mmu.c 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
C
Christoffer Dall 已提交
22
#include <trace/events/kvm.h>
23
#include <asm/pgalloc.h>
24
#include <asm/cacheflush.h>
25 26
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
27
#include <asm/kvm_mmio.h>
28
#include <asm/kvm_asm.h>
29
#include <asm/kvm_emulate.h>
30 31

#include "trace.h"
32 33 34

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

35
static pgd_t *boot_hyp_pgd;
36
static pgd_t *hyp_pgd;
37 38
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

39 40 41 42 43
static void *init_bounce_page;
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

44
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
45
{
46 47 48 49 50 51 52 53
	/*
	 * This function also gets called when dealing with HYP page
	 * tables. As HYP doesn't have an associated struct kvm (and
	 * the HYP page tables are fairly static), we don't do
	 * anything there.
	 */
	if (kvm)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
}

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

88 89 90 91 92 93
static bool page_empty(void *ptr)
{
	struct page *ptr_page = virt_to_page(ptr);
	return page_count(ptr_page) == 1;
}

94
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
95
{
96 97
	pmd_t *pmd_table = pmd_offset(pud, 0);
	pud_clear(pud);
98
	kvm_tlb_flush_vmid_ipa(kvm, addr);
99 100 101
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}
102

103
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
104 105 106
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	pmd_clear(pmd);
107
	kvm_tlb_flush_vmid_ipa(kvm, addr);
108 109 110 111
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

112
static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
113 114 115 116
{
	if (pte_present(*pte)) {
		kvm_set_pte(pte, __pte(0));
		put_page(virt_to_page(pte));
117
		kvm_tlb_flush_vmid_ipa(kvm, addr);
118 119 120
	}
}

121 122
static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			unsigned long long start, u64 size)
123 124 125 126
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
127 128
	pte_t *pte;
	unsigned long long addr = start, end = start + size;
129
	u64 next;
130

131 132 133 134
	while (addr < end) {
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
		if (pud_none(*pud)) {
135
			addr = pud_addr_end(addr, end);
136 137
			continue;
		}
138

139 140
		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
141
			addr = pmd_addr_end(addr, end);
142 143
			continue;
		}
144

145
		pte = pte_offset_kernel(pmd, addr);
146
		clear_pte_entry(kvm, pte, addr);
147
		next = addr + PAGE_SIZE;
148 149

		/* If we emptied the pte, walk back up the ladder */
150
		if (page_empty(pte)) {
151
			clear_pmd_entry(kvm, pmd, addr);
152
			next = pmd_addr_end(addr, end);
153
			if (page_empty(pmd) && !page_empty(pud)) {
154
				clear_pud_entry(kvm, pud, addr);
155
				next = pud_addr_end(addr, end);
156 157 158
			}
		}

159
		addr = next;
160
	}
161 162
}

163 164 165 166 167 168 169 170 171 172
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
173 174
		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
175 176 177 178 179
		kfree(boot_hyp_pgd);
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
180
		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
181 182 183 184 185 186 187

	kfree(init_bounce_page);
	init_bounce_page = NULL;

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

188
/**
189
 * free_hyp_pgds - free Hyp-mode page tables
190
 *
191 192 193 194 195 196
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
197
 */
198
void free_hyp_pgds(void)
199 200 201
{
	unsigned long addr;

202
	free_boot_hyp_pgd();
203

204
	mutex_lock(&kvm_hyp_pgd_mutex);
205

206 207
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
208
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
209
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
210 211
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);

212
		kfree(hyp_pgd);
213
		hyp_pgd = NULL;
214 215
	}

216 217 218 219
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
220 221
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
222 223 224 225
{
	pte_t *pte;
	unsigned long addr;

226 227
	addr = start;
	do {
228 229
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
230
		get_page(virt_to_page(pte));
231
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
232
		pfn++;
233
	} while (addr += PAGE_SIZE, addr != end);
234 235 236
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
237 238
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
239 240 241 242 243
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

244 245
	addr = start;
	do {
246
		pmd = pmd_offset(pud, addr);
247 248 249 250

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
251
			pte = pte_alloc_one_kernel(NULL, addr);
252 253 254 255 256
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
257
			get_page(virt_to_page(pmd));
258
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
259 260 261 262
		}

		next = pmd_addr_end(addr, end);

263 264
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
265
	} while (addr = next, addr != end);
266 267 268 269

	return 0;
}

270 271 272
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
273 274 275 276 277 278 279 280
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
281 282 283
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
284 285
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
286 287

		if (pud_none_or_clear_bad(pud)) {
288
			pmd = pmd_alloc_one(NULL, addr);
289 290 291 292 293 294
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				err = -ENOMEM;
				goto out;
			}
			pud_populate(NULL, pud, pmd);
295
			get_page(virt_to_page(pud));
296
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
297 298 299
		}

		next = pgd_addr_end(addr, end);
300
		err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
301 302
		if (err)
			goto out;
303
		pfn += (next - addr) >> PAGE_SHIFT;
304
	} while (addr = next, addr != end);
305 306 307 308 309 310
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

/**
311
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
312 313 314
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
315 316 317
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
318 319 320
 */
int create_hyp_mappings(void *from, void *to)
{
321 322 323 324 325 326 327 328 329 330
	unsigned long phys_addr = virt_to_phys(from);
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel memory mapping */
	if (!virt_addr_valid(from) || !virt_addr_valid(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP);
331 332 333
}

/**
334 335 336
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
337
 * @phys_addr:	The physical start address which gets mapped
338 339 340
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
341
 */
342
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
343
{
344 345 346 347 348 349 350 351 352
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
353 354
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
 * support either full 40-bit input addresses or limited to 32-bit input
 * addresses). Clears the allocated pages.
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

	pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
	if (!pgd)
		return -ENOMEM;

	memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
380
	kvm_clean_pgd(pgd);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	kvm->arch.pgd = pgd;

	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
399
	unmap_range(kvm, kvm->arch.pgd, start, size);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
}

/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
	free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
	kvm->arch.pgd = NULL;
}


static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			  phys_addr_t addr, const pte_t *new_pte, bool iomap)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte, old_pte;

	/* Create 2nd stage page table mapping - Level 1 */
	pgd = kvm->arch.pgd + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		pud_populate(NULL, pud, pmd);
		get_page(virt_to_page(pud));
441 442 443
	}

	pmd = pmd_offset(pud, addr);
444 445 446 447 448 449

	/* Create 2nd stage page table mapping - Level 2 */
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
450
		kvm_clean_pte(pte);
451 452
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
453 454 455
	}

	pte = pte_offset_kernel(pmd, addr);
456 457 458 459 460 461 462 463

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
464
		kvm_tlb_flush_vmid_ipa(kvm, addr);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
			  phys_addr_t pa, unsigned long size)
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
491
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

		ret = mmu_topup_memory_cache(&cache, 2, 2);
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
		ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

510 511 512 513 514 515 516 517 518 519 520
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
			  gfn_t gfn, struct kvm_memory_slot *memslot,
			  unsigned long fault_status)
{
	pte_t new_pte;
	pfn_t pfn;
	int ret;
	bool write_fault, writable;
	unsigned long mmu_seq;
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;

521
	write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

	/* We need minimum second+third level pages */
	ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

	pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
	if (is_error_pfn(pfn))
		return -EFAULT;

	new_pte = pfn_pte(pfn, PAGE_S2);
	coherent_icache_guest_page(vcpu->kvm, gfn);

	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;
	if (writable) {
555
		kvm_set_s2pte_writable(&new_pte);
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
		kvm_set_pfn_dirty(pfn);
	}
	stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
}

/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
578 579
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
580 581 582 583 584 585 586
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
	bool is_iabt;
	gfn_t gfn;
	int ret, idx;

587
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
588
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
589

590 591
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
592 593

	/* Check the stage-2 fault is trans. fault or write fault */
594
	fault_status = kvm_vcpu_trap_get_fault(vcpu);
595
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
596 597
		kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu), fault_status);
598 599 600 601 602 603 604 605 606
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
	if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
607
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
608 609 610 611 612 613 614 615 616 617 618
			ret = 1;
			goto out_unlock;
		}

		if (fault_status != FSC_FAULT) {
			kvm_err("Unsupported fault status on io memory: %#lx\n",
				fault_status);
			ret = -EFAULT;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
619 620 621 622 623 624 625
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
626
		ret = io_mem_abort(vcpu, run, fault_ipa);
627 628 629 630 631 632 633 634 635 636 637
		goto out_unlock;
	}

	memslot = gfn_to_memslot(vcpu->kvm, gfn);

	ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
638 639
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static void handle_hva_to_gpa(struct kvm *kvm,
			      unsigned long start,
			      unsigned long end,
			      void (*handler)(struct kvm *kvm,
					      gpa_t gpa, void *data),
			      void *data)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
			handler(kvm, gpa, data);
		}
	}
}

static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pte_t *pte = (pte_t *)data;

	stage2_set_pte(kvm, NULL, gpa, pte, false);
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

731 732 733 734 735
phys_addr_t kvm_mmu_get_httbr(void)
{
	return virt_to_phys(hyp_pgd);
}

736 737 738 739 740 741 742 743 744 745
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
	return virt_to_phys(boot_hyp_pgd);
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

746 747
int kvm_mmu_init(void)
{
748 749
	int err;

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	hyp_idmap_start = virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = virt_to_phys(__kvm_hyp_init);

	if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
		/*
		 * Our init code is crossing a page boundary. Allocate
		 * a bounce page, copy the code over and use that.
		 */
		size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
		phys_addr_t phys_base;

		init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!init_bounce_page) {
			kvm_err("Couldn't allocate HYP init bounce page\n");
			err = -ENOMEM;
			goto out;
		}

		memcpy(init_bounce_page, __hyp_idmap_text_start, len);
		/*
		 * Warning: the code we just copied to the bounce page
		 * must be flushed to the point of coherency.
		 * Otherwise, the data may be sitting in L2, and HYP
		 * mode won't be able to observe it as it runs with
		 * caches off at that point.
		 */
		kvm_flush_dcache_to_poc(init_bounce_page, len);

		phys_base = virt_to_phys(init_bounce_page);
		hyp_idmap_vector += phys_base - hyp_idmap_start;
		hyp_idmap_start = phys_base;
		hyp_idmap_end = phys_base + len;

		kvm_info("Using HYP init bounce page @%lx\n",
			 (unsigned long)phys_base);
	}

788
	hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
789 790
	boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
	if (!hyp_pgd || !boot_hyp_pgd) {
791
		kvm_err("Hyp mode PGD not allocated\n");
792 793 794 795 796 797 798 799 800 801 802 803 804 805
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
806 807
	}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

830
	return 0;
831
out:
832
	free_hyp_pgds();
833
	return err;
834
}