intel_breadcrumbs.c 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31
{
32
	struct intel_wait *wait;
33 34
	unsigned int result = 0;

35 36 37
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
38
	if (wait) {
39
		result = ENGINE_WAKEUP_WAITER;
40 41
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
42
	}
43 44 45 46 47 48 49 50 51

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned int result;

52
	spin_lock_irq(&b->irq_lock);
53
	result = __intel_breadcrumbs_wakeup(b);
54
	spin_unlock_irq(&b->irq_lock);
55 56 57 58

	return result;
}

59 60 61 62 63
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

64 65 66 67 68 69 70 71 72 73
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

74 75 76 77 78
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

79
	if (!b->irq_armed)
80 81
		return;

82 83 84
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
85 86 87
		return;
	}

88
	/* We keep the hangcheck timer alive until we disarm the irq, even
89 90 91
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
92 93
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
94 95 96 97 98
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
99
	 */
100
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
101
		missed_breadcrumb(engine);
102 103
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
104 105
		mod_timer(&b->hangcheck, wait_timeout());
	}
106 107
}

108 109 110
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
111
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
112

113
	/* The timer persists in case we cannot enable interrupts,
114
	 * or if we have previously seen seqno/interrupt incoherency
115 116 117
	 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
	 * Here the worker will wake up every jiffie in order to kick the
	 * oldest waiter to do the coherent seqno check.
118
	 */
119

120
	spin_lock_irq(&b->irq_lock);
121 122
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
123
	spin_unlock_irq(&b->irq_lock);
124
	if (!b->irq_armed)
125 126
		return;

127
	mod_timer(&b->fake_irq, jiffies + 1);
128 129 130 131 132 133 134 135 136 137 138

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
139 140 141 142
}

static void irq_enable(struct intel_engine_cs *engine)
{
143 144 145 146
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
147
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
148

149 150
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
151
	engine->irq_enable(engine);
152
	spin_unlock(&engine->i915->irq_lock);
153 154 155 156
}

static void irq_disable(struct intel_engine_cs *engine)
{
157 158
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
159
	engine->irq_disable(engine);
160
	spin_unlock(&engine->i915->irq_lock);
161 162
}

163 164 165 166
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

167
	lockdep_assert_held(&b->irq_lock);
168
	GEM_BUG_ON(b->irq_wait);
169 170 171 172 173 174 175 176 177 178 179 180

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
181
	struct intel_wait *wait, *n, *first;
182 183 184 185 186

	if (!b->irq_armed)
		return;

	/* We only disarm the irq when we are idle (all requests completed),
187
	 * so if the bottom-half remains asleep, it missed the request
188 189 190
	 * completion.
	 */

191
	spin_lock_irq(&b->rb_lock);
192 193 194 195 196 197

	spin_lock(&b->irq_lock);
	first = fetch_and_zero(&b->irq_wait);
	__intel_engine_disarm_breadcrumbs(engine);
	spin_unlock(&b->irq_lock);

198 199
	rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
		RB_CLEAR_NODE(&wait->node);
200
		if (wake_up_process(wait->tsk) && wait == first)
201 202 203 204 205
			missed_breadcrumb(engine);
	}
	b->waiters = RB_ROOT;

	spin_unlock_irq(&b->rb_lock);
206 207
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

225 226 227 228 229 230 231 232 233
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

234
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
235 236 237 238 239
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

240
	lockdep_assert_held(&b->irq_lock);
241
	if (b->irq_armed)
242
		return;
243

244 245 246 247 248 249 250 251
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

252 253 254 255 256 257 258 259 260 261 262
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

263
	/* Since we are waiting on a request, the GPU should be busy
264 265 266 267
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
268 269 270 271
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
272
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
273 274 275 276
			irq_enable(engine);
		b->irq_enabled = true;
	}

277
	enable_fake_irq(b);
278 279 280 281
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
282
	return rb_entry(node, struct intel_wait, node);
283 284 285 286 287
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
288
	lockdep_assert_held(&b->rb_lock);
289
	GEM_BUG_ON(b->irq_wait == wait);
290 291

	/* This request is completed, so remove it from the tree, mark it as
292 293 294 295 296 297
	 * complete, and *then* wake up the associated task. N.B. when the
	 * task wakes up, it will find the empty rb_node, discern that it
	 * has already been removed from the tree and skip the serialisation
	 * of the b->rb_lock and b->irq_lock. This means that the destruction
	 * of the intel_wait is not serialised with the interrupt handler
	 * by the waiter - it must instead be serialised by the caller.
298 299 300 301 302 303 304
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

305 306 307 308 309
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

310
	spin_lock(&b->irq_lock);
311
	GEM_BUG_ON(!b->irq_armed);
312
	GEM_BUG_ON(!b->irq_wait);
313 314
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
315 316 317 318 319 320 321 322 323

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
347
	seqno = intel_engine_get_seqno(engine);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (first) {
389 390
		spin_lock(&b->irq_lock);
		b->irq_wait = wait;
391 392 393 394 395
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
396 397
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
398 399
		 */
		__intel_breadcrumbs_enable_irq(b);
400
		spin_unlock(&b->irq_lock);
401
	}
402 403

	if (completed) {
404 405 406 407 408
		/* Advance the bottom-half (b->irq_wait) before we wake up
		 * the waiters who may scribble over their intel_wait
		 * just as the interrupt handler is dereferencing it via
		 * b->irq_wait.
		 */
409 410 411 412 413 414 415 416 417 418 419 420 421
		if (!first) {
			struct rb_node *next = rb_next(completed);
			GEM_BUG_ON(next == &wait->node);
			__intel_breadcrumbs_next(engine, next);
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

