intel_breadcrumbs.c 20.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29 30 31 32 33
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

34 35 36 37 38 39 40 41
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	if (!b->irq_enabled)
		return;

42 43 44
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
45 46 47
		return;
	}

48 49 50 51 52 53 54 55 56
	/* If the waiter was currently running, assume it hasn't had a chance
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
	 */
	if (!intel_engine_wakeup(engine)) {
		mod_timer(&b->hangcheck, wait_timeout());
		return;
	}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
	DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
	if (intel_engine_wakeup(engine))
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
}

static void irq_enable(struct intel_engine_cs *engine)
{
90 91 92 93
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
94
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
95

96 97
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
98
	engine->irq_enable(engine);
99
	spin_unlock(&engine->i915->irq_lock);
100 101 102 103
}

static void irq_disable(struct intel_engine_cs *engine)
{
104 105
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
106
	engine->irq_disable(engine);
107
	spin_unlock(&engine->i915->irq_lock);
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

127
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
128 129 130 131 132 133 134
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
	if (b->rpm_wakelock)
135
		return;
136

137 138 139 140 141 142 143 144 145 146 147 148
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		b->rpm_wakelock = true;
		return;
	}

149 150 151 152 153 154 155 156 157 158
	/* Since we are waiting on a request, the GPU should be busy
	 * and should have its own rpm reference. For completeness,
	 * record an rpm reference for ourselves to cover the
	 * interrupt we unmask.
	 */
	intel_runtime_pm_get_noresume(i915);
	b->rpm_wakelock = true;

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
159
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
160 161 162 163
			irq_enable(engine);
		b->irq_enabled = true;
	}

164
	if (!b->irq_enabled || use_fake_irq(b)) {
165
		mod_timer(&b->fake_irq, jiffies + 1);
166
		i915_queue_hangcheck(i915);
167 168
	} else {
		/* Ensure we never sleep indefinitely */
169
		mod_timer(&b->hangcheck, wait_timeout());
170
	}
171 172 173 174 175 176 177 178 179 180 181
}

static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	assert_spin_locked(&b->lock);
	if (!b->rpm_wakelock)
		return;

182 183 184 185 186
	if (I915_SELFTEST_ONLY(b->mock)) {
		b->rpm_wakelock = false;
		return;
	}

187 188 189 190 191 192 193 194 195 196 197
	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	intel_runtime_pm_put(engine->i915);
	b->rpm_wakelock = false;
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
198
	return rb_entry(node, struct intel_wait, node);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
238
	seqno = intel_engine_get_seqno(engine);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);
278
	GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh));
279 280 281 282 283 284 285 286

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
			b->first_wait = to_wait(next);
287
			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
288 289 290 291 292 293 294 295 296 297 298
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
299 300
			if (test_bit(ENGINE_IRQ_BREADCRUMB,
				     &engine->irq_posted))
301
				wake_up_process(to_wait(next)->tsk);
302 303 304 305 306 307 308 309 310 311 312 313
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
		b->first_wait = wait;
314
		rcu_assign_pointer(b->irq_seqno_bh, wait->tsk);
315 316 317 318 319
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
320 321
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
322 323
		 */
		__intel_breadcrumbs_enable_irq(b);
324
	}
325
	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh));
326 327 328 329 330 331 332 333 334 335 336 337
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

338
	spin_lock_irq(&b->lock);
339
	first = __intel_engine_add_wait(engine, wait);
340
	spin_unlock_irq(&b->lock);
341 342 343 344 345 346 347 348 349

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

350 351 352 353 354 355 356 357 358
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

359 360 361 362 363 364 365 366 367 368 369 370
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

371
	spin_lock_irq(&b->lock);
372 373 374 375 376

	if (RB_EMPTY_NODE(&wait->node))
		goto out_unlock;

	if (b->first_wait == wait) {
377
		const int priority = wakeup_priority(b, wait->tsk);
378 379
		struct rb_node *next;

380
		GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
402
			u32 seqno = intel_engine_get_seqno(engine);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
			b->first_wait = to_wait(next);
423
			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
424 425
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
426
			wake_up_process(b->first_wait->tsk);
427 428
		} else {
			b->first_wait = NULL;
429
			rcu_assign_pointer(b->irq_seqno_bh, NULL);
430 431 432 433 434 435 436 437 438 439 440 441 442
			__intel_breadcrumbs_disable_irq(b);
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

out_unlock:
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
443
	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters));
444
	spin_unlock_irq(&b->lock);
445 446
}

