ((adapter->flags & FLAG_IS_ICH) &&
	    (adapter->flags & FLAG_READ_ONLY_NVM))
		e1000e_write_protect_nvm_ich8lan(&adapter->hw);

5072 5073
	hw->mac.ops.get_bus_info(&adapter->hw);

5074
	adapter->hw.phy.autoneg_wait_to_complete = 0;
5075 5076

	/* Copper options */
5077
	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5078 5079 5080 5081 5082 5083
		adapter->hw.phy.mdix = AUTO_ALL_MODES;
		adapter->hw.phy.disable_polarity_correction = 0;
		adapter->hw.phy.ms_type = e1000_ms_hw_default;
	}

	if (e1000_check_reset_block(&adapter->hw))
5084
		e_info("PHY reset is blocked due to SOL/IDER session.\n");
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

	netdev->features = NETIF_F_SG |
			   NETIF_F_HW_CSUM |
			   NETIF_F_HW_VLAN_TX |
			   NETIF_F_HW_VLAN_RX;

	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
		netdev->features |= NETIF_F_HW_VLAN_FILTER;

	netdev->features |= NETIF_F_TSO;
	netdev->features |= NETIF_F_TSO6;

5097 5098 5099 5100 5101
	netdev->vlan_features |= NETIF_F_TSO;
	netdev->vlan_features |= NETIF_F_TSO6;
	netdev->vlan_features |= NETIF_F_HW_CSUM;
	netdev->vlan_features |= NETIF_F_SG;

5102 5103 5104 5105 5106 5107
	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	if (e1000e_enable_mng_pass_thru(&adapter->hw))
		adapter->flags |= FLAG_MNG_PT_ENABLED;

5108 5109 5110 5111
	/*
	 * before reading the NVM, reset the controller to
	 * put the device in a known good starting state
	 */
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	adapter->hw.mac.ops.reset_hw(&adapter->hw);

	/*
	 * systems with ASPM and others may see the checksum fail on the first
	 * attempt. Let's give it a few tries
	 */
	for (i = 0;; i++) {
		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
			break;
		if (i == 2) {
5122
			e_err("The NVM Checksum Is Not Valid\n");
5123 5124 5125 5126 5127
			err = -EIO;
			goto err_eeprom;
		}
	}

5128 5129
	e1000_eeprom_checks(adapter);

5130
	/* copy the MAC address */
5131
	if (e1000e_read_mac_addr(&adapter->hw))
5132
		e_err("NVM Read Error while reading MAC address\n");
5133 5134 5135 5136 5137

	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->perm_addr)) {
J
Johannes Berg 已提交
5138
		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
		err = -EIO;
		goto err_eeprom;
	}

	init_timer(&adapter->watchdog_timer);
	adapter->watchdog_timer.function = &e1000_watchdog;
	adapter->watchdog_timer.data = (unsigned long) adapter;

	init_timer(&adapter->phy_info_timer);
	adapter->phy_info_timer.function = &e1000_update_phy_info;
	adapter->phy_info_timer.data = (unsigned long) adapter;

	INIT_WORK(&adapter->reset_task, e1000_reset_task);
	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5153 5154
	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5155
	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5156 5157 5158

	/* Initialize link parameters. User can change them with ethtool */
	adapter->hw.mac.autoneg = 1;
5159
	adapter->fc_autoneg = 1;
5160 5161
	adapter->hw.fc.requested_mode = e1000_fc_default;
	adapter->hw.fc.current_mode = e1000_fc_default;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	adapter->hw.phy.autoneg_advertised = 0x2f;

	/* ring size defaults */
	adapter->rx_ring->count = 256;
	adapter->tx_ring->count = 256;

	/*
	 * Initial Wake on LAN setting - If APM wake is enabled in
	 * the EEPROM, enable the ACPI Magic Packet filter
	 */
	if (adapter->flags & FLAG_APME_IN_WUC) {
		/* APME bit in EEPROM is mapped to WUC.APME */
		eeprom_data = er32(WUC);
		eeprom_apme_mask = E1000_WUC_APME;
5176 5177
		if (eeprom_data & E1000_WUC_PHY_WAKE)
			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
		    (adapter->hw.bus.func == 1))
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
		else
			e1000_read_nvm(&adapter->hw,
				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
	}

	/* fetch WoL from EEPROM */
	if (eeprom_data & eeprom_apme_mask)
		adapter->eeprom_wol |= E1000_WUFC_MAG;

	/*
	 * now that we have the eeprom settings, apply the special cases
	 * where the eeprom may be wrong or the board simply won't support
	 * wake on lan on a particular port
	 */
	if (!(adapter->flags & FLAG_HAS_WOL))
		adapter->eeprom_wol = 0;

	/* initialize the wol settings based on the eeprom settings */
	adapter->wol = adapter->eeprom_wol;
5202
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5203

5204 5205 5206
	/* save off EEPROM version number */
	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);

5207 5208 5209
	/* reset the hardware with the new settings */
	e1000e_reset(adapter);

5210 5211
	/*
	 * If the controller has AMT, do not set DRV_LOAD until the interface
5212
	 * is up.  For all other cases, let the f/w know that the h/w is now
5213 5214
	 * under the control of the driver.
	 */
J
Jesse Brandeburg 已提交
5215
	if (!(adapter->flags & FLAG_HAS_AMT))
5216 5217 5218 5219 5220 5221 5222
		e1000_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

5223 5224 5225
	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

5226 5227 5228 5229 5230
	e1000_print_device_info(adapter);

	return 0;

err_register:
J
Jesse Brandeburg 已提交
5231 5232
	if (!(adapter->flags & FLAG_HAS_AMT))
		e1000_release_hw_control(adapter);
5233 5234 5235
err_eeprom:
	if (!e1000_check_reset_block(&adapter->hw))
		e1000_phy_hw_reset(&adapter->hw);
J
Jesse Brandeburg 已提交
5236
err_hw_init:
5237 5238 5239 5240

	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);
err_sw_init:
J
Jesse Brandeburg 已提交
5241 5242
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5243
	e1000e_reset_interrupt_capability(adapter);
J
Jesse Brandeburg 已提交
5244
err_flashmap:
5245 5246 5247 5248
	iounmap(adapter->hw.hw_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
5249 5250
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

/**
 * e1000_remove - Device Removal Routine
 * @pdev: PCI device information struct
 *
 * e1000_remove is called by the PCI subsystem to alert the driver
 * that it should release a PCI device.  The could be caused by a
 * Hot-Plug event, or because the driver is going to be removed from
 * memory.
 **/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct e1000_adapter *adapter = netdev_priv(netdev);

5271 5272 5273 5274
	/*
	 * flush_scheduled work may reschedule our watchdog task, so
	 * explicitly disable watchdog tasks from being rescheduled
	 */
5275 5276 5277 5278
	set_bit(__E1000_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

5279 5280 5281 5282 5283
	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);
	cancel_work_sync(&adapter->downshift_task);
	cancel_work_sync(&adapter->update_phy_task);
	cancel_work_sync(&adapter->print_hang_task);
5284 5285
	flush_scheduled_work();

5286 5287 5288 5289 5290
	if (!(netdev->flags & IFF_UP))
		e1000_power_down_phy(adapter);

	unregister_netdev(netdev);

5291 5292 5293 5294
	/*
	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
5295 5296
	e1000_release_hw_control(adapter);

5297
	e1000e_reset_interrupt_capability(adapter);
5298 5299 5300 5301 5302 5303
	kfree(adapter->tx_ring);
	kfree(adapter->rx_ring);

	iounmap(adapter->hw.hw_addr);
	if (adapter->hw.flash_address)
		iounmap(adapter->hw.flash_address);
5304 5305
	pci_release_selected_regions(pdev,
	                             pci_select_bars(pdev, IORESOURCE_MEM));
5306 5307 5308

	free_netdev(netdev);

J
Jesse Brandeburg 已提交
5309
	/* AER disable */
5310
	pci_disable_pcie_error_reporting(pdev);
J
Jesse Brandeburg 已提交
5311

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	pci_disable_device(pdev);
}

/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
	.error_detected = e1000_io_error_detected,
	.slot_reset = e1000_io_slot_reset,
	.resume = e1000_io_resume,
};

5322
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5323 5324 5325 5326 5327 5328
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5329 5330 5331
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5332

5333 5334 5335 5336
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5337

5338 5339 5340
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5341

5342
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5343
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5344
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5345

5346 5347 5348 5349 5350 5351 5352 5353
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
	  board_80003es2lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
	  board_80003es2lan },
5354

5355 5356 5357 5358 5359 5360 5361
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
B
Bruce Allan 已提交
5362
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5363

5364 5365 5366 5367 5368
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5369
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5370 5371 5372 5373 5374 5375 5376
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },

	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5377

5378 5379 5380
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },

5381 5382 5383 5384 5385
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
	{ }	/* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);

/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
	.name     = e1000e_driver_name,
	.id_table = e1000_pci_tbl,
	.probe    = e1000_probe,
	.remove   = __devexit_p(e1000_remove),
#ifdef CONFIG_PM
5397
	/* Power Management Hooks */
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	.suspend  = e1000_suspend,
	.resume   = e1000_resume,
#endif
	.shutdown = e1000_shutdown,
	.err_handler = &e1000_err_handler
};

/**
 * e1000_init_module - Driver Registration Routine
 *
 * e1000_init_module is the first routine called when the driver is
 * loaded. All it does is register with the PCI subsystem.
 **/
static int __init e1000_init_module(void)
{
	int ret;
	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
	       e1000e_driver_name, e1000e_driver_version);
B
Bruce Allan 已提交
5416
	printk(KERN_INFO "%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5417 5418
	       e1000e_driver_name);
	ret = pci_register_driver(&e1000_driver);
5419

5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	return ret;
}
module_init(e1000_init_module);

/**
 * e1000_exit_module - Driver Exit Cleanup Routine
 *
 * e1000_exit_module is called just before the driver is removed
 * from memory.
 **/
static void __exit e1000_exit_module(void)
{
	pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);


MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);

/* e1000_main.c */