intel_breadcrumbs.c 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <linux/kthread.h>

27 28
#include "i915_drv.h"

29
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
30
{
31
	struct intel_wait *wait;
32 33
	unsigned int result = 0;

34
	wait = b->first_wait;
35
	if (wait) {
36
		result = ENGINE_WAKEUP_WAITER;
37 38
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
39
	}
40 41 42 43 44 45 46 47 48 49 50 51 52

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
	unsigned int result;

	spin_lock_irqsave(&b->lock, flags);
	result = __intel_breadcrumbs_wakeup(b);
	spin_unlock_irqrestore(&b->lock, flags);
53 54 55 56

	return result;
}

57 58 59 60 61
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

62 63 64 65 66 67 68 69 70 71
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

72 73 74 75 76
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

77
	if (!b->irq_armed)
78 79
		return;

80 81 82
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
83 84 85
		return;
	}

86 87 88 89
	/* We keep the hangcheck time alive until we disarm the irq, even
	 * if there are no waiters at present.
	 *
	 * If the waiter was currently running, assume it hasn't had a chance
90 91
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
92 93 94 95 96
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
97
	 */
98
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
99
		missed_breadcrumb(engine);
100 101
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
102 103
		mod_timer(&b->hangcheck, wait_timeout());
	}
104 105
}

106 107 108
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
109 110
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
111 112 113 114 115 116 117 118

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
119 120 121 122 123 124

	spin_lock_irqsave(&b->lock, flags);
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
	spin_unlock_irqrestore(&b->lock, flags);
	if (!b->irq_armed)
125 126
		return;

127
	mod_timer(&b->fake_irq, jiffies + 1);
128 129 130 131 132 133 134 135 136 137 138

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
139 140 141 142
}

static void irq_enable(struct intel_engine_cs *engine)
{
143 144 145 146
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
147
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
148

149 150
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
151
	engine->irq_enable(engine);
152
	spin_unlock(&engine->i915->irq_lock);
153 154 155 156
}

static void irq_disable(struct intel_engine_cs *engine)
{
157 158
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
159
	engine->irq_disable(engine);
160
	spin_unlock(&engine->i915->irq_lock);
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	assert_spin_locked(&b->lock);

	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
}

void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;

	if (!b->irq_armed)
		return;

	spin_lock_irqsave(&b->lock, flags);

	/* We only disarm the irq when we are idle (all requests completed),
	 * so if there remains a sleeping waiter, it missed the request
	 * completion.
	 */
	if (__intel_breadcrumbs_wakeup(b) & ENGINE_WAKEUP_ASLEEP)
192
		missed_breadcrumb(engine);
193 194 195 196 197 198

	__intel_engine_disarm_breadcrumbs(engine);

	spin_unlock_irqrestore(&b->lock, flags);
}

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;

	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

216 217 218 219 220 221 222 223 224
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
		mod_timer(&b->fake_irq, jiffies + 1);
	else
		mod_timer(&b->hangcheck, wait_timeout());
}

225
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
226 227 228 229 230 231
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

	assert_spin_locked(&b->lock);
232
	if (b->irq_armed)
233
		return;
234

235 236 237 238 239 240 241 242
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

243 244 245 246 247 248 249 250 251 252 253
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

254
	/* Since we are waiting on a request, the GPU should be busy
255 256 257 258
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
259 260 261 262
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
263
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
264 265 266 267
			irq_enable(engine);
		b->irq_enabled = true;
	}

268
	enable_fake_irq(b);
269 270 271 272
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
273
	return rb_entry(node, struct intel_wait, node);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
	assert_spin_locked(&b->lock);

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
313
	seqno = intel_engine_get_seqno(engine);
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
			b->first_wait = to_wait(next);
			/* As there is a delay between reading the current
			 * seqno, processing the completed tasks and selecting
			 * the next waiter, we may have missed the interrupt
			 * and so need for the next bottom-half to wakeup.
			 *
			 * Also as we enable the IRQ, we may miss the
			 * interrupt for that seqno, so we have to wake up
			 * the next bottom-half in order to do a coherent check
			 * in case the seqno passed.
			 */
			__intel_breadcrumbs_enable_irq(b);
372 373
			if (test_bit(ENGINE_IRQ_BREADCRUMB,
				     &engine->irq_posted))
374
				wake_up_process(to_wait(next)->tsk);
375 376 377 378 379 380 381 382 383 384 385 386
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
		b->first_wait = wait;
387 388 389 390 391
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
392 393
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
394 395
		 */
		__intel_breadcrumbs_enable_irq(b);
396 397 398 399 400 401 402 403 404 405 406 407 408
	}
	GEM_BUG_ON(!b->first_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node);

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

409
	spin_lock_irq(&b->lock);
410
	first = __intel_engine_add_wait(engine, wait);
411
	spin_unlock_irq(&b->lock);
412 413 414 415 416 417 418 419 420

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

421 422 423 424 425 426 427 428 429
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

430 431
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
432 433 434
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

435
	assert_spin_locked(&b->lock);
436 437

	if (RB_EMPTY_NODE(&wait->node))
438
		goto out;
439 440

	if (b->first_wait == wait) {
441
		const int priority = wakeup_priority(b, wait->tsk);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
464
			u32 seqno = intel_engine_get_seqno(engine);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

		if (next) {
			/* In our haste, we may have completed the first waiter
			 * before we enabled the interrupt. Do so now as we
			 * have a second waiter for a future seqno. Afterwards,
			 * we have to wake up that waiter in case we missed
			 * the interrupt, or if we have to handle an
			 * exception rather than a seqno completion.
			 */
			b->first_wait = to_wait(next);
			if (b->first_wait->seqno != wait->seqno)
				__intel_breadcrumbs_enable_irq(b);
487
			wake_up_process(b->first_wait->tsk);
488 489 490 491 492 493 494 495 496 497
		} else {
			b->first_wait = NULL;
		}
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

498
out:
499 500 501
	GEM_BUG_ON(b->first_wait == wait);
	GEM_BUG_ON(rb_first(&b->waiters) !=
		   (b->first_wait ? &b->first_wait->node : NULL));
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

	spin_lock_irq(&b->lock);
	__intel_engine_remove_wait(engine, wait);
518
	spin_unlock_irq(&b->lock);
519 520
}

521 522 523 524 525 526
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
}

static bool signal_complete(const struct drm_i915_gem_request *request)
527
{
528
	if (!request)
529 530 531 532 533
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
534
	if (intel_wait_complete(&request->signaling.wait))
535
		return signal_valid(request);
536 537 538 539

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
540
	if (__i915_request_irq_complete(request))
541 542 543 544 545
		return true;

	return false;
}

546
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
547
{
548
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
549 550 551 552 553 554 555 556 557 558 559 560 561
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
562
	struct drm_i915_gem_request *request;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
578 579 580 581 582
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
583
		if (signal_complete(request)) {
584 585 586 587
			local_bh_disable();
			dma_fence_signal(&request->fence);
			local_bh_enable(); /* kick start the tasklets */

588 589
			spin_lock_irq(&b->lock);

590 591 592
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
593 594
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
595

596 597 598 599 600 601
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
602
			if (request == rcu_access_pointer(b->first_signal)) {
603 604
				struct rb_node *rb =
					rb_next(&request->signaling.node);
605 606
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
607 608
			}
			rb_erase(&request->signaling.node, &b->signals);
609 610
			RB_CLEAR_NODE(&request->signaling.node);

611
			spin_unlock_irq(&b->lock);
612

613
			i915_gem_request_put(request);
614
		} else {
615 616
			DEFINE_WAIT(exec);

617 618
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
619
				break;
620
			}
621

622 623 624
			if (request)
				add_wait_queue(&request->execute, &exec);

625
			schedule();
626

627 628 629
			if (request)
				remove_wait_queue(&request->execute, &exec);

630 631
			if (kthread_should_park())
				kthread_parkme();
632
		}
633
		i915_gem_request_put(request);
634 635 636 637 638 639
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

640
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
641 642 643 644 645
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
646
	u32 seqno;
647

648 649 650 651 652 653 654 655
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
656
	assert_spin_locked(&request->lock);
657 658 659

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
660
		return;
661

662
	request->signaling.wait.tsk = b->signaler;
663
	request->signaling.wait.request = request;
664
	request->signaling.wait.seqno = seqno;
665
	i915_gem_request_get(request);
666

667 668
	spin_lock(&b->lock);

669 670 671 672 673 674 675 676
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
677
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
678 679 680 681 682 683 684 685 686 687

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
688 689
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
690 691 692 693 694 695
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
696 697
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
698
	if (first)
699
		rcu_assign_pointer(b->first_signal, request);
700

701 702 703 704 705 706
	spin_unlock(&b->lock);

	if (wakeup)
		wake_up_process(b->signaler);
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	assert_spin_locked(&request->lock);
	GEM_BUG_ON(!request->signaling.wait.seqno);

	spin_lock(&b->lock);

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

	spin_unlock(&b->lock);

	request->signaling.wait.seqno = 0;
}

736 737 738
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
739
	struct task_struct *tsk;
740 741 742 743 744

	spin_lock_init(&b->lock);
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
745 746 747
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
748

749 750 751 752 753 754 755 756 757 758 759 760 761
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

762 763 764
	return 0;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
779
	spin_lock_irq(&b->lock);
780

781 782 783
	if (b->irq_enabled)
		irq_enable(engine);
	else
784
		irq_disable(engine);
785 786 787 788 789 790 791 792 793 794 795 796

	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
797

798
	spin_unlock_irq(&b->lock);
799 800
}

801 802 803 804
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

805 806 807
	/* The engines should be idle and all requests accounted for! */
	WARN_ON(READ_ONCE(b->first_wait));
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
808
	WARN_ON(rcu_access_pointer(b->first_signal));
809 810
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

811 812 813
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

814
	cancel_fake_irq(engine);
815 816
}

817
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
818
{
819 820
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
821

822
	spin_lock_irq(&b->lock);
823

824 825 826 827
	if (b->first_wait) {
		wake_up_process(b->first_wait->tsk);
		busy |= intel_engine_flag(engine);
	}
828

829
	if (rcu_access_pointer(b->first_signal)) {
830 831
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
832 833
	}

834 835 836
	spin_unlock_irq(&b->lock);

	return busy;
837
}
838 839 840 841

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif