mmu.c 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
C
Christoffer Dall 已提交
23
#include <trace/events/kvm.h>
24
#include <asm/pgalloc.h>
25
#include <asm/cacheflush.h>
26 27
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
28
#include <asm/kvm_mmio.h>
29
#include <asm/kvm_asm.h>
30
#include <asm/kvm_emulate.h>
31 32

#include "trace.h"
33 34 35

extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];

36
static pgd_t *boot_hyp_pgd;
37
static pgd_t *hyp_pgd;
38 39
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

40 41 42 43 44
static void *init_bounce_page;
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

45
#define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
46

47
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
48
{
49 50 51 52 53 54 55 56
	/*
	 * This function also gets called when dealing with HYP page
	 * tables. As HYP doesn't have an associated struct kvm (and
	 * the HYP page tables are fairly static), we don't do
	 * anything there.
	 */
	if (kvm)
		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
}

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

91 92 93 94 95 96
static bool page_empty(void *ptr)
{
	struct page *ptr_page = virt_to_page(ptr);
	return page_count(ptr_page) == 1;
}

97
static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
98
{
99 100 101 102 103 104 105 106 107
	if (pud_huge(*pud)) {
		pud_clear(pud);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		pmd_t *pmd_table = pmd_offset(pud, 0);
		pud_clear(pud);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
		pmd_free(NULL, pmd_table);
	}
108 109
	put_page(virt_to_page(pud));
}
110

111
static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
112
{
113 114 115 116 117 118 119 120 121
	if (kvm_pmd_huge(*pmd)) {
		pmd_clear(pmd);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		pte_t *pte_table = pte_offset_kernel(pmd, 0);
		pmd_clear(pmd);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
		pte_free_kernel(NULL, pte_table);
	}
122 123 124
	put_page(virt_to_page(pmd));
}

125
static void clear_pte_entry(struct kvm *kvm, pte_t *pte, phys_addr_t addr)
126 127 128 129
{
	if (pte_present(*pte)) {
		kvm_set_pte(pte, __pte(0));
		put_page(virt_to_page(pte));
130
		kvm_tlb_flush_vmid_ipa(kvm, addr);
131 132 133
	}
}

134 135
static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
			unsigned long long start, u64 size)
136 137 138 139
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
140 141
	pte_t *pte;
	unsigned long long addr = start, end = start + size;
142
	u64 next;
143

144 145 146
	while (addr < end) {
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
M
Marc Zyngier 已提交
147
		pte = NULL;
148
		if (pud_none(*pud)) {
149
			addr = kvm_pud_addr_end(addr, end);
150 151
			continue;
		}
152

153 154 155 156 157 158
		if (pud_huge(*pud)) {
			/*
			 * If we are dealing with a huge pud, just clear it and
			 * move on.
			 */
			clear_pud_entry(kvm, pud, addr);
159
			addr = kvm_pud_addr_end(addr, end);
160 161 162
			continue;
		}

163 164
		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
165
			addr = kvm_pmd_addr_end(addr, end);
166 167
			continue;
		}
168

169 170 171 172 173
		if (!kvm_pmd_huge(*pmd)) {
			pte = pte_offset_kernel(pmd, addr);
			clear_pte_entry(kvm, pte, addr);
			next = addr + PAGE_SIZE;
		}
174

175 176 177
		/*
		 * If the pmd entry is to be cleared, walk back up the ladder
		 */
M
Marc Zyngier 已提交
178
		if (kvm_pmd_huge(*pmd) || (pte && page_empty(pte))) {
179
			clear_pmd_entry(kvm, pmd, addr);
180
			next = kvm_pmd_addr_end(addr, end);
181
			if (page_empty(pmd) && !page_empty(pud)) {
182
				clear_pud_entry(kvm, pud, addr);
183
				next = kvm_pud_addr_end(addr, end);
184 185 186
			}
		}

187
		addr = next;
188
	}
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
			kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

	pmd = pmd_offset(pud, addr);
	do {
		next = kvm_pmd_addr_end(addr, end);
		if (!pmd_none(*pmd)) {
			if (kvm_pmd_huge(*pmd)) {
				hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
				kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
			} else {
				stage2_flush_ptes(kvm, pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

	pud = pud_offset(pgd, addr);
	do {
		next = kvm_pud_addr_end(addr, end);
		if (!pud_none(*pud)) {
			if (pud_huge(*pud)) {
				hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
				kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
			} else {
				stage2_flush_pmds(kvm, pud, addr, next);
			}
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

	pgd = kvm->arch.pgd + pgd_index(addr);
	do {
		next = kvm_pgd_addr_end(addr, end);
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
void stage2_flush_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

284 285 286 287 288 289 290 291 292 293
/**
 * free_boot_hyp_pgd - free HYP boot page tables
 *
 * Free the HYP boot page tables. The bounce page is also freed.
 */
void free_boot_hyp_pgd(void)
{
	mutex_lock(&kvm_hyp_pgd_mutex);

	if (boot_hyp_pgd) {
294 295
		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
296 297 298 299 300
		kfree(boot_hyp_pgd);
		boot_hyp_pgd = NULL;
	}

	if (hyp_pgd)
301
		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
302 303 304 305 306 307 308

	kfree(init_bounce_page);
	init_bounce_page = NULL;

	mutex_unlock(&kvm_hyp_pgd_mutex);
}

309
/**
310
 * free_hyp_pgds - free Hyp-mode page tables
311
 *
312 313 314 315 316 317
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 * VMALLOC_START to VMALLOC_END).
 *
 * boot_hyp_pgd should only map two pages for the init code.
318
 */
319
void free_hyp_pgds(void)
320 321 322
{
	unsigned long addr;

323
	free_boot_hyp_pgd();
324

325
	mutex_lock(&kvm_hyp_pgd_mutex);
326

327 328
	if (hyp_pgd) {
		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
329
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
330
		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
331 332
			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);

333
		kfree(hyp_pgd);
334
		hyp_pgd = NULL;
335 336
	}

337 338 339 340
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
341 342
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
343 344 345 346
{
	pte_t *pte;
	unsigned long addr;

347 348
	addr = start;
	do {
349 350
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
351
		get_page(virt_to_page(pte));
352
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
353
		pfn++;
354
	} while (addr += PAGE_SIZE, addr != end);
355 356 357
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
358 359
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
360 361 362 363 364
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

365 366
	addr = start;
	do {
367
		pmd = pmd_offset(pud, addr);
368 369 370 371

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
372
			pte = pte_alloc_one_kernel(NULL, addr);
373 374 375 376 377
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
378
			get_page(virt_to_page(pmd));
379
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
380 381 382 383
		}

		next = pmd_addr_end(addr, end);

384 385
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
386
	} while (addr = next, addr != end);
387 388 389 390

	return 0;
}

391 392 393
static int __create_hyp_mappings(pgd_t *pgdp,
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
394 395 396 397 398 399 400 401
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
402 403 404
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
405 406
		pgd = pgdp + pgd_index(addr);
		pud = pud_offset(pgd, addr);
407 408

		if (pud_none_or_clear_bad(pud)) {
409
			pmd = pmd_alloc_one(NULL, addr);
410 411 412 413 414 415
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				err = -ENOMEM;
				goto out;
			}
			pud_populate(NULL, pud, pmd);
416
			get_page(virt_to_page(pud));
417
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
418 419 420
		}

		next = pgd_addr_end(addr, end);
421
		err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
422 423
		if (err)
			goto out;
424
		pfn += (next - addr) >> PAGE_SHIFT;
425
	} while (addr = next, addr != end);
426 427 428 429 430
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

431 432 433 434 435 436 437 438 439 440 441
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

442
/**
443
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
444 445 446
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
 *
447 448 449
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
450 451 452
 */
int create_hyp_mappings(void *from, void *to)
{
453 454
	phys_addr_t phys_addr;
	unsigned long virt_addr;
455 456 457
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

458 459
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
460

461 462
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
463

464 465 466 467 468 469 470 471 472 473
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
		err = __create_hyp_mappings(hyp_pgd, virt_addr,
					    virt_addr + PAGE_SIZE,
					    __phys_to_pfn(phys_addr),
					    PAGE_HYP);
		if (err)
			return err;
	}

	return 0;
474 475 476
}

/**
477 478 479
 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 * @from:	The kernel start VA of the range
 * @to:		The kernel end VA of the range (exclusive)
480
 * @phys_addr:	The physical start address which gets mapped
481 482 483
 *
 * The resulting HYP VA is the same as the kernel VA, modulo
 * HYP_PAGE_OFFSET.
484
 */
485
int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
486
{
487 488 489 490 491 492 493 494 495
	unsigned long start = KERN_TO_HYP((unsigned long)from);
	unsigned long end = KERN_TO_HYP((unsigned long)to);

	/* Check for a valid kernel IO mapping */
	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
		return -EINVAL;

	return __create_hyp_mappings(hyp_pgd, start, end,
				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
496 497
}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
 * support either full 40-bit input addresses or limited to 32-bit input
 * addresses). Clears the allocated pages.
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

	pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
	if (!pgd)
		return -ENOMEM;

	memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
523
	kvm_clean_pgd(pgd);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	kvm->arch.pgd = pgd;

	return 0;
}

/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
{
542
	unmap_range(kvm, kvm->arch.pgd, start, size);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
}

/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 *
 * Note we don't need locking here as this is only called when the VM is
 * destroyed, which can only be done once.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
	if (kvm->arch.pgd == NULL)
		return;

	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
	free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
	kvm->arch.pgd = NULL;
}

566 567
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
568 569 570 571 572 573 574 575 576
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;

	pgd = kvm->arch.pgd + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		if (!cache)
577
			return NULL;
578 579 580
		pmd = mmu_memory_cache_alloc(cache);
		pud_populate(NULL, pud, pmd);
		get_page(virt_to_page(pud));
581 582
	}

583 584 585 586 587 588 589 590 591 592
	return pmd_offset(pud, addr);
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
	kvm_set_pmd(pmd, *new_pmd);
	if (pmd_present(old_pmd))
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	else
		get_page(virt_to_page(pmd));
	return 0;
}

static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			  phys_addr_t addr, const pte_t *new_pte, bool iomap)
{
	pmd_t *pmd;
	pte_t *pte, old_pte;

	/* Create stage-2 page table mapping - Level 1 */
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/* Create stage-2 page mappings - Level 2 */
631 632 633 634
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
635
		kvm_clean_pte(pte);
636 637
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
638 639 640
	}

	pte = pte_offset_kernel(pmd, addr);
641 642 643 644 645 646 647 648

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
	kvm_set_pte(pte, *new_pte);
	if (pte_present(old_pte))
649
		kvm_tlb_flush_vmid_ipa(kvm, addr);
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
	else
		get_page(virt_to_page(pte));

	return 0;
}

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
			  phys_addr_t pa, unsigned long size)
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
676
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

		ret = mmu_topup_memory_cache(&cache, 2, 2);
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
		ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *ipap >> PAGE_SHIFT;

	if (PageTransCompound(pfn_to_page(pfn))) {
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

736
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
737
			  struct kvm_memory_slot *memslot,
738 739 740
			  unsigned long fault_status)
{
	int ret;
741
	bool write_fault, writable, hugetlb = false, force_pte = false;
742
	unsigned long mmu_seq;
743 744 745
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	unsigned long hva = gfn_to_hva(vcpu->kvm, gfn);
	struct kvm *kvm = vcpu->kvm;
746
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
747 748
	struct vm_area_struct *vma;
	pfn_t pfn;
749

750
	write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
751 752 753 754 755
	if (fault_status == FSC_PERM && !write_fault) {
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

756 757 758 759 760 761
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
	if (is_vm_hugetlb_page(vma)) {
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
762 763
	} else {
		/*
764 765 766 767 768 769 770
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
771
		 */
772 773
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
774
			force_pte = true;
775 776 777
	}
	up_read(&current->mm->mmap_sem);

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	/* We need minimum second+third level pages */
	ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

795
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
796 797 798
	if (is_error_pfn(pfn))
		return -EFAULT;

799 800
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
801
		goto out_unlock;
802 803
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
804 805 806 807 808 809 810 811

	if (hugetlb) {
		pmd_t new_pmd = pfn_pmd(pfn, PAGE_S2);
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
			kvm_set_s2pmd_writable(&new_pmd);
			kvm_set_pfn_dirty(pfn);
		}
812
		coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE);
813 814 815 816 817 818 819
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
		pte_t new_pte = pfn_pte(pfn, PAGE_S2);
		if (writable) {
			kvm_set_s2pte_writable(&new_pte);
			kvm_set_pfn_dirty(pfn);
		}
820
		coherent_cache_guest_page(vcpu, hva, PAGE_SIZE);
821
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, false);
822
	}
823

824 825

out_unlock:
826
	spin_unlock(&kvm->mmu_lock);
827
	kvm_release_pfn_clean(pfn);
828
	return ret;
829 830 831 832 833 834 835 836 837 838 839 840 841 842
}

/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
843 844
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
845 846 847 848 849 850 851
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
	bool is_iabt;
	gfn_t gfn;
	int ret, idx;

852
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
853
	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
854

855 856
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
857 858

	/* Check the stage-2 fault is trans. fault or write fault */
859
	fault_status = kvm_vcpu_trap_get_fault(vcpu);
860
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
861 862
		kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu), fault_status);
863 864 865 866 867 868 869 870 871
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
	if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
872
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
873 874 875 876 877 878 879 880 881 882 883
			ret = 1;
			goto out_unlock;
		}

		if (fault_status != FSC_FAULT) {
			kvm_err("Unsupported fault status on io memory: %#lx\n",
				fault_status);
			ret = -EFAULT;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
884 885 886 887 888 889 890
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
891
		ret = io_mem_abort(vcpu, run, fault_ipa);
892 893 894 895 896
		goto out_unlock;
	}

	memslot = gfn_to_memslot(vcpu->kvm, gfn);

897
	ret = user_mem_abort(vcpu, fault_ipa, memslot, fault_status);
898 899 900 901 902
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
903 904
}

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
static void handle_hva_to_gpa(struct kvm *kvm,
			      unsigned long start,
			      unsigned long end,
			      void (*handler)(struct kvm *kvm,
					      gpa_t gpa, void *data),
			      void *data)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

		for (; gfn < gfn_end; ++gfn) {
			gpa_t gpa = gfn << PAGE_SHIFT;
			handler(kvm, gpa, data);
		}
	}
}

static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
{
	pte_t *pte = (pte_t *)data;

	stage2_set_pte(kvm, NULL, gpa, pte, false);
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

996 997 998 999 1000
phys_addr_t kvm_mmu_get_httbr(void)
{
	return virt_to_phys(hyp_pgd);
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
phys_addr_t kvm_mmu_get_boot_httbr(void)
{
	return virt_to_phys(boot_hyp_pgd);
}

phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1011 1012
int kvm_mmu_init(void)
{
1013 1014
	int err;

1015 1016 1017
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
		/*
		 * Our init code is crossing a page boundary. Allocate
		 * a bounce page, copy the code over and use that.
		 */
		size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
		phys_addr_t phys_base;

		init_bounce_page = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!init_bounce_page) {
			kvm_err("Couldn't allocate HYP init bounce page\n");
			err = -ENOMEM;
			goto out;
		}

		memcpy(init_bounce_page, __hyp_idmap_text_start, len);
		/*
		 * Warning: the code we just copied to the bounce page
		 * must be flushed to the point of coherency.
		 * Otherwise, the data may be sitting in L2, and HYP
		 * mode won't be able to observe it as it runs with
		 * caches off at that point.
		 */
		kvm_flush_dcache_to_poc(init_bounce_page, len);

1044
		phys_base = kvm_virt_to_phys(init_bounce_page);
1045 1046 1047 1048 1049 1050 1051 1052
		hyp_idmap_vector += phys_base - hyp_idmap_start;
		hyp_idmap_start = phys_base;
		hyp_idmap_end = phys_base + len;

		kvm_info("Using HYP init bounce page @%lx\n",
			 (unsigned long)phys_base);
	}

1053
	hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
1054 1055
	boot_hyp_pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
	if (!hyp_pgd || !boot_hyp_pgd) {
1056
		kvm_err("Hyp mode PGD not allocated\n");
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		err = -ENOMEM;
		goto out;
	}

	/* Create the idmap in the boot page tables */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);

	if (err) {
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);
		goto out;
1071 1072
	}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	/* Map the very same page at the trampoline VA */
	err = 	__create_hyp_mappings(boot_hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

	/* Map the same page again into the runtime page tables */
	err = 	__create_hyp_mappings(hyp_pgd,
				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP);
	if (err) {
		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
			TRAMPOLINE_VA);
		goto out;
	}

1095
	return 0;
1096
out:
1097
	free_hyp_pgds();
1098
	return err;
1099
}