447
static bool signal_complete(struct drm_i915_gem_request *request)
448
{
449
	if (!request)
450 451 452 453 454
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
455
	if (intel_wait_complete(&request->signaling.wait))
456 457 458 459 460
		return true;

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
461
	if (__i915_request_irq_complete(request))
462 463 464 465 466
		return true;

	return false;
}

467
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
468
{
469
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
470 471 472 473 474 475 476 477 478 479 480 481 482
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
483
	struct drm_i915_gem_request *request;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
499 500
		request = READ_ONCE(b->first_signal);
		if (signal_complete(request)) {
501 502 503 504
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

505 506 507
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
508 509
			intel_engine_remove_wait(engine,
						 &request->signaling.wait);
510

511 512 513 514 515 516
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
517
			spin_lock_irq(&b->lock);
518 519 520 521 522 523
			if (request == b->first_signal) {
				struct rb_node *rb =
					rb_next(&request->signaling.node);
				b->first_signal = rb ? to_signaler(rb) : NULL;
			}
			rb_erase(&request->signaling.node, &b->signals);
524
			spin_unlock_irq(&b->lock);
525

526
			i915_gem_request_put(request);
527 528 529 530 531
		} else {
			if (kthread_should_stop())
				break;

			schedule();
532 533 534

			if (kthread_should_park())
				kthread_parkme();
535 536 537 538 539 540 541
		}
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

542
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
543 544 545 546 547 548
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;

549 550 551 552 553 554 555 556
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
557
	assert_spin_locked(&request->lock);
558 559
	if (!request->global_seqno)
		return;
560

561
	request->signaling.wait.tsk = b->signaler;
562
	request->signaling.wait.seqno = request->global_seqno;
563
	i915_gem_request_get(request);
564

565 566
	spin_lock(&b->lock);

567 568 569 570 571 572 573 574
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
575
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
576 577 578 579 580 581 582 583 584 585

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
586 587
		if (i915_seqno_passed(request->global_seqno,
				      to_signaler(parent)->global_seqno)) {
588 589 590 591 592 593
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
594 595
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
596
	if (first)
597 598
		smp_store_mb(b->first_signal, request);

599 600 601 602 603 604
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

605 606 607
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
608
	struct task_struct *tsk;
609 610 611 612 613

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
614 615 616
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
617

618 619 620 621 622 623 624 625 626 627 628 629 630
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

631 632 633
	return 0;
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
648
	spin_lock_irq(&b->lock);
649 650 651 652

	__intel_breadcrumbs_disable_irq(b);
	if (intel_engine_has_waiter(engine)) {
		__intel_breadcrumbs_enable_irq(b);
653
		if (test_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted))
654 655 656 657 658 659
			wake_up_process(b->first_wait->tsk);
	} else {
		/* sanitize the IMR and unmask any auxiliary interrupts */
		irq_disable(engine);
	}

660
	spin_unlock_irq(&b->lock);
661 662
}

663 664 665 666
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

667 668 669 670 671 672
	/* The engines should be idle and all requests accounted for! */
	WARN_ON(READ_ONCE(b->first_wait));
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
	WARN_ON(READ_ONCE(b->first_signal));
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

673 674 675
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

676
	cancel_fake_irq(engine);
677 678
}

679
unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915)
680 681
{
	struct intel_engine_cs *engine;
682
	enum intel_engine_id id;
683 684
	unsigned int mask = 0;

685 686
	for_each_engine(engine, i915, id) {
		struct intel_breadcrumbs *b = &engine->breadcrumbs;
687

688
		spin_lock_irq(&b->lock);
689

690 691 692 693
		if (b->first_wait) {
			wake_up_process(b->first_wait->tsk);
			mask |= intel_engine_flag(engine);
		}
694

695 696
		if (b->first_signal) {
			wake_up_process(b->signaler);
697 698
			mask |= intel_engine_flag(engine);
		}
699 700

		spin_unlock_irq(&b->lock);
701 702 703 704
	}

	return mask;
}
705 706 707 708

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif