mmu.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
C
Christoffer Dall 已提交
23
#include <trace/events/kvm.h>
24
#include <asm/pgalloc.h>
25
#include <asm/cacheflush.h>
26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
28
#include <asm/kvm_mmio.h>
29
#include <asm/kvm_asm.h>
30
#include <asm/kvm_emulate.h>
31 32

#include "trace.h"
33 34 35

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

36
static pgd_t *boot_hyp_pgd;
37
static pgd_t *hyp_pgd;
38 39
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

40 41 42 43 44
static void *init_bounce_page;
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

45 46
#define pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))

47
#define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
48

49
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
50
{
51 52 53 54 55 56 57 58
	/*
	 * This function also gets called when dealing with HYP page
	 * tables. As HYP doesn't have an associated struct kvm (and
	 * the HYP page tables are fairly static), we don't do
	 * anything there.
	 */
	if (kvm)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

93
static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
94
{
95 96 97 98 99
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
	pgd_clear(pgd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
100 101
}

102
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
103
{
104 105 106 107 108
	pmd_t *pmd_table = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pmd_free(NULL, pmd_table);
109 110
	put_page(virt_to_page(pud));
}
111

112
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
113
{
114 115 116 117 118
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(kvm_pmd_huge(*pmd));
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
119 120 121
	put_page(virt_to_page(pmd));
}

122 123
static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
		       phys_addr_t addr, phys_addr_t end)
124
{
125 126 127 128 129 130 131 132 133 134 135 136 137 138
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (kvm_pte_table_empty(start_pte))
		clear_pmd_entry(kvm, pmd, start_addr);
139 140
}

141 142
static void unmap_pmds(struct kvm *kvm, pud_t *pud,
		       phys_addr_t addr, phys_addr_t end)
143
{
144 145
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
146

147 148 149 150 151 152 153 154 155 156 157
	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
			if (kvm_pmd_huge(*pmd)) {
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
				put_page(virt_to_page(pmd));
			} else {
				unmap_ptes(kvm, pmd, addr, next);
			}
158
		}
159
	} while (pmd++, addr = next, addr != end);
160

161 162 163
	if (kvm_pmd_table_empty(start_pmd))
		clear_pud_entry(kvm, pud, start_addr);
}
164

165 166 167 168 169
static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
170

171 172 173 174 175 176 177 178 179 180
	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			if (pud_huge(*pud)) {
				pud_clear(pud);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
				put_page(virt_to_page(pud));
			} else {
				unmap_pmds(kvm, pud, addr, next);
181 182
			}
		}
183
	} while (pud++, addr = next, addr != end);
184

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
	if (kvm_pud_table_empty(start_pud))
		clear_pgd_entry(kvm, pgd, start_addr);
}


static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			phys_addr_t start, u64 size)
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	pgd = pgdp + pgd_index(addr);
	do {
		next = kvm_pgd_addr_end(addr, end);
		unmap_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
202 203
}

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
			kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

	pmd = pmd_offset(pud, addr);
	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
			if (kvm_pmd_huge(*pmd)) {
				hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
				kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
			} else {
				stage2_flush_ptes(kvm, pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

	pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			if (pud_huge(*pud)) {
				hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
				kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
			} else {
				stage2_flush_pmds(kvm, pud, addr, next);
			}
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

	pgd = kvm->arch.pgd + pgd_index(addr);
	do {
		next = kvm_pgd_addr_end(addr, end);
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
void stage2_flush_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

297 298 299 300 301 302 303 304 305 306
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
307 308
		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
309
		free_pages((unsigned long)boot_hyp_pgd, pgd_order);
310 311 312 313
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
314
		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
315

316
	free_page((unsigned long)init_bounce_page);
317 318 319 320 321
	init_bounce_page = NULL;

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

322
/**
323
 * free_hyp_pgds - free Hyp-mode page tables
324
 *
325 326 327 328 329 330
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
331
 */
332
void free_hyp_pgds(void)
333 334 335
{
	unsigned long addr;

336
	free_boot_hyp_pgd();
337

338
	mutex_lock(&kvm_hyp_pgd_mutex);
339

340 341
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
342
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
343
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
344 345
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);

346
		free_pages((unsigned long)hyp_pgd, pgd_order);
347
		hyp_pgd = NULL;
348 349
	}

350 351 352 353
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
354 355
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
356 357 358 359
{
	pte_t *pte;
	unsigned long addr;

360 361
	addr = start;
	do {
362 363
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
364
		get_page(virt_to_page(pte));
365
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
366
		pfn++;
367
	} while (addr += PAGE_SIZE, addr != end);
368 369 370
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
371 372
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
373 374 375 376 377
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

378 379
	addr = start;
	do {
380
		pmd = pmd_offset(pud, addr);
381 382 383 384

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
385
			pte = pte_alloc_one_kernel(NULL, addr);
386 387 388 389 390
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
391
			get_page(virt_to_page(pmd));
392
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
393 394 395 396
		}

		next = pmd_addr_end(addr, end);

397 398
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
399
	} while (addr = next, addr != end);
400 401 402 403

	return 0;
}

404 405 406
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
407 408 409 410 411 412 413 414
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
415 416 417
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
418 419
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
420 421

		if (pud_none_or_clear_bad(pud)) {
422
			pmd = pmd_alloc_one(NULL, addr);
423 424 425 426 427 428
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				err = -ENOMEM;
				goto out;
			}
			pud_populate(NULL, pud, pmd);
429
			get_page(virt_to_page(pud));
430
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
431 432 433
		}

		next = pgd_addr_end(addr, end);
434
		err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
435 436
		if (err)
			goto out;
437
		pfn += (next - addr) >> PAGE_SHIFT;
438
	} while (addr = next, addr != end);
439 440 441 442 443
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

444 445 446 447 448 449 450 451 452 453 454
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

455
/**
456
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
457 458 459
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
460 461 462
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
463 464 465
 */
int create_hyp_mappings(void *from, void *to)
{
466 467
	phys_addr_t phys_addr;
	unsigned long virt_addr;
468 469 470
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

471 472
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
473

474 475
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
476

477 478 479 480 481 482 483 484 485 486
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
					    PAGE_HYP);
		if (err)
			return err;
	}

	return 0;
487 488 489
}

/**
490 491 492
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
493
 * @phys_addr:	The physical start address which gets mapped
494 495 496
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
497
 */
498
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
499
{
500 501 502 503 504 505 506 507 508
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
 * support either full 40-bit input addresses or limited to 32-bit input
 * addresses). Clears the allocated pages.
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

531
	pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
532 533 534
	if (!pgd)
		return -ENOMEM;

535
	kvm_clean_pgd(pgd);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	kvm->arch.pgd = pgd;

	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
554
	unmap_range(kvm, kvm->arch.pgd, start, size);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
}

/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
	free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
	kvm->arch.pgd = NULL;
}

578 579
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
580 581 582 583 584 585 586 587 588
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;

	pgd = kvm->arch.pgd + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		if (!cache)
589
			return NULL;
590 591 592
		pmd = mmu_memory_cache_alloc(cache);
		pud_populate(NULL, pud, pmd);
		get_page(virt_to_page(pud));
593 594
	}

595 596 597 598 599 600 601 602 603 604
	return pmd_offset(pud, addr);
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
605

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
	kvm_set_pmd(pmd, *new_pmd);
	if (pmd_present(old_pmd))
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	else
		get_page(virt_to_page(pmd));
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			  phys_addr_t addr, const pte_t *new_pte, bool iomap)
{
	pmd_t *pmd;
	pte_t *pte, old_pte;

	/* Create stage-2 page table mapping - Level 1 */
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/* Create stage-2 page mappings - Level 2 */
643 644 645 646
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
647
		kvm_clean_pte(pte);
648 649
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
650 651 652
	}

	pte = pte_offset_kernel(pmd, addr);
653 654 655 656 657 658 659 660

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
661
		kvm_tlb_flush_vmid_ipa(kvm, addr);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
677
			  phys_addr_t pa, unsigned long size, bool writable)
678 679 680 681 682 683 684 685 686 687
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
688
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
689

690 691 692
		if (writable)
			kvm_set_s2pte_writable(&pte);

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		ret = mmu_topup_memory_cache(&cache, 2, 2);
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
		ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *ipap >> PAGE_SHIFT;

	if (PageTransCompound(pfn_to_page(pfn))) {
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

751 752 753 754 755 756 757 758
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

759
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
760
			  struct kvm_memory_slot *memslot, unsigned long hva,
761 762 763
			  unsigned long fault_status)
{
	int ret;
764
	bool write_fault, writable, hugetlb = false, force_pte = false;
765
	unsigned long mmu_seq;
766 767
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
768
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
769 770
	struct vm_area_struct *vma;
	pfn_t pfn;
771
	pgprot_t mem_type = PAGE_S2;
772

773
	write_fault = kvm_is_write_fault(vcpu);
774 775 776 777 778
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

779 780 781
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
782 783 784 785 786 787
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

788 789 790
	if (is_vm_hugetlb_page(vma)) {
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
791 792
	} else {
		/*
793 794 795 796 797 798 799
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
800
		 */
801 802
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
803
			force_pte = true;
804 805 806
	}
	up_read(&current->mm->mmap_sem);

