intel_breadcrumbs.c 19.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	if (!b->irq_enabled)
		return;

	if (time_before(jiffies, b->timeout)) {
		mod_timer(&b->hangcheck, b->timeout);
		return;
	}

	DRM_DEBUG("Hangcheck timer elapsed... %s idle\n", engine->name);
	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
	mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
}

static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
	if (intel_engine_wakeup(engine))
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
}

static void irq_enable(struct intel_engine_cs *engine)
{
80 81 82 83
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
84
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
85

86 87
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
88
	engine->irq_enable(engine);
89
	spin_unlock(&engine->i915->irq_lock);
90 91 92 93
}

static void irq_disable(struct intel_engine_cs *engine)
{
94 95
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
96
	engine->irq_disable(engine);
97
	spin_unlock(&engine->i915->irq_lock);
98 99
}

100
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
101 102 103 104 105 106 107
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
	if (b->rpm_wakelock)
108
		return;
109 110 111 112 113 114 115 116 117 118 119

	/* Since we are waiting on a request, the GPU should be busy
	 * and should have its own rpm reference. For completeness,
	 * record an rpm reference for ourselves to cover the
	 * interrupt we unmask.
	 */
	intel_runtime_pm_get_noresume(i915);
	b->rpm_wakelock = true;

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
120
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
121 122 123 124 125
			irq_enable(engine);
		b->irq_enabled = true;
	}

	if (!b->irq_enabled ||
126
	    test_bit(engine->id, &i915->gpu_error.missed_irq_rings)) {
127
		mod_timer(&b->fake_irq, jiffies + 1);
128
		i915_queue_hangcheck(i915);
129 130 131 132 133
	} else {
		/* Ensure we never sleep indefinitely */
		GEM_BUG_ON(!time_after(b->timeout, jiffies));
		mod_timer(&b->hangcheck, b->timeout);
	}
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
}

static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b)
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	assert_spin_locked(&b->lock);
	if (!b->rpm_wakelock)
		return;

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	intel_runtime_pm_put(engine->i915);
	b->rpm_wakelock = false;
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
156
	return rb_entry(node, struct intel_wait, node);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
196
	seqno = intel_engine_get_seqno(engine);
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);
236
	GEM_BUG_ON(!first && !rcu_access_pointer(b->irq_seqno_bh));
237 238 239 240 241 242 243

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
244
			b->timeout = wait_timeout();
245
			b->first_wait = to_wait(next);
246
			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
247 248 249 250 251 252 253 254 255 256 257
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
258 259
			if (test_bit(ENGINE_IRQ_BREADCRUMB,
				     &engine->irq_posted))
260
				wake_up_process(to_wait(next)->tsk);
261 262 263 264 265 266 267 268 269 270 271
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
272
		b->timeout = wait_timeout();
273
		b->first_wait = wait;
274
		rcu_assign_pointer(b->irq_seqno_bh, wait->tsk);
275 276 277 278 279
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
280 281
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
282 283
		 */
		__intel_breadcrumbs_enable_irq(b);
284
	}
285
	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh));
286 287 288 289 290 291 292 293 294 295 296 297
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

298
	spin_lock_irq(&b->lock);
299
	first = __intel_engine_add_wait(engine, wait);
300
	spin_unlock_irq(&b->lock);
301 302 303 304 305 306 307 308 309

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

310 311 312 313 314 315 316 317 318
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

319 320 321 322 323 324 325 326 327 328 329 330
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

331
	spin_lock_irq(&b->lock);
332 333 334 335 336

	if (RB_EMPTY_NODE(&wait->node))
		goto out_unlock;

	if (b->first_wait == wait) {
337
		const int priority = wakeup_priority(b, wait->tsk);
338 339
		struct rb_node *next;

340
		GEM_BUG_ON(rcu_access_pointer(b->irq_seqno_bh) != wait->tsk);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
362
			u32 seqno = intel_engine_get_seqno(engine);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
382
			b->timeout = wait_timeout();
383
			b->first_wait = to_wait(next);
384
			rcu_assign_pointer(b->irq_seqno_bh, b->first_wait->tsk);
385 386
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
387
			wake_up_process(b->first_wait->tsk);
388 389
		} else {
			b->first_wait = NULL;
390
			rcu_assign_pointer(b->irq_seqno_bh, NULL);
391 392 393 394 395 396 397 398 399 400 401 402 403
			__intel_breadcrumbs_disable_irq(b);
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

out_unlock:
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
404
	GEM_BUG_ON(!rcu_access_pointer(b->irq_seqno_bh) ^ RB_EMPTY_ROOT(&b->waiters));
405
	spin_unlock_irq(&b->lock);
406 407
}

408
static bool signal_complete(struct drm_i915_gem_request *request)
409
{
410
	if (!request)
411 412 413 414 415
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
416
	if (intel_wait_complete(&request->signaling.wait))
417 418 419 420 421
		return true;

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
422
	if (__i915_request_irq_complete(request))
423 424 425 426 427
		return true;

	return false;
}

428
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
429
{
430
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
431 432 433 434 435 436 437 438 439 440 441 442 443
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
444
	struct drm_i915_gem_request *request;
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
460 461
		request = READ_ONCE(b->first_signal);
		if (signal_complete(request)) {
462 463 464 465
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

466 467 468
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
469 470
			intel_engine_remove_wait(engine,
						 &request->signaling.wait);
471

472 473 474 475 476 477
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
478
			spin_lock_irq(&b->lock);
479 480 481 482 483 484
			if (request == b->first_signal) {
				struct rb_node *rb =
					rb_next(&request->signaling.node);
				b->first_signal = rb ? to_signaler(rb) : NULL;
			}
			rb_erase(&request->signaling.node, &b->signals);
485
			spin_unlock_irq(&b->lock);
486

487
			i915_gem_request_put(request);
488 489 490 491 492
		} else {
			if (kthread_should_stop())
				break;

			schedule();
493 494 495

			if (kthread_should_park())
				kthread_parkme();
496 497 498 499 500 501 502
		}
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

503
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
504 505 506 507 508 509
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;

510 511 512 513 514 515 516 517
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
518
	assert_spin_locked(&request->lock);
519 520
	if (!request->global_seqno)
		return;
521

522
	request->signaling.wait.tsk = b->signaler;
523
	request->signaling.wait.seqno = request->global_seqno;
524
	i915_gem_request_get(request);
525

526 527
	spin_lock(&b->lock);

528 529 530 531 532 533 534 535
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
536
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
537 538 539 540 541 542 543 544 545 546

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
547 548
		if (i915_seqno_passed(request->global_seqno,
				      to_signaler(parent)->global_seqno)) {
549 550 551 552 553 554
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
555 556
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
557
	if (first)
558 559
		smp_store_mb(b->first_signal, request);

560 561 562 563 564 565
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

566 567 568
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
569
	struct task_struct *tsk;
570 571 572 573 574

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
575 576 577
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
578

579 580 581 582 583 584 585 586 587 588 589 590 591
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

592 593 594
	return 0;
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
609
	spin_lock_irq(&b->lock);
610 611 612 613 614

	__intel_breadcrumbs_disable_irq(b);
	if (intel_engine_has_waiter(engine)) {
		b->timeout = wait_timeout();
		__intel_breadcrumbs_enable_irq(b);
615
		if (test_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted))
616 617 618 619 620 621
			wake_up_process(b->first_wait->tsk);
	} else {
		/* sanitize the IMR and unmask any auxiliary interrupts */
		irq_disable(engine);
	}

622
	spin_unlock_irq(&b->lock);
623 624
}

625 626 627 628
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

629 630 631 632 633 634
	/* The engines should be idle and all requests accounted for! */
	WARN_ON(READ_ONCE(b->first_wait));
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
	WARN_ON(READ_ONCE(b->first_signal));
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

635 636 637
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

638
	cancel_fake_irq(engine);
639 640
}

641
unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915)
642 643
{
	struct intel_engine_cs *engine;
644
	enum intel_engine_id id;
645 646
	unsigned int mask = 0;

647 648
	for_each_engine(engine, i915, id) {
		struct intel_breadcrumbs *b = &engine->breadcrumbs;
649

650
		spin_lock_irq(&b->lock);
651

652 653 654 655
		if (b->first_wait) {
			wake_up_process(b->first_wait->tsk);
			mask |= intel_engine_flag(engine);
		}
656

657 658
		if (b->first_signal) {
			wake_up_process(b->signaler);
659 660
			mask |= intel_engine_flag(engine);
		}
661 662

		spin_unlock_irq(&b->lock);
663 664 665 666
	}

	return mask;
}