mmu.c 52.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
C
Christoffer Dall 已提交
23
#include <trace/events/kvm.h>
24
#include <asm/pgalloc.h>
25
#include <asm/cacheflush.h>
26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
28
#include <asm/kvm_mmio.h>
29
#include <asm/kvm_asm.h>
30
#include <asm/kvm_emulate.h>
31
#include <asm/virt.h>
32 33

#include "trace.h"
34 35 36

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47

48 49 50 51 52 53
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
54 55 56 57 58 59 60 61 62 63 64
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
65
}
66

67
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
68
{
69 70 71 72 73 74 75 76
	/*
	 * This function also gets called when dealing with HYP page
	 * tables. As HYP doesn't have an associated struct kvm (and
	 * the HYP page tables are fairly static), we don't do
	 * anything there.
	 */
	if (kvm)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
77 78
}

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

99 100 101 102 103
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

104 105 106 107 108 109 110 111 112 113 114
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
115
	if (!pmd_thp_or_huge(*pmd))
116 117 118 119 120 121 122
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

155
static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
156
{
157 158 159 160 161
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
	pgd_clear(pgd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
162 163
}

164
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
165
{
166 167 168 169 170
	pmd_t *pmd_table = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pmd_free(NULL, pmd_table);
171 172
	put_page(virt_to_page(pud));
}
173

174
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
175
{
176
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
177
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
178 179 180
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
181 182 183
	put_page(virt_to_page(pmd));
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
204 205
static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
		       phys_addr_t addr, phys_addr_t end)
206
{
207 208 209 210 211 212
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
213 214
			pte_t old_pte = *pte;

215 216
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
217 218

			/* No need to invalidate the cache for device mappings */
219
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
220 221 222
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
223 224 225
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

226
	if (kvm_pte_table_empty(kvm, start_pte))
227
		clear_pmd_entry(kvm, pmd, start_addr);
228 229
}

230 231
static void unmap_pmds(struct kvm *kvm, pud_t *pud,
		       phys_addr_t addr, phys_addr_t end)
232
{
233 234
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
235

236 237 238 239
	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
240
			if (pmd_thp_or_huge(*pmd)) {
241 242
				pmd_t old_pmd = *pmd;

243 244
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
245 246 247

				kvm_flush_dcache_pmd(old_pmd);

248 249 250 251
				put_page(virt_to_page(pmd));
			} else {
				unmap_ptes(kvm, pmd, addr, next);
			}
252
		}
253
	} while (pmd++, addr = next, addr != end);
254

255
	if (kvm_pmd_table_empty(kvm, start_pmd))
256 257
		clear_pud_entry(kvm, pud, start_addr);
}
258

259 260 261 262 263
static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
264

265 266 267 268 269
	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			if (pud_huge(*pud)) {
270 271
				pud_t old_pud = *pud;

272 273
				pud_clear(pud);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
274 275 276

				kvm_flush_dcache_pud(old_pud);

277 278 279
				put_page(virt_to_page(pud));
			} else {
				unmap_pmds(kvm, pud, addr, next);
280 281
			}
		}
282
	} while (pud++, addr = next, addr != end);
283

284
	if (kvm_pud_table_empty(kvm, start_pud))
285 286 287 288 289 290 291 292 293 294 295
		clear_pgd_entry(kvm, pgd, start_addr);
}


static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

296
	pgd = pgdp + kvm_pgd_index(addr);
297 298
	do {
		next = kvm_pgd_addr_end(addr, end);
299 300
		if (!pgd_none(*pgd))
			unmap_puds(kvm, pgd, addr, next);
301
	} while (pgd++, addr = next, addr != end);
302 303
}

304 305 306 307 308 309 310
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
311
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
312
			kvm_flush_dcache_pte(*pte);
313 314 315 316 317 318 319 320 321
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

322
	pmd = stage2_pmd_offset(pud, addr);
323
	do {
324
		next = stage2_pmd_addr_end(addr, end);
325
		if (!pmd_none(*pmd)) {
326
			if (pmd_thp_or_huge(*pmd))
327 328
				kvm_flush_dcache_pmd(*pmd);
			else
329 330 331 332 333 334 335 336 337 338 339
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

340
	pud = stage2_pud_offset(pgd, addr);
341
	do {
342 343 344
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
345 346
				kvm_flush_dcache_pud(*pud);
			else
347 348 349 350 351 352 353 354 355 356 357 358 359
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

360
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
361
	do {
362
		next = stage2_pgd_addr_end(addr, end);
363 364 365 366 367 368 369 370 371 372 373
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
374
static void stage2_flush_vm(struct kvm *kvm)
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
	pgd = pgdp + pgd_index(addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

485 486 487 488 489 490 491 492 493 494
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
495 496
		unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_hyp_range(boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
497
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
498 499 500 501
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
502
		unmap_hyp_range(hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
503 504 505 506

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

507
/**
508
 * free_hyp_pgds - free Hyp-mode page tables
509
 *
510 511 512 513 514 515
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
516
 */
517
void free_hyp_pgds(void)
518 519 520
{
	unsigned long addr;

521
	free_boot_hyp_pgd();
522

523
	mutex_lock(&kvm_hyp_pgd_mutex);
524

525 526
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
527
			unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
528
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
529
			unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
530

531
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
532
		hyp_pgd = NULL;
533
	}
534 535 536 537 538
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
539

540 541 542 543
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
544 545
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
546 547 548 549
{
	pte_t *pte;
	unsigned long addr;

550 551
	addr = start;
	do {
552 553
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
554
		get_page(virt_to_page(pte));
555
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
556
		pfn++;
557
	} while (addr += PAGE_SIZE, addr != end);
558 559 560
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
561 562
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
563 564 565 566 567
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

568 569
	addr = start;
	do {
570
		pmd = pmd_offset(pud, addr);
571 572 573 574

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
575
			pte = pte_alloc_one_kernel(NULL, addr);
576 577 578 579 580
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
581
			get_page(virt_to_page(pmd));
582
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
583 584 585 586
		}

		next = pmd_addr_end(addr, end);

587 588
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
589
	} while (addr = next, addr != end);
590 591 592 593

	return 0;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

628 629 630
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
631 632 633 634 635 636 637
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
638 639 640
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
641
		pgd = pgdp + pgd_index(addr);
642

643 644 645 646
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
647 648 649
				err = -ENOMEM;
				goto out;
			}
650 651 652
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
653 654 655
		}

		next = pgd_addr_end(addr, end);
656
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
657 658
		if (err)
			goto out;
659
		pfn += (next - addr) >> PAGE_SHIFT;
660
	} while (addr = next, addr != end);
661 662 663 664 665
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

666 667 668 669 670 671 672 673 674 675 676
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

677
/**
678
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
679 680 681
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
682 683 684
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
685 686 687
 */
int create_hyp_mappings(void *from, void *to)
{
688 689
	phys_addr_t phys_addr;
	unsigned long virt_addr;
690 691 692
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

693 694 695
	if (is_kernel_in_hyp_mode())
		return 0;

696 697
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
698

699 700
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
701

702 703 704 705 706 707 708 709 710 711
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
					    PAGE_HYP);
		if (err)
			return err;
	}

	return 0;
712 713 714
}

/**
715 716 717
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
718
 * @phys_addr:	The physical start address which gets mapped
719 720 721
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
722
 */
723
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
724
{
725 726 727
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

728 729 730
	if (is_kernel_in_hyp_mode())
		return 0;

731 732 733 734 735 736
	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
737 738
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752
/* Free the HW pgd, one page at a time */
static void kvm_free_hwpgd(void *hwpgd)
{
	free_pages_exact(hwpgd, kvm_get_hwpgd_size());
}

/* Allocate the HW PGD, making sure that each page gets its own refcount */
static void *kvm_alloc_hwpgd(void)
{
	unsigned int size = kvm_get_hwpgd_size();

	return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
}

753 754 755 756
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
757 758 759
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
760 761 762 763 764 765 766
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;
767
	void *hwpgd;
768 769 770 771 772 773

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

774 775 776 777
	hwpgd = kvm_alloc_hwpgd();
	if (!hwpgd)
		return -ENOMEM;

778 779
	/*
	 * When the kernel uses more levels of page tables than the
780 781 782 783
	 * guest, we allocate a fake PGD and pre-populate it to point
	 * to the next-level page table, which will be the real
	 * initial page table pointed to by the VTTBR.
	 */
784 785 786 787
	pgd = kvm_setup_fake_pgd(hwpgd);
	if (IS_ERR(pgd)) {
		kvm_free_hwpgd(hwpgd);
		return PTR_ERR(pgd);
788 789
	}

790
	kvm_clean_pgd(pgd);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	kvm->arch.pgd = pgd;
	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
808
	unmap_range(kvm, kvm->arch.pgd, start, size);
809 810
}

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
893
	kvm_free_hwpgd(kvm_get_hwpgd(kvm));
894
	kvm_free_fake_pgd(kvm->arch.pgd);
895 896 897
	kvm->arch.pgd = NULL;
}

898
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
899
			     phys_addr_t addr)
900 901 902 903
{
	pgd_t *pgd;
	pud_t *pud;

904 905
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
906 907 908
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
909
		stage2_pgd_populate(pgd, pud);
910 911 912
		get_page(virt_to_page(pgd));
	}

913
	return stage2_pud_offset(pgd, addr);
914 915 916 917 918 919 920 921 922
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
923
	if (stage2_pud_none(*pud)) {
924
		if (!cache)
925
			return NULL;
926
		pmd = mmu_memory_cache_alloc(cache);
927
		stage2_pud_populate(pud, pmd);
928
		get_page(virt_to_page(pud));
929 930
	}

931
	return stage2_pmd_offset(pud, addr);
932 933 934 935 936 937 938 939 940
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
	kvm_set_pmd(pmd, *new_pmd);
	if (pmd_present(old_pmd))
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	else
		get_page(virt_to_page(pmd));
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
963 964
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
965 966 967
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
968 969 970 971
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
972

973
	/* Create stage-2 page table mapping - Levels 0 and 1 */
974 975 976 977 978 979 980 981 982
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

983 984 985 986 987 988 989
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

990
	/* Create stage-2 page mappings - Level 2 */
991 992 993 994
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
995
		kvm_clean_pte(pte);
996 997
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
998 999 1000
	}

	pte = pte_offset_kernel(pmd, addr);
1001 1002 1003 1004 1005 1006 1007 1008

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
1009
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1025
			  phys_addr_t pa, unsigned long size, bool writable)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1036
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1037

1038 1039 1040
		if (writable)
			kvm_set_s2pte_writable(&pte);

1041 1042
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1043 1044 1045
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1046 1047
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1060
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1061
{
D
Dan Williams 已提交
1062
	kvm_pfn_t pfn = *pfnp;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	gfn_t gfn = *ipap >> PAGE_SHIFT;

	if (PageTransCompound(pfn_to_page(pfn))) {
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1101 1102 1103 1104 1105 1106 1107 1108
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1139
	pmd = stage2_pmd_offset(pud, addr);
1140 1141

	do {
1142
		next = stage2_pmd_addr_end(addr, end);
1143
		if (!pmd_none(*pmd)) {
1144
			if (pmd_thp_or_huge(*pmd)) {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1167
	pud = stage2_pud_offset(pgd, addr);
1168
	do {
1169 1170
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1171
			/* TODO:PUD not supported, revisit later if supported */
1172
			BUG_ON(stage2_pud_huge(*pud));
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1189
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1190 1191 1192 1193
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1194 1195
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1196 1197 1198 1199 1200
		 * will also starve other vCPUs.
		 */
		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
			cond_resched_lock(&kvm->mmu_lock);

1201 1202
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1222 1223
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1224 1225 1226 1227 1228 1229 1230 1231
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1232 1233

/**
1234
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1235 1236 1237 1238 1239 1240 1241 1242 1243
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1244
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1245 1246 1247 1248 1249 1250 1251 1252 1253
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

D
Dan Williams 已提交
1269
static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1270 1271 1272 1273 1274
				      unsigned long size, bool uncached)
{
	__coherent_cache_guest_page(vcpu, pfn, size, uncached);
}

1275
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1276
			  struct kvm_memory_slot *memslot, unsigned long hva,
1277 1278 1279
			  unsigned long fault_status)
{
	int ret;
1280
	bool write_fault, writable, hugetlb = false, force_pte = false;
1281
	unsigned long mmu_seq;
1282 1283
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1284
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1285
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1286
	kvm_pfn_t pfn;
1287
	pgprot_t mem_type = PAGE_S2;
1288
	bool fault_ipa_uncached;
1289 1290
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1291

1292
	write_fault = kvm_is_write_fault(vcpu);
1293 1294 1295 1296 1297
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1298 1299 1300
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1301 1302 1303 1304 1305 1306
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1307
	if (is_vm_hugetlb_page(vma) && !logging_active) {
1308 1309
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1310 1311
	} else {
		/*
1312 1313 1314 1315 1316 1317 1318
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1319
		 */
1320 1321
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1322
			force_pte = true;
1323 1324 1325
	}
	up_read(&current->mm->mmap_sem);

1326
	/* We need minimum second+third level pages */
1327 1328
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1344
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1345 1346 1347
	if (is_error_pfn(pfn))
		return -EFAULT;

1348
	if (kvm_is_device_pfn(pfn)) {
1349
		mem_type = PAGE_S2_DEVICE;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1367

1368 1369
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1370
		goto out_unlock;
1371

1372 1373
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1374

1375
	fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1376

1377
	if (hugetlb) {
1378
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1379 1380 1381 1382 1383
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
			kvm_set_s2pmd_writable(&new_pmd);
			kvm_set_pfn_dirty(pfn);
		}
1384
		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1385 1386
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1387
		pte_t new_pte = pfn_pte(pfn, mem_type);
1388

1389 1390 1391
		if (writable) {
			kvm_set_s2pte_writable(&new_pte);
			kvm_set_pfn_dirty(pfn);
1392
			mark_page_dirty(kvm, gfn);
1393
		}
1394
		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1395
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1396
	}
1397

1398
out_unlock:
1399
	spin_unlock(&kvm->mmu_lock);
1400
	kvm_set_pfn_accessed(pfn);
1401
	kvm_release_pfn_clean(pfn);
1402
	return ret;
1403 1404
}

1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1414
	kvm_pfn_t pfn;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1425
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1457 1458
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1459 1460 1461
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1462 1463
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1464 1465 1466
	gfn_t gfn;
	int ret, idx;

1467
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1468
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1469

1470 1471
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1472 1473

	/* Check the stage-2 fault is trans. fault or write fault */
1474
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1475 1476
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1477 1478 1479 1480
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1481 1482 1483 1484 1485 1486
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1487 1488
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1489
	write_fault = kvm_is_write_fault(vcpu);
1490
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1491 1492
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1493
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1494 1495 1496 1497
			ret = 1;
			goto out_unlock;
		}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1514 1515 1516 1517 1518 1519 1520
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1521
		ret = io_mem_abort(vcpu, run, fault_ipa);
1522 1523 1524
		goto out_unlock;
	}

1525 1526 1527
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1528 1529 1530 1531 1532 1533
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1534
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1535 1536 1537 1538 1539
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1540 1541
}

1542 1543 1544 1545 1546 1547
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
					    gpa_t gpa, void *data),
			     void *data)
1548 1549 1550
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1551
	int ret = 0;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
1575
			ret |= handler(kvm, gpa, data);
1576 1577
		}
	}
1578 1579

	return ret;
1580 1581
}

1582
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1583 1584
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1585
	return 0;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1611
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1612 1613 1614
{
	pte_t *pte = (pte_t *)data;

1615 1616 1617 1618 1619 1620 1621 1622
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1623
	return 0;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1640 1641 1642 1643 1644 1645 1646 1647 1648
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pmd_t *pmd;
	pte_t *pte;

	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1649
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		if (pmd_young(*pmd)) {
			*pmd = pmd_mkold(*pmd);
			return 1;
		}

		return 0;
	}

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);	/* Just a page... */
		return 1;
	}

	return 0;
}

static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pmd_t *pmd;
	pte_t *pte;

	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1679
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1701 1702 1703 1704 1705
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1706 1707
phys_addr_t kvm_mmu_get_httbr(void)
{
1708 1709 1710 1711
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1712 1713
}

1714 1715
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
1716 1717 1718 1719
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(boot_hyp_pgd);
1720 1721 1722 1723 1724 1725 1726
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1727 1728
int kvm_mmu_init(void)
{
1729 1730
	int err;

1731 1732 1733
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1734

1735 1736 1737 1738 1739
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1740

1741 1742
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1743

1744
	if (!hyp_pgd || !boot_hyp_pgd) {
1745
		kvm_err("Hyp mode PGD not allocated\n");
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
1760 1761
	}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (__kvm_cpu_uses_extended_idmap()) {
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
		return 0;
	}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

1795
	return 0;
1796
out:
1797
	free_hyp_pgds();
1798
	return err;
1799
}
1800 1801

void kvm_arch_commit_memory_region(struct kvm *kvm,
1802
				   const struct kvm_userspace_memory_region *mem,
1803
				   const struct kvm_memory_slot *old,
1804
				   const struct kvm_memory_slot *new,
1805 1806
				   enum kvm_mr_change change)
{
1807 1808 1809 1810 1811 1812 1813
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1814 1815 1816 1817
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1818
				   const struct kvm_userspace_memory_region *mem,
1819 1820
				   enum kvm_mr_change change)
{
1821 1822 1823 1824 1825
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1826 1827
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1828 1829
		return 0;

1830 1831 1832 1833 1834 1835 1836 1837
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
1875 1876 1877 1878
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
1879

1880 1881 1882 1883
			/* IO region dirty page logging not allowed */
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
				return -EINVAL;

1884 1885 1886 1887 1888 1889 1890 1891 1892
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

1893 1894 1895
	if (change == KVM_MR_FLAGS_ONLY)
		return ret;

1896 1897
	spin_lock(&kvm->mmu_lock);
	if (ret)
1898
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1899 1900 1901
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
1902
	return ret;
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
1913 1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * Readonly memslots are not incoherent with the caches by definition,
	 * but in practice, they are used mostly to emulate ROMs or NOR flashes
	 * that the guest may consider devices and hence map as uncached.
	 * To prevent incoherency issues in these cases, tag all readonly
	 * regions as incoherent.
	 */
	if (slot->flags & KVM_MEM_READONLY)
		slot->flags |= KVM_MEMSLOT_INCOHERENT;
1922 1923 1924
	return 0;
}

1925
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1936 1937 1938 1939 1940 1941
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
1942
}
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
	unsigned long hcr = vcpu_get_hcr(vcpu);

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}