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	/* We need minimum second+third level pages */
	ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

824
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
825 826 827
	if (is_error_pfn(pfn))
		return -EFAULT;

828 829 830
	if (kvm_is_mmio_pfn(pfn))
		mem_type = PAGE_S2_DEVICE;

831 832
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
833
		goto out_unlock;
834 835
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
836 837

	if (hugetlb) {
838
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
839 840 841 842 843
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
			kvm_set_s2pmd_writable(&new_pmd);
			kvm_set_pfn_dirty(pfn);
		}
844
		coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
845 846
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
847
		pte_t new_pte = pfn_pte(pfn, mem_type);
848 849 850 851
		if (writable) {
			kvm_set_s2pte_writable(&new_pte);
			kvm_set_pfn_dirty(pfn);
		}
852
		coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
853 854
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte,
				     mem_type == PAGE_S2_DEVICE);
855
	}
856

857 858

out_unlock:
859
	spin_unlock(&kvm->mmu_lock);
860
	kvm_release_pfn_clean(pfn);
861
	return ret;
862 863 864 865 866 867 868 869 870 871 872 873 874 875
}

/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
876 877
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
878 879 880
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
881 882
	unsigned long hva;
	bool is_iabt, write_fault, writable;
883 884 885
	gfn_t gfn;
	int ret, idx;

886
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
887
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
888

889 890
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
891 892

	/* Check the stage-2 fault is trans. fault or write fault */
893
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
894
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
895 896 897 898
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
899 900 901 902 903 904
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
905 906
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
907
	write_fault = kvm_is_write_fault(vcpu);
908
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
909 910
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
911
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
912 913 914 915
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
916 917 918 919 920 921 922
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
923
		ret = io_mem_abort(vcpu, run, fault_ipa);
924 925 926
		goto out_unlock;
	}

927
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
928 929 930 931 932
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
933 934
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static void handle_hva_to_gpa(struct kvm *kvm,
			      unsigned long start,
			      unsigned long end,
			      void (*handler)(struct kvm *kvm,
					      gpa_t gpa, void *data),
			      void *data)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
			handler(kvm, gpa, data);
		}
	}
}

static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pte_t *pte = (pte_t *)data;

	stage2_set_pte(kvm, NULL, gpa, pte, false);
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1026 1027 1028 1029 1030
phys_addr_t kvm_mmu_get_httbr(void)
{
	return virt_to_phys(hyp_pgd);
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
	return virt_to_phys(boot_hyp_pgd);
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1041 1042
int kvm_mmu_init(void)
{
1043 1044
	int err;

1045 1046 1047
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1048 1049 1050 1051 1052 1053 1054 1055 1056

	if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
		/*
		 * Our init code is crossing a page boundary. Allocate
		 * a bounce page, copy the code over and use that.
		 */
		size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
		phys_addr_t phys_base;

1057
		init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		if (!init_bounce_page) {
			kvm_err("Couldn't allocate HYP init bounce page\n");
			err = -ENOMEM;
			goto out;
		}

		memcpy(init_bounce_page, __hyp_idmap_text_start, len);
		/*
		 * Warning: the code we just copied to the bounce page
		 * must be flushed to the point of coherency.
		 * Otherwise, the data may be sitting in L2, and HYP
		 * mode won't be able to observe it as it runs with
		 * caches off at that point.
		 */
		kvm_flush_dcache_to_poc(init_bounce_page, len);

1074
		phys_base = kvm_virt_to_phys(init_bounce_page);
1075 1076 1077 1078 1079 1080 1081 1082
		hyp_idmap_vector += phys_base - hyp_idmap_start;
		hyp_idmap_start = phys_base;
		hyp_idmap_end = phys_base + len;

		kvm_info("Using HYP init bounce page @%lx\n",
			 (unsigned long)phys_base);
	}

1083 1084 1085
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);
	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, pgd_order);

1086
	if (!hyp_pgd || !boot_hyp_pgd) {
1087
		kvm_err("Hyp mode PGD not allocated\n");
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
1102 1103
	}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

1126
	return 0;
1127
out:
1128
	free_hyp_pgds();
1129
	return err;
1130
}
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

void kvm_arch_commit_memory_region(struct kvm *kvm,
				   struct kvm_userspace_memory_region *mem,
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
{
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
{
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE)
		return 0;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
			phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
					 vm_start - vma->vm_start;

			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

	if (ret) {
		spin_lock(&kvm->mmu_lock);
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
		spin_unlock(&kvm->mmu_lock);
	}
	return ret;
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

void kvm_arch_memslots_updated(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
1231 1232 1233 1234 1235 1236
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
1237
}