i2c-designware-core.c 22.0 KB
Newer Older
1
/*
2
 * Synopsys DesignWare I2C adapter driver (master only).
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Based on the TI DAVINCI I2C adapter driver.
 *
 * Copyright (C) 2006 Texas Instruments.
 * Copyright (C) 2007 MontaVista Software Inc.
 * Copyright (C) 2009 Provigent Ltd.
 *
 * ----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * ----------------------------------------------------------------------------
 *
 */
28
#include <linux/export.h>
29 30
#include <linux/errno.h>
#include <linux/err.h>
31
#include <linux/i2c.h>
32 33
#include <linux/interrupt.h>
#include <linux/io.h>
34
#include <linux/pm_runtime.h>
35
#include <linux/delay.h>
36
#include <linux/module.h>
37
#include "i2c-designware-core.h"
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * Registers offset
 */
#define DW_IC_CON		0x0
#define DW_IC_TAR		0x4
#define DW_IC_DATA_CMD		0x10
#define DW_IC_SS_SCL_HCNT	0x14
#define DW_IC_SS_SCL_LCNT	0x18
#define DW_IC_FS_SCL_HCNT	0x1c
#define DW_IC_FS_SCL_LCNT	0x20
#define DW_IC_INTR_STAT		0x2c
#define DW_IC_INTR_MASK		0x30
#define DW_IC_RAW_INTR_STAT	0x34
#define DW_IC_RX_TL		0x38
#define DW_IC_TX_TL		0x3c
#define DW_IC_CLR_INTR		0x40
#define DW_IC_CLR_RX_UNDER	0x44
#define DW_IC_CLR_RX_OVER	0x48
#define DW_IC_CLR_TX_OVER	0x4c
#define DW_IC_CLR_RD_REQ	0x50
#define DW_IC_CLR_TX_ABRT	0x54
#define DW_IC_CLR_RX_DONE	0x58
#define DW_IC_CLR_ACTIVITY	0x5c
#define DW_IC_CLR_STOP_DET	0x60
#define DW_IC_CLR_START_DET	0x64
#define DW_IC_CLR_GEN_CALL	0x68
#define DW_IC_ENABLE		0x6c
#define DW_IC_STATUS		0x70
#define DW_IC_TXFLR		0x74
#define DW_IC_RXFLR		0x78
69
#define DW_IC_SDA_HOLD		0x7c
70
#define DW_IC_TX_ABRT_SOURCE	0x80
71
#define DW_IC_ENABLE_STATUS	0x9c
72
#define DW_IC_COMP_PARAM_1	0xf4
73 74
#define DW_IC_COMP_VERSION	0xf8
#define DW_IC_SDA_HOLD_MIN_VERS	0x3131312A
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
#define DW_IC_COMP_TYPE		0xfc
#define DW_IC_COMP_TYPE_VALUE	0x44570140

#define DW_IC_INTR_RX_UNDER	0x001
#define DW_IC_INTR_RX_OVER	0x002
#define DW_IC_INTR_RX_FULL	0x004
#define DW_IC_INTR_TX_OVER	0x008
#define DW_IC_INTR_TX_EMPTY	0x010
#define DW_IC_INTR_RD_REQ	0x020
#define DW_IC_INTR_TX_ABRT	0x040
#define DW_IC_INTR_RX_DONE	0x080
#define DW_IC_INTR_ACTIVITY	0x100
#define DW_IC_INTR_STOP_DET	0x200
#define DW_IC_INTR_START_DET	0x400
#define DW_IC_INTR_GEN_CALL	0x800

#define DW_IC_INTR_DEFAULT_MASK		(DW_IC_INTR_RX_FULL | \
					 DW_IC_INTR_TX_EMPTY | \
					 DW_IC_INTR_TX_ABRT | \
					 DW_IC_INTR_STOP_DET)

#define DW_IC_STATUS_ACTIVITY	0x1

#define DW_IC_ERR_TX_ABRT	0x1

100 101
#define DW_IC_TAR_10BITADDR_MASTER BIT(12)

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * status codes
 */
#define STATUS_IDLE			0x0
#define STATUS_WRITE_IN_PROGRESS	0x1
#define STATUS_READ_IN_PROGRESS		0x2

#define TIMEOUT			20 /* ms */

/*
 * hardware abort codes from the DW_IC_TX_ABRT_SOURCE register
 *
 * only expected abort codes are listed here
 * refer to the datasheet for the full list
 */
#define ABRT_7B_ADDR_NOACK	0
#define ABRT_10ADDR1_NOACK	1
#define ABRT_10ADDR2_NOACK	2
#define ABRT_TXDATA_NOACK	3
#define ABRT_GCALL_NOACK	4
#define ABRT_GCALL_READ		5
#define ABRT_SBYTE_ACKDET	7
#define ABRT_SBYTE_NORSTRT	9
#define ABRT_10B_RD_NORSTRT	10
#define ABRT_MASTER_DIS		11
#define ARB_LOST		12

#define DW_IC_TX_ABRT_7B_ADDR_NOACK	(1UL << ABRT_7B_ADDR_NOACK)
#define DW_IC_TX_ABRT_10ADDR1_NOACK	(1UL << ABRT_10ADDR1_NOACK)
#define DW_IC_TX_ABRT_10ADDR2_NOACK	(1UL << ABRT_10ADDR2_NOACK)
#define DW_IC_TX_ABRT_TXDATA_NOACK	(1UL << ABRT_TXDATA_NOACK)
#define DW_IC_TX_ABRT_GCALL_NOACK	(1UL << ABRT_GCALL_NOACK)
#define DW_IC_TX_ABRT_GCALL_READ	(1UL << ABRT_GCALL_READ)
#define DW_IC_TX_ABRT_SBYTE_ACKDET	(1UL << ABRT_SBYTE_ACKDET)
#define DW_IC_TX_ABRT_SBYTE_NORSTRT	(1UL << ABRT_SBYTE_NORSTRT)
#define DW_IC_TX_ABRT_10B_RD_NORSTRT	(1UL << ABRT_10B_RD_NORSTRT)
#define DW_IC_TX_ABRT_MASTER_DIS	(1UL << ABRT_MASTER_DIS)
#define DW_IC_TX_ARB_LOST		(1UL << ARB_LOST)

#define DW_IC_TX_ABRT_NOACK		(DW_IC_TX_ABRT_7B_ADDR_NOACK | \
					 DW_IC_TX_ABRT_10ADDR1_NOACK | \
					 DW_IC_TX_ABRT_10ADDR2_NOACK | \
					 DW_IC_TX_ABRT_TXDATA_NOACK | \
					 DW_IC_TX_ABRT_GCALL_NOACK)

147
static char *abort_sources[] = {
148
	[ABRT_7B_ADDR_NOACK] =
149
		"slave address not acknowledged (7bit mode)",
150
	[ABRT_10ADDR1_NOACK] =
151
		"first address byte not acknowledged (10bit mode)",
152
	[ABRT_10ADDR2_NOACK] =
153
		"second address byte not acknowledged (10bit mode)",
154
	[ABRT_TXDATA_NOACK] =
155
		"data not acknowledged",
156
	[ABRT_GCALL_NOACK] =
157
		"no acknowledgement for a general call",
158
	[ABRT_GCALL_READ] =
159
		"read after general call",
160
	[ABRT_SBYTE_ACKDET] =
161
		"start byte acknowledged",
162
	[ABRT_SBYTE_NORSTRT] =
163
		"trying to send start byte when restart is disabled",
164
	[ABRT_10B_RD_NORSTRT] =
165
		"trying to read when restart is disabled (10bit mode)",
166
	[ABRT_MASTER_DIS] =
167
		"trying to use disabled adapter",
168
	[ARB_LOST] =
169 170 171
		"lost arbitration",
};

172
u32 dw_readl(struct dw_i2c_dev *dev, int offset)
173
{
174
	u32 value;
175

176 177 178 179 180 181 182
	if (dev->accessor_flags & ACCESS_16BIT)
		value = readw(dev->base + offset) |
			(readw(dev->base + offset + 2) << 16);
	else
		value = readl(dev->base + offset);

	if (dev->accessor_flags & ACCESS_SWAP)
183 184 185
		return swab32(value);
	else
		return value;
186 187
}

188
void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset)
189
{
190
	if (dev->accessor_flags & ACCESS_SWAP)
191 192
		b = swab32(b);

193 194 195 196 197 198
	if (dev->accessor_flags & ACCESS_16BIT) {
		writew((u16)b, dev->base + offset);
		writew((u16)(b >> 16), dev->base + offset + 2);
	} else {
		writel(b, dev->base + offset);
	}
199 200
}

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static u32
i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
{
	/*
	 * DesignWare I2C core doesn't seem to have solid strategy to meet
	 * the tHD;STA timing spec.  Configuring _HCNT based on tHIGH spec
	 * will result in violation of the tHD;STA spec.
	 */
	if (cond)
		/*
		 * Conditional expression:
		 *
		 *   IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
		 *
		 * This is based on the DW manuals, and represents an ideal
		 * configuration.  The resulting I2C bus speed will be
		 * faster than any of the others.
		 *
		 * If your hardware is free from tHD;STA issue, try this one.
		 */
221
		return (ic_clk * tSYMBOL + 500000) / 1000000 - 8 + offset;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	else
		/*
		 * Conditional expression:
		 *
		 *   IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
		 *
		 * This is just experimental rule; the tHD;STA period turned
		 * out to be proportinal to (_HCNT + 3).  With this setting,
		 * we could meet both tHIGH and tHD;STA timing specs.
		 *
		 * If unsure, you'd better to take this alternative.
		 *
		 * The reason why we need to take into account "tf" here,
		 * is the same as described in i2c_dw_scl_lcnt().
		 */
237 238
		return (ic_clk * (tSYMBOL + tf) + 500000) / 1000000
			- 3 + offset;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
}

static u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
{
	/*
	 * Conditional expression:
	 *
	 *   IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
	 *
	 * DW I2C core starts counting the SCL CNTs for the LOW period
	 * of the SCL clock (tLOW) as soon as it pulls the SCL line.
	 * In order to meet the tLOW timing spec, we need to take into
	 * account the fall time of SCL signal (tf).  Default tf value
	 * should be 0.3 us, for safety.
	 */
254
	return ((ic_clk * (tLOW + tf) + 500000) / 1000000) - 1 + offset;
255 256
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void __i2c_dw_enable(struct dw_i2c_dev *dev, bool enable)
{
	int timeout = 100;

	do {
		dw_writel(dev, enable, DW_IC_ENABLE);
		if ((dw_readl(dev, DW_IC_ENABLE_STATUS) & 1) == enable)
			return;

		/*
		 * Wait 10 times the signaling period of the highest I2C
		 * transfer supported by the driver (for 400KHz this is
		 * 25us) as described in the DesignWare I2C databook.
		 */
		usleep_range(25, 250);
	} while (timeout--);

	dev_warn(dev->dev, "timeout in %sabling adapter\n",
		 enable ? "en" : "dis");
}

278 279 280 281 282 283 284 285
/**
 * i2c_dw_init() - initialize the designware i2c master hardware
 * @dev: device private data
 *
 * This functions configures and enables the I2C master.
 * This function is called during I2C init function, and in case of timeout at
 * run time.
 */
286
int i2c_dw_init(struct dw_i2c_dev *dev)
287
{
288
	u32 input_clock_khz;
289
	u32 hcnt, lcnt;
290
	u32 reg;
291
	u32 sda_falling_time, scl_falling_time;
292

293 294
	input_clock_khz = dev->get_clk_rate_khz(dev);

295 296
	reg = dw_readl(dev, DW_IC_COMP_TYPE);
	if (reg == ___constant_swab32(DW_IC_COMP_TYPE_VALUE)) {
297 298 299 300 301 302
		/* Configure register endianess access */
		dev->accessor_flags |= ACCESS_SWAP;
	} else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
		/* Configure register access mode 16bit */
		dev->accessor_flags |= ACCESS_16BIT;
	} else if (reg != DW_IC_COMP_TYPE_VALUE) {
303 304 305 306
		dev_err(dev->dev, "Unknown Synopsys component type: "
			"0x%08x\n", reg);
		return -ENODEV;
	}
307 308

	/* Disable the adapter */
309
	__i2c_dw_enable(dev, false);
310 311

	/* set standard and fast speed deviders for high/low periods */
312

313 314 315
	sda_falling_time = dev->sda_falling_time ?: 300; /* ns */
	scl_falling_time = dev->scl_falling_time ?: 300; /* ns */

316 317
	/* Standard-mode */
	hcnt = i2c_dw_scl_hcnt(input_clock_khz,
318 319
				4000,	/* tHD;STA = tHIGH = 4.0 us */
				sda_falling_time,
320 321 322
				0,	/* 0: DW default, 1: Ideal */
				0);	/* No offset */
	lcnt = i2c_dw_scl_lcnt(input_clock_khz,
323 324
				4700,	/* tLOW = 4.7 us */
				scl_falling_time,
325
				0);	/* No offset */
326 327 328 329 330 331

	/* Allow platforms to specify the ideal HCNT and LCNT values */
	if (dev->ss_hcnt && dev->ss_lcnt) {
		hcnt = dev->ss_hcnt;
		lcnt = dev->ss_lcnt;
	}
332 333
	dw_writel(dev, hcnt, DW_IC_SS_SCL_HCNT);
	dw_writel(dev, lcnt, DW_IC_SS_SCL_LCNT);
334 335 336 337
	dev_dbg(dev->dev, "Standard-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);

	/* Fast-mode */
	hcnt = i2c_dw_scl_hcnt(input_clock_khz,
338 339
				600,	/* tHD;STA = tHIGH = 0.6 us */
				sda_falling_time,
340 341 342
				0,	/* 0: DW default, 1: Ideal */
				0);	/* No offset */
	lcnt = i2c_dw_scl_lcnt(input_clock_khz,
343 344
				1300,	/* tLOW = 1.3 us */
				scl_falling_time,
345
				0);	/* No offset */
346 347 348 349 350

	if (dev->fs_hcnt && dev->fs_lcnt) {
		hcnt = dev->fs_hcnt;
		lcnt = dev->fs_lcnt;
	}
351 352
	dw_writel(dev, hcnt, DW_IC_FS_SCL_HCNT);
	dw_writel(dev, lcnt, DW_IC_FS_SCL_LCNT);
353
	dev_dbg(dev->dev, "Fast-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
354

355 356 357 358 359 360 361 362 363 364
	/* Configure SDA Hold Time if required */
	if (dev->sda_hold_time) {
		reg = dw_readl(dev, DW_IC_COMP_VERSION);
		if (reg >= DW_IC_SDA_HOLD_MIN_VERS)
			dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD);
		else
			dev_warn(dev->dev,
				"Hardware too old to adjust SDA hold time.");
	}

365
	/* Configure Tx/Rx FIFO threshold levels */
366 367
	dw_writel(dev, dev->tx_fifo_depth - 1, DW_IC_TX_TL);
	dw_writel(dev, 0, DW_IC_RX_TL);
368

369
	/* configure the i2c master */
370
	dw_writel(dev, dev->master_cfg , DW_IC_CON);
371
	return 0;
372
}
373
EXPORT_SYMBOL_GPL(i2c_dw_init);
374 375 376 377 378 379 380 381

/*
 * Waiting for bus not busy
 */
static int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
{
	int timeout = TIMEOUT;

382
	while (dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_ACTIVITY) {
383 384 385 386 387
		if (timeout <= 0) {
			dev_warn(dev->dev, "timeout waiting for bus ready\n");
			return -ETIMEDOUT;
		}
		timeout--;
388
		usleep_range(1000, 1100);
389 390 391 392 393
	}

	return 0;
}

394 395 396
static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
{
	struct i2c_msg *msgs = dev->msgs;
397
	u32 ic_con, ic_tar = 0;
398 399

	/* Disable the adapter */
400
	__i2c_dw_enable(dev, false);
401 402

	/* if the slave address is ten bit address, enable 10BITADDR */
403
	ic_con = dw_readl(dev, DW_IC_CON);
404
	if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) {
405
		ic_con |= DW_IC_CON_10BITADDR_MASTER;
406 407 408 409 410 411 412 413
		/*
		 * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
		 * mode has to be enabled via bit 12 of IC_TAR register.
		 * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be
		 * detected from registers.
		 */
		ic_tar = DW_IC_TAR_10BITADDR_MASTER;
	} else {
414
		ic_con &= ~DW_IC_CON_10BITADDR_MASTER;
415 416
	}

417
	dw_writel(dev, ic_con, DW_IC_CON);
418

419 420 421 422 423 424
	/*
	 * Set the slave (target) address and enable 10-bit addressing mode
	 * if applicable.
	 */
	dw_writel(dev, msgs[dev->msg_write_idx].addr | ic_tar, DW_IC_TAR);

425
	/* Enable the adapter */
426
	__i2c_dw_enable(dev, true);
427

428 429
	/* Clear and enable interrupts */
	i2c_dw_clear_int(dev);
430
	dw_writel(dev, DW_IC_INTR_DEFAULT_MASK, DW_IC_INTR_MASK);
431 432
}

433
/*
434 435 436 437
 * Initiate (and continue) low level master read/write transaction.
 * This function is only called from i2c_dw_isr, and pumping i2c_msg
 * messages into the tx buffer.  Even if the size of i2c_msg data is
 * longer than the size of the tx buffer, it handles everything.
438
 */
439
static void
440
i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
441 442
{
	struct i2c_msg *msgs = dev->msgs;
443
	u32 intr_mask;
444
	int tx_limit, rx_limit;
445 446
	u32 addr = msgs[dev->msg_write_idx].addr;
	u32 buf_len = dev->tx_buf_len;
447
	u8 *buf = dev->tx_buf;
448
	bool need_restart = false;
449

450
	intr_mask = DW_IC_INTR_DEFAULT_MASK;
451

452
	for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
453 454
		/*
		 * if target address has changed, we need to
455 456 457
		 * reprogram the target address in the i2c
		 * adapter when we are done with this transfer
		 */
458 459 460 461 462 463
		if (msgs[dev->msg_write_idx].addr != addr) {
			dev_err(dev->dev,
				"%s: invalid target address\n", __func__);
			dev->msg_err = -EINVAL;
			break;
		}
464 465 466 467 468

		if (msgs[dev->msg_write_idx].len == 0) {
			dev_err(dev->dev,
				"%s: invalid message length\n", __func__);
			dev->msg_err = -EINVAL;
469
			break;
470 471 472 473
		}

		if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
			/* new i2c_msg */
474
			buf = msgs[dev->msg_write_idx].buf;
475
			buf_len = msgs[dev->msg_write_idx].len;
476 477 478 479 480 481 482 483

			/* If both IC_EMPTYFIFO_HOLD_MASTER_EN and
			 * IC_RESTART_EN are set, we must manually
			 * set restart bit between messages.
			 */
			if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
					(dev->msg_write_idx > 0))
				need_restart = true;
484 485
		}

486 487
		tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR);
		rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR);
488

489
		while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
490 491 492 493 494 495 496 497 498 499 500 501
			u32 cmd = 0;

			/*
			 * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
			 * manually set the stop bit. However, it cannot be
			 * detected from the registers so we set it always
			 * when writing/reading the last byte.
			 */
			if (dev->msg_write_idx == dev->msgs_num - 1 &&
			    buf_len == 1)
				cmd |= BIT(9);

502 503 504 505 506
			if (need_restart) {
				cmd |= BIT(10);
				need_restart = false;
			}

507
			if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
508 509 510 511 512

				/* avoid rx buffer overrun */
				if (rx_limit - dev->rx_outstanding <= 0)
					break;

513
				dw_writel(dev, cmd | 0x100, DW_IC_DATA_CMD);
514
				rx_limit--;
515
				dev->rx_outstanding++;
516
			} else
517
				dw_writel(dev, cmd | *buf++, DW_IC_DATA_CMD);
518 519
			tx_limit--; buf_len--;
		}
520

521
		dev->tx_buf = buf;
522 523 524 525 526 527
		dev->tx_buf_len = buf_len;

		if (buf_len > 0) {
			/* more bytes to be written */
			dev->status |= STATUS_WRITE_IN_PROGRESS;
			break;
528
		} else
529
			dev->status &= ~STATUS_WRITE_IN_PROGRESS;
530 531
	}

532 533 534 535 536 537 538
	/*
	 * If i2c_msg index search is completed, we don't need TX_EMPTY
	 * interrupt any more.
	 */
	if (dev->msg_write_idx == dev->msgs_num)
		intr_mask &= ~DW_IC_INTR_TX_EMPTY;

539 540 541
	if (dev->msg_err)
		intr_mask = 0;

542
	dw_writel(dev, intr_mask,  DW_IC_INTR_MASK);
543 544 545
}

static void
546
i2c_dw_read(struct dw_i2c_dev *dev)
547 548
{
	struct i2c_msg *msgs = dev->msgs;
549
	int rx_valid;
550

551
	for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
552
		u32 len;
553 554 555 556 557 558 559 560 561 562 563 564 565
		u8 *buf;

		if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
			continue;

		if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
			len = msgs[dev->msg_read_idx].len;
			buf = msgs[dev->msg_read_idx].buf;
		} else {
			len = dev->rx_buf_len;
			buf = dev->rx_buf;
		}

566
		rx_valid = dw_readl(dev, DW_IC_RXFLR);
567

568
		for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
569
			*buf++ = dw_readl(dev, DW_IC_DATA_CMD);
570 571
			dev->rx_outstanding--;
		}
572 573 574 575 576 577 578 579 580 581 582

		if (len > 0) {
			dev->status |= STATUS_READ_IN_PROGRESS;
			dev->rx_buf_len = len;
			dev->rx_buf = buf;
			return;
		} else
			dev->status &= ~STATUS_READ_IN_PROGRESS;
	}
}

583 584 585 586 587
static int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
{
	unsigned long abort_source = dev->abort_source;
	int i;

588
	if (abort_source & DW_IC_TX_ABRT_NOACK) {
589
		for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
590 591 592 593 594
			dev_dbg(dev->dev,
				"%s: %s\n", __func__, abort_sources[i]);
		return -EREMOTEIO;
	}

595
	for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
596 597 598 599 600 601 602 603 604 605
		dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);

	if (abort_source & DW_IC_TX_ARB_LOST)
		return -EAGAIN;
	else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
		return -EINVAL; /* wrong msgs[] data */
	else
		return -EIO;
}

606 607 608
/*
 * Prepare controller for a transaction and call i2c_dw_xfer_msg
 */
609
int
610 611 612 613 614 615 616 617
i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
	int ret;

	dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);

	mutex_lock(&dev->lock);
618
	pm_runtime_get_sync(dev->dev);
619

620
	reinit_completion(&dev->cmd_complete);
621 622 623 624 625 626 627
	dev->msgs = msgs;
	dev->msgs_num = num;
	dev->cmd_err = 0;
	dev->msg_write_idx = 0;
	dev->msg_read_idx = 0;
	dev->msg_err = 0;
	dev->status = STATUS_IDLE;
628
	dev->abort_source = 0;
629
	dev->rx_outstanding = 0;
630 631 632 633 634 635

	ret = i2c_dw_wait_bus_not_busy(dev);
	if (ret < 0)
		goto done;

	/* start the transfers */
636
	i2c_dw_xfer_init(dev);
637 638

	/* wait for tx to complete */
639
	ret = wait_for_completion_timeout(&dev->cmd_complete, HZ);
640 641
	if (ret == 0) {
		dev_err(dev->dev, "controller timed out\n");
642
		/* i2c_dw_init implicitly disables the adapter */
643 644 645
		i2c_dw_init(dev);
		ret = -ETIMEDOUT;
		goto done;
646
	}
647

648 649 650 651 652 653 654 655 656
	/*
	 * We must disable the adapter before unlocking the &dev->lock mutex
	 * below. Otherwise the hardware might continue generating interrupts
	 * which in turn causes a race condition with the following transfer.
	 * Needs some more investigation if the additional interrupts are
	 * a hardware bug or this driver doesn't handle them correctly yet.
	 */
	__i2c_dw_enable(dev, false);

657 658 659 660 661 662 663 664 665 666 667 668 669
	if (dev->msg_err) {
		ret = dev->msg_err;
		goto done;
	}

	/* no error */
	if (likely(!dev->cmd_err)) {
		ret = num;
		goto done;
	}

	/* We have an error */
	if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
670 671
		ret = i2c_dw_handle_tx_abort(dev);
		goto done;
672 673 674 675
	}
	ret = -EIO;

done:
676 677
	pm_runtime_mark_last_busy(dev->dev);
	pm_runtime_put_autosuspend(dev->dev);
678 679 680 681
	mutex_unlock(&dev->lock);

	return ret;
}
682
EXPORT_SYMBOL_GPL(i2c_dw_xfer);
683

684
u32 i2c_dw_func(struct i2c_adapter *adap)
685
{
686 687
	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
	return dev->functionality;
688
}
689
EXPORT_SYMBOL_GPL(i2c_dw_func);
690

691 692 693 694 695 696 697 698 699 700
static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
{
	u32 stat;

	/*
	 * The IC_INTR_STAT register just indicates "enabled" interrupts.
	 * Ths unmasked raw version of interrupt status bits are available
	 * in the IC_RAW_INTR_STAT register.
	 *
	 * That is,
701
	 *   stat = dw_readl(IC_INTR_STAT);
702
	 * equals to,
703
	 *   stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK);
704 705 706
	 *
	 * The raw version might be useful for debugging purposes.
	 */
707
	stat = dw_readl(dev, DW_IC_INTR_STAT);
708 709 710 711

	/*
	 * Do not use the IC_CLR_INTR register to clear interrupts, or
	 * you'll miss some interrupts, triggered during the period from
712
	 * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR).
713 714 715 716
	 *
	 * Instead, use the separately-prepared IC_CLR_* registers.
	 */
	if (stat & DW_IC_INTR_RX_UNDER)
717
		dw_readl(dev, DW_IC_CLR_RX_UNDER);
718
	if (stat & DW_IC_INTR_RX_OVER)
719
		dw_readl(dev, DW_IC_CLR_RX_OVER);
720
	if (stat & DW_IC_INTR_TX_OVER)
721
		dw_readl(dev, DW_IC_CLR_TX_OVER);
722
	if (stat & DW_IC_INTR_RD_REQ)
723
		dw_readl(dev, DW_IC_CLR_RD_REQ);
724 725 726 727 728
	if (stat & DW_IC_INTR_TX_ABRT) {
		/*
		 * The IC_TX_ABRT_SOURCE register is cleared whenever
		 * the IC_CLR_TX_ABRT is read.  Preserve it beforehand.
		 */
729 730
		dev->abort_source = dw_readl(dev, DW_IC_TX_ABRT_SOURCE);
		dw_readl(dev, DW_IC_CLR_TX_ABRT);
731 732
	}
	if (stat & DW_IC_INTR_RX_DONE)
733
		dw_readl(dev, DW_IC_CLR_RX_DONE);
734
	if (stat & DW_IC_INTR_ACTIVITY)
735
		dw_readl(dev, DW_IC_CLR_ACTIVITY);
736
	if (stat & DW_IC_INTR_STOP_DET)
737
		dw_readl(dev, DW_IC_CLR_STOP_DET);
738
	if (stat & DW_IC_INTR_START_DET)
739
		dw_readl(dev, DW_IC_CLR_START_DET);
740
	if (stat & DW_IC_INTR_GEN_CALL)
741
		dw_readl(dev, DW_IC_CLR_GEN_CALL);
742 743 744 745

	return stat;
}

746 747 748 749
/*
 * Interrupt service routine. This gets called whenever an I2C interrupt
 * occurs.
 */
750
irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
751 752
{
	struct dw_i2c_dev *dev = dev_id;
753 754 755 756 757 758 759 760
	u32 stat, enabled;

	enabled = dw_readl(dev, DW_IC_ENABLE);
	stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
	dev_dbg(dev->dev, "%s:  %s enabled= 0x%x stat=0x%x\n", __func__,
		dev->adapter.name, enabled, stat);
	if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
		return IRQ_NONE;
761

762 763
	stat = i2c_dw_read_clear_intrbits(dev);

764 765 766
	if (stat & DW_IC_INTR_TX_ABRT) {
		dev->cmd_err |= DW_IC_ERR_TX_ABRT;
		dev->status = STATUS_IDLE;
767 768 769 770 771

		/*
		 * Anytime TX_ABRT is set, the contents of the tx/rx
		 * buffers are flushed.  Make sure to skip them.
		 */
772
		dw_writel(dev, 0, DW_IC_INTR_MASK);
773
		goto tx_aborted;
774 775
	}

776
	if (stat & DW_IC_INTR_RX_FULL)
777
		i2c_dw_read(dev);
778 779

	if (stat & DW_IC_INTR_TX_EMPTY)
780 781 782 783 784 785 786
		i2c_dw_xfer_msg(dev);

	/*
	 * No need to modify or disable the interrupt mask here.
	 * i2c_dw_xfer_msg() will take care of it according to
	 * the current transmit status.
	 */
787

788
tx_aborted:
789
	if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err)
790 791 792 793
		complete(&dev->cmd_complete);

	return IRQ_HANDLED;
}
794
EXPORT_SYMBOL_GPL(i2c_dw_isr);
795 796 797 798

void i2c_dw_enable(struct dw_i2c_dev *dev)
{
       /* Enable the adapter */
799
	__i2c_dw_enable(dev, true);
800
}
801
EXPORT_SYMBOL_GPL(i2c_dw_enable);
802

803
u32 i2c_dw_is_enabled(struct dw_i2c_dev *dev)
804
{
805 806
	return dw_readl(dev, DW_IC_ENABLE);
}
807
EXPORT_SYMBOL_GPL(i2c_dw_is_enabled);
808

809 810
void i2c_dw_disable(struct dw_i2c_dev *dev)
{
811
	/* Disable controller */
812
	__i2c_dw_enable(dev, false);
813 814 815 816 817

	/* Disable all interupts */
	dw_writel(dev, 0, DW_IC_INTR_MASK);
	dw_readl(dev, DW_IC_CLR_INTR);
}
818
EXPORT_SYMBOL_GPL(i2c_dw_disable);
819 820 821 822 823

void i2c_dw_clear_int(struct dw_i2c_dev *dev)
{
	dw_readl(dev, DW_IC_CLR_INTR);
}
824
EXPORT_SYMBOL_GPL(i2c_dw_clear_int);
825 826 827 828 829

void i2c_dw_disable_int(struct dw_i2c_dev *dev)
{
	dw_writel(dev, 0, DW_IC_INTR_MASK);
}
830
EXPORT_SYMBOL_GPL(i2c_dw_disable_int);
831 832 833 834 835

u32 i2c_dw_read_comp_param(struct dw_i2c_dev *dev)
{
	return dw_readl(dev, DW_IC_COMP_PARAM_1);
}
836
EXPORT_SYMBOL_GPL(i2c_dw_read_comp_param);
837 838 839

MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core");
MODULE_LICENSE("GPL");