422
	GEM_BUG_ON(!b->irq_wait);
423
	GEM_BUG_ON(!b->irq_armed);
424
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
425 426 427 428 429 430 431 432 433 434

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

435
	spin_lock_irq(&b->rb_lock);
436
	first = __intel_engine_add_wait(engine, wait);
437
	spin_unlock_irq(&b->rb_lock);
438 439 440 441 442 443 444 445 446

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

447 448 449 450 451 452 453 454 455
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

456 457
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
458 459 460
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

461
	lockdep_assert_held(&b->rb_lock);
462 463

	if (RB_EMPTY_NODE(&wait->node))
464
		goto out;
465

466
	if (b->irq_wait == wait) {
467
		const int priority = wakeup_priority(b, wait->tsk);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
490
			u32 seqno = intel_engine_get_seqno(engine);
491 492 493 494 495 496 497 498 499 500 501

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

502
		__intel_breadcrumbs_next(engine, next);
503 504 505 506 507 508 509
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

510
out:
511
	GEM_BUG_ON(b->irq_wait == wait);
512
	GEM_BUG_ON(rb_first(&b->waiters) !=
513
		   (b->irq_wait ? &b->irq_wait->node : NULL));
514 515 516 517 518 519 520 521 522 523 524
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
525 526
	if (RB_EMPTY_NODE(&wait->node)) {
		GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
527
		return;
528
	}
529

530
	spin_lock_irq(&b->rb_lock);
531
	__intel_engine_remove_wait(engine, wait);
532
	spin_unlock_irq(&b->rb_lock);
533 534
}

535 536 537 538 539 540
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
541
{
542
	if (!request)
543 544 545 546 547
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
548
	if (intel_wait_complete(&request->signaling.wait))
549
		return signal_valid(request);
550 551 552 553

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
554
	if (__i915_request_irq_complete(request))
555 556 557 558 559
		return true;

	return false;
}

560
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
561
{
562
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
563 564 565 566 567 568 569 570 571 572 573 574 575
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
576
	struct drm_i915_gem_request *request;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
592 593 594 595 596
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
597
		if (signal_complete(request)) {
598 599 600 601
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

602
			spin_lock_irq(&b->rb_lock);
603

604 605 606
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
607 608
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
609

610 611 612 613 614 615
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
616
			if (request == rcu_access_pointer(b->first_signal)) {
617 618
				struct rb_node *rb =
					rb_next(&request->signaling.node);
619 620
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
621 622
			}
			rb_erase(&request->signaling.node, &b->signals);
623 624
			RB_CLEAR_NODE(&request->signaling.node);

625
			spin_unlock_irq(&b->rb_lock);
626

627
			i915_gem_request_put(request);
628
		} else {
629 630
			DEFINE_WAIT(exec);

631 632
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
633
				break;
634
			}
635

636 637 638
			if (request)
				add_wait_queue(&request->execute, &exec);

639
			schedule();
640

641 642 643
			if (request)
				remove_wait_queue(&request->execute, &exec);

644 645
			if (kthread_should_park())
				kthread_parkme();
646
		}
647
		i915_gem_request_put(request);
648 649 650 651 652 653
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

654
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
655 656 657 658 659
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
660
	u32 seqno;
661

662 663 664
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
665
	 * we need to make sure that all other users of b->rb_lock protect
666 667 668 669
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
670
	GEM_BUG_ON(!irqs_disabled());
671
	lockdep_assert_held(&request->lock);
672 673 674

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
675
		return;
676

677
	request->signaling.wait.tsk = b->signaler;
678
	request->signaling.wait.request = request;
679
	request->signaling.wait.seqno = seqno;
680
	i915_gem_request_get(request);
681

682
	spin_lock(&b->rb_lock);
683

684 685 686 687 688 689 690 691
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
692
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
693 694 695 696 697 698 699 700 701 702

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
703 704
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
705 706 707 708 709 710
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
711 712
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
713
	if (first)
714
		rcu_assign_pointer(b->first_signal, request);
715

716
	spin_unlock(&b->rb_lock);
717 718 719 720 721

	if (wakeup)
		wake_up_process(b->signaler);
}

722 723 724 725 726
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

727
	GEM_BUG_ON(!irqs_disabled());
728
	lockdep_assert_held(&request->lock);
729 730
	GEM_BUG_ON(!request->signaling.wait.seqno);

731
	spin_lock(&b->rb_lock);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

747
	spin_unlock(&b->rb_lock);
748 749 750 751

	request->signaling.wait.seqno = 0;
}

752 753 754
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
755
	struct task_struct *tsk;
756

757 758 759
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

760 761 762
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
763 764 765
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
766

767 768 769 770 771 772 773 774 775 776 777 778 779
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

780 781 782
	return 0;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
797
	spin_lock_irq(&b->irq_lock);
798

799 800 801
	if (b->irq_enabled)
		irq_enable(engine);
	else
802
		irq_disable(engine);
803 804 805 806 807 808 809 810 811 812 813 814

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
815

816
	spin_unlock_irq(&b->irq_lock);
817 818
}

819 820 821 822
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

823
	/* The engines should be idle and all requests accounted for! */
824
	WARN_ON(READ_ONCE(b->irq_wait));
825
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
826
	WARN_ON(rcu_access_pointer(b->first_signal));
827 828
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

829 830 831
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

832
	cancel_fake_irq(engine);
833 834
}

835
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
836
{
837 838
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
839

840
	spin_lock_irq(&b->rb_lock);
841

842 843
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
844
		busy = true;
845
	}
846

847
	if (rcu_access_pointer(b->first_signal)) {
848
		wake_up_process(b->signaler);
849
		busy = true;
850 851
	}

852
	spin_unlock_irq(&b->rb_lock);
853 854

	return busy;
855
}
856 857 858 859

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif