i2c-designware-core.c 21.9 KB
Newer Older
1
/*
2
 * Synopsys DesignWare I2C adapter driver (master only).
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Based on the TI DAVINCI I2C adapter driver.
 *
 * Copyright (C) 2006 Texas Instruments.
 * Copyright (C) 2007 MontaVista Software Inc.
 * Copyright (C) 2009 Provigent Ltd.
 *
 * ----------------------------------------------------------------------------
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * ----------------------------------------------------------------------------
 *
 */
28
#include <linux/export.h>
29 30 31
#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/err.h>
32
#include <linux/i2c.h>
33 34
#include <linux/interrupt.h>
#include <linux/io.h>
35
#include <linux/pm_runtime.h>
36
#include <linux/delay.h>
37
#include <linux/module.h>
38
#include "i2c-designware-core.h"
39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/*
 * Registers offset
 */
#define DW_IC_CON		0x0
#define DW_IC_TAR		0x4
#define DW_IC_DATA_CMD		0x10
#define DW_IC_SS_SCL_HCNT	0x14
#define DW_IC_SS_SCL_LCNT	0x18
#define DW_IC_FS_SCL_HCNT	0x1c
#define DW_IC_FS_SCL_LCNT	0x20
#define DW_IC_INTR_STAT		0x2c
#define DW_IC_INTR_MASK		0x30
#define DW_IC_RAW_INTR_STAT	0x34
#define DW_IC_RX_TL		0x38
#define DW_IC_TX_TL		0x3c
#define DW_IC_CLR_INTR		0x40
#define DW_IC_CLR_RX_UNDER	0x44
#define DW_IC_CLR_RX_OVER	0x48
#define DW_IC_CLR_TX_OVER	0x4c
#define DW_IC_CLR_RD_REQ	0x50
#define DW_IC_CLR_TX_ABRT	0x54
#define DW_IC_CLR_RX_DONE	0x58
#define DW_IC_CLR_ACTIVITY	0x5c
#define DW_IC_CLR_STOP_DET	0x60
#define DW_IC_CLR_START_DET	0x64
#define DW_IC_CLR_GEN_CALL	0x68
#define DW_IC_ENABLE		0x6c
#define DW_IC_STATUS		0x70
#define DW_IC_TXFLR		0x74
#define DW_IC_RXFLR		0x78
70
#define DW_IC_SDA_HOLD		0x7c
71
#define DW_IC_TX_ABRT_SOURCE	0x80
72
#define DW_IC_ENABLE_STATUS	0x9c
73
#define DW_IC_COMP_PARAM_1	0xf4
74 75
#define DW_IC_COMP_VERSION	0xf8
#define DW_IC_SDA_HOLD_MIN_VERS	0x3131312A
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define DW_IC_COMP_TYPE		0xfc
#define DW_IC_COMP_TYPE_VALUE	0x44570140

#define DW_IC_INTR_RX_UNDER	0x001
#define DW_IC_INTR_RX_OVER	0x002
#define DW_IC_INTR_RX_FULL	0x004
#define DW_IC_INTR_TX_OVER	0x008
#define DW_IC_INTR_TX_EMPTY	0x010
#define DW_IC_INTR_RD_REQ	0x020
#define DW_IC_INTR_TX_ABRT	0x040
#define DW_IC_INTR_RX_DONE	0x080
#define DW_IC_INTR_ACTIVITY	0x100
#define DW_IC_INTR_STOP_DET	0x200
#define DW_IC_INTR_START_DET	0x400
#define DW_IC_INTR_GEN_CALL	0x800

#define DW_IC_INTR_DEFAULT_MASK		(DW_IC_INTR_RX_FULL | \
					 DW_IC_INTR_TX_EMPTY | \
					 DW_IC_INTR_TX_ABRT | \
					 DW_IC_INTR_STOP_DET)

#define DW_IC_STATUS_ACTIVITY	0x1

#define DW_IC_ERR_TX_ABRT	0x1

101 102
#define DW_IC_TAR_10BITADDR_MASTER BIT(12)

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
/*
 * status codes
 */
#define STATUS_IDLE			0x0
#define STATUS_WRITE_IN_PROGRESS	0x1
#define STATUS_READ_IN_PROGRESS		0x2

#define TIMEOUT			20 /* ms */

/*
 * hardware abort codes from the DW_IC_TX_ABRT_SOURCE register
 *
 * only expected abort codes are listed here
 * refer to the datasheet for the full list
 */
#define ABRT_7B_ADDR_NOACK	0
#define ABRT_10ADDR1_NOACK	1
#define ABRT_10ADDR2_NOACK	2
#define ABRT_TXDATA_NOACK	3
#define ABRT_GCALL_NOACK	4
#define ABRT_GCALL_READ		5
#define ABRT_SBYTE_ACKDET	7
#define ABRT_SBYTE_NORSTRT	9
#define ABRT_10B_RD_NORSTRT	10
#define ABRT_MASTER_DIS		11
#define ARB_LOST		12

#define DW_IC_TX_ABRT_7B_ADDR_NOACK	(1UL << ABRT_7B_ADDR_NOACK)
#define DW_IC_TX_ABRT_10ADDR1_NOACK	(1UL << ABRT_10ADDR1_NOACK)
#define DW_IC_TX_ABRT_10ADDR2_NOACK	(1UL << ABRT_10ADDR2_NOACK)
#define DW_IC_TX_ABRT_TXDATA_NOACK	(1UL << ABRT_TXDATA_NOACK)
#define DW_IC_TX_ABRT_GCALL_NOACK	(1UL << ABRT_GCALL_NOACK)
#define DW_IC_TX_ABRT_GCALL_READ	(1UL << ABRT_GCALL_READ)
#define DW_IC_TX_ABRT_SBYTE_ACKDET	(1UL << ABRT_SBYTE_ACKDET)
#define DW_IC_TX_ABRT_SBYTE_NORSTRT	(1UL << ABRT_SBYTE_NORSTRT)
#define DW_IC_TX_ABRT_10B_RD_NORSTRT	(1UL << ABRT_10B_RD_NORSTRT)
#define DW_IC_TX_ABRT_MASTER_DIS	(1UL << ABRT_MASTER_DIS)
#define DW_IC_TX_ARB_LOST		(1UL << ARB_LOST)

#define DW_IC_TX_ABRT_NOACK		(DW_IC_TX_ABRT_7B_ADDR_NOACK | \
					 DW_IC_TX_ABRT_10ADDR1_NOACK | \
					 DW_IC_TX_ABRT_10ADDR2_NOACK | \
					 DW_IC_TX_ABRT_TXDATA_NOACK | \
					 DW_IC_TX_ABRT_GCALL_NOACK)

148
static char *abort_sources[] = {
149
	[ABRT_7B_ADDR_NOACK] =
150
		"slave address not acknowledged (7bit mode)",
151
	[ABRT_10ADDR1_NOACK] =
152
		"first address byte not acknowledged (10bit mode)",
153
	[ABRT_10ADDR2_NOACK] =
154
		"second address byte not acknowledged (10bit mode)",
155
	[ABRT_TXDATA_NOACK] =
156
		"data not acknowledged",
157
	[ABRT_GCALL_NOACK] =
158
		"no acknowledgement for a general call",
159
	[ABRT_GCALL_READ] =
160
		"read after general call",
161
	[ABRT_SBYTE_ACKDET] =
162
		"start byte acknowledged",
163
	[ABRT_SBYTE_NORSTRT] =
164
		"trying to send start byte when restart is disabled",
165
	[ABRT_10B_RD_NORSTRT] =
166
		"trying to read when restart is disabled (10bit mode)",
167
	[ABRT_MASTER_DIS] =
168
		"trying to use disabled adapter",
169
	[ARB_LOST] =
170 171 172
		"lost arbitration",
};

173
u32 dw_readl(struct dw_i2c_dev *dev, int offset)
174
{
175
	u32 value;
176

177 178 179 180 181 182 183
	if (dev->accessor_flags & ACCESS_16BIT)
		value = readw(dev->base + offset) |
			(readw(dev->base + offset + 2) << 16);
	else
		value = readl(dev->base + offset);

	if (dev->accessor_flags & ACCESS_SWAP)
184 185 186
		return swab32(value);
	else
		return value;
187 188
}

189
void dw_writel(struct dw_i2c_dev *dev, u32 b, int offset)
190
{
191
	if (dev->accessor_flags & ACCESS_SWAP)
192 193
		b = swab32(b);

194 195 196 197 198 199
	if (dev->accessor_flags & ACCESS_16BIT) {
		writew((u16)b, dev->base + offset);
		writew((u16)(b >> 16), dev->base + offset + 2);
	} else {
		writel(b, dev->base + offset);
	}
200 201
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static u32
i2c_dw_scl_hcnt(u32 ic_clk, u32 tSYMBOL, u32 tf, int cond, int offset)
{
	/*
	 * DesignWare I2C core doesn't seem to have solid strategy to meet
	 * the tHD;STA timing spec.  Configuring _HCNT based on tHIGH spec
	 * will result in violation of the tHD;STA spec.
	 */
	if (cond)
		/*
		 * Conditional expression:
		 *
		 *   IC_[FS]S_SCL_HCNT + (1+4+3) >= IC_CLK * tHIGH
		 *
		 * This is based on the DW manuals, and represents an ideal
		 * configuration.  The resulting I2C bus speed will be
		 * faster than any of the others.
		 *
		 * If your hardware is free from tHD;STA issue, try this one.
		 */
		return (ic_clk * tSYMBOL + 5000) / 10000 - 8 + offset;
	else
		/*
		 * Conditional expression:
		 *
		 *   IC_[FS]S_SCL_HCNT + 3 >= IC_CLK * (tHD;STA + tf)
		 *
		 * This is just experimental rule; the tHD;STA period turned
		 * out to be proportinal to (_HCNT + 3).  With this setting,
		 * we could meet both tHIGH and tHD;STA timing specs.
		 *
		 * If unsure, you'd better to take this alternative.
		 *
		 * The reason why we need to take into account "tf" here,
		 * is the same as described in i2c_dw_scl_lcnt().
		 */
		return (ic_clk * (tSYMBOL + tf) + 5000) / 10000 - 3 + offset;
}

static u32 i2c_dw_scl_lcnt(u32 ic_clk, u32 tLOW, u32 tf, int offset)
{
	/*
	 * Conditional expression:
	 *
	 *   IC_[FS]S_SCL_LCNT + 1 >= IC_CLK * (tLOW + tf)
	 *
	 * DW I2C core starts counting the SCL CNTs for the LOW period
	 * of the SCL clock (tLOW) as soon as it pulls the SCL line.
	 * In order to meet the tLOW timing spec, we need to take into
	 * account the fall time of SCL signal (tf).  Default tf value
	 * should be 0.3 us, for safety.
	 */
	return ((ic_clk * (tLOW + tf) + 5000) / 10000) - 1 + offset;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void __i2c_dw_enable(struct dw_i2c_dev *dev, bool enable)
{
	int timeout = 100;

	do {
		dw_writel(dev, enable, DW_IC_ENABLE);
		if ((dw_readl(dev, DW_IC_ENABLE_STATUS) & 1) == enable)
			return;

		/*
		 * Wait 10 times the signaling period of the highest I2C
		 * transfer supported by the driver (for 400KHz this is
		 * 25us) as described in the DesignWare I2C databook.
		 */
		usleep_range(25, 250);
	} while (timeout--);

	dev_warn(dev->dev, "timeout in %sabling adapter\n",
		 enable ? "en" : "dis");
}

278 279 280 281 282 283 284 285
/**
 * i2c_dw_init() - initialize the designware i2c master hardware
 * @dev: device private data
 *
 * This functions configures and enables the I2C master.
 * This function is called during I2C init function, and in case of timeout at
 * run time.
 */
286
int i2c_dw_init(struct dw_i2c_dev *dev)
287
{
288
	u32 input_clock_khz;
289
	u32 hcnt, lcnt;
290 291
	u32 reg;

292 293
	input_clock_khz = dev->get_clk_rate_khz(dev);

294 295
	reg = dw_readl(dev, DW_IC_COMP_TYPE);
	if (reg == ___constant_swab32(DW_IC_COMP_TYPE_VALUE)) {
296 297 298 299 300 301
		/* Configure register endianess access */
		dev->accessor_flags |= ACCESS_SWAP;
	} else if (reg == (DW_IC_COMP_TYPE_VALUE & 0x0000ffff)) {
		/* Configure register access mode 16bit */
		dev->accessor_flags |= ACCESS_16BIT;
	} else if (reg != DW_IC_COMP_TYPE_VALUE) {
302 303 304 305
		dev_err(dev->dev, "Unknown Synopsys component type: "
			"0x%08x\n", reg);
		return -ENODEV;
	}
306 307

	/* Disable the adapter */
308
	__i2c_dw_enable(dev, false);
309 310

	/* set standard and fast speed deviders for high/low periods */
311 312 313 314 315 316 317 318 319 320 321

	/* Standard-mode */
	hcnt = i2c_dw_scl_hcnt(input_clock_khz,
				40,	/* tHD;STA = tHIGH = 4.0 us */
				3,	/* tf = 0.3 us */
				0,	/* 0: DW default, 1: Ideal */
				0);	/* No offset */
	lcnt = i2c_dw_scl_lcnt(input_clock_khz,
				47,	/* tLOW = 4.7 us */
				3,	/* tf = 0.3 us */
				0);	/* No offset */
322 323 324 325 326 327

	/* Allow platforms to specify the ideal HCNT and LCNT values */
	if (dev->ss_hcnt && dev->ss_lcnt) {
		hcnt = dev->ss_hcnt;
		lcnt = dev->ss_lcnt;
	}
328 329
	dw_writel(dev, hcnt, DW_IC_SS_SCL_HCNT);
	dw_writel(dev, lcnt, DW_IC_SS_SCL_LCNT);
330 331 332 333 334 335 336 337 338 339 340 341
	dev_dbg(dev->dev, "Standard-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);

	/* Fast-mode */
	hcnt = i2c_dw_scl_hcnt(input_clock_khz,
				6,	/* tHD;STA = tHIGH = 0.6 us */
				3,	/* tf = 0.3 us */
				0,	/* 0: DW default, 1: Ideal */
				0);	/* No offset */
	lcnt = i2c_dw_scl_lcnt(input_clock_khz,
				13,	/* tLOW = 1.3 us */
				3,	/* tf = 0.3 us */
				0);	/* No offset */
342 343 344 345 346

	if (dev->fs_hcnt && dev->fs_lcnt) {
		hcnt = dev->fs_hcnt;
		lcnt = dev->fs_lcnt;
	}
347 348
	dw_writel(dev, hcnt, DW_IC_FS_SCL_HCNT);
	dw_writel(dev, lcnt, DW_IC_FS_SCL_LCNT);
349
	dev_dbg(dev->dev, "Fast-mode HCNT:LCNT = %d:%d\n", hcnt, lcnt);
350

351 352 353 354 355 356 357 358 359 360
	/* Configure SDA Hold Time if required */
	if (dev->sda_hold_time) {
		reg = dw_readl(dev, DW_IC_COMP_VERSION);
		if (reg >= DW_IC_SDA_HOLD_MIN_VERS)
			dw_writel(dev, dev->sda_hold_time, DW_IC_SDA_HOLD);
		else
			dev_warn(dev->dev,
				"Hardware too old to adjust SDA hold time.");
	}

361
	/* Configure Tx/Rx FIFO threshold levels */
362 363
	dw_writel(dev, dev->tx_fifo_depth - 1, DW_IC_TX_TL);
	dw_writel(dev, 0, DW_IC_RX_TL);
364

365
	/* configure the i2c master */
366
	dw_writel(dev, dev->master_cfg , DW_IC_CON);
367
	return 0;
368
}
369
EXPORT_SYMBOL_GPL(i2c_dw_init);
370 371 372 373 374 375 376 377

/*
 * Waiting for bus not busy
 */
static int i2c_dw_wait_bus_not_busy(struct dw_i2c_dev *dev)
{
	int timeout = TIMEOUT;

378
	while (dw_readl(dev, DW_IC_STATUS) & DW_IC_STATUS_ACTIVITY) {
379 380 381 382 383
		if (timeout <= 0) {
			dev_warn(dev->dev, "timeout waiting for bus ready\n");
			return -ETIMEDOUT;
		}
		timeout--;
384
		usleep_range(1000, 1100);
385 386 387 388 389
	}

	return 0;
}

390 391 392
static void i2c_dw_xfer_init(struct dw_i2c_dev *dev)
{
	struct i2c_msg *msgs = dev->msgs;
393
	u32 ic_con, ic_tar = 0;
394 395

	/* Disable the adapter */
396
	__i2c_dw_enable(dev, false);
397 398

	/* if the slave address is ten bit address, enable 10BITADDR */
399
	ic_con = dw_readl(dev, DW_IC_CON);
400
	if (msgs[dev->msg_write_idx].flags & I2C_M_TEN) {
401
		ic_con |= DW_IC_CON_10BITADDR_MASTER;
402 403 404 405 406 407 408 409
		/*
		 * If I2C_DYNAMIC_TAR_UPDATE is set, the 10-bit addressing
		 * mode has to be enabled via bit 12 of IC_TAR register.
		 * We set it always as I2C_DYNAMIC_TAR_UPDATE can't be
		 * detected from registers.
		 */
		ic_tar = DW_IC_TAR_10BITADDR_MASTER;
	} else {
410
		ic_con &= ~DW_IC_CON_10BITADDR_MASTER;
411 412
	}

413
	dw_writel(dev, ic_con, DW_IC_CON);
414

415 416 417 418 419 420
	/*
	 * Set the slave (target) address and enable 10-bit addressing mode
	 * if applicable.
	 */
	dw_writel(dev, msgs[dev->msg_write_idx].addr | ic_tar, DW_IC_TAR);

421
	/* Enable the adapter */
422
	__i2c_dw_enable(dev, true);
423

424 425
	/* Clear and enable interrupts */
	i2c_dw_clear_int(dev);
426
	dw_writel(dev, DW_IC_INTR_DEFAULT_MASK, DW_IC_INTR_MASK);
427 428
}

429
/*
430 431 432 433
 * Initiate (and continue) low level master read/write transaction.
 * This function is only called from i2c_dw_isr, and pumping i2c_msg
 * messages into the tx buffer.  Even if the size of i2c_msg data is
 * longer than the size of the tx buffer, it handles everything.
434
 */
435
static void
436
i2c_dw_xfer_msg(struct dw_i2c_dev *dev)
437 438
{
	struct i2c_msg *msgs = dev->msgs;
439
	u32 intr_mask;
440
	int tx_limit, rx_limit;
441 442
	u32 addr = msgs[dev->msg_write_idx].addr;
	u32 buf_len = dev->tx_buf_len;
443
	u8 *buf = dev->tx_buf;
444
	bool need_restart = false;
445

446
	intr_mask = DW_IC_INTR_DEFAULT_MASK;
447

448
	for (; dev->msg_write_idx < dev->msgs_num; dev->msg_write_idx++) {
449 450
		/*
		 * if target address has changed, we need to
451 452 453
		 * reprogram the target address in the i2c
		 * adapter when we are done with this transfer
		 */
454 455 456 457 458 459
		if (msgs[dev->msg_write_idx].addr != addr) {
			dev_err(dev->dev,
				"%s: invalid target address\n", __func__);
			dev->msg_err = -EINVAL;
			break;
		}
460 461 462 463 464

		if (msgs[dev->msg_write_idx].len == 0) {
			dev_err(dev->dev,
				"%s: invalid message length\n", __func__);
			dev->msg_err = -EINVAL;
465
			break;
466 467 468 469
		}

		if (!(dev->status & STATUS_WRITE_IN_PROGRESS)) {
			/* new i2c_msg */
470
			buf = msgs[dev->msg_write_idx].buf;
471
			buf_len = msgs[dev->msg_write_idx].len;
472 473 474 475 476 477 478 479

			/* If both IC_EMPTYFIFO_HOLD_MASTER_EN and
			 * IC_RESTART_EN are set, we must manually
			 * set restart bit between messages.
			 */
			if ((dev->master_cfg & DW_IC_CON_RESTART_EN) &&
					(dev->msg_write_idx > 0))
				need_restart = true;
480 481
		}

482 483
		tx_limit = dev->tx_fifo_depth - dw_readl(dev, DW_IC_TXFLR);
		rx_limit = dev->rx_fifo_depth - dw_readl(dev, DW_IC_RXFLR);
484

485
		while (buf_len > 0 && tx_limit > 0 && rx_limit > 0) {
486 487 488 489 490 491 492 493 494 495 496 497
			u32 cmd = 0;

			/*
			 * If IC_EMPTYFIFO_HOLD_MASTER_EN is set we must
			 * manually set the stop bit. However, it cannot be
			 * detected from the registers so we set it always
			 * when writing/reading the last byte.
			 */
			if (dev->msg_write_idx == dev->msgs_num - 1 &&
			    buf_len == 1)
				cmd |= BIT(9);

498 499 500 501 502
			if (need_restart) {
				cmd |= BIT(10);
				need_restart = false;
			}

503
			if (msgs[dev->msg_write_idx].flags & I2C_M_RD) {
504 505 506 507 508

				/* avoid rx buffer overrun */
				if (rx_limit - dev->rx_outstanding <= 0)
					break;

509
				dw_writel(dev, cmd | 0x100, DW_IC_DATA_CMD);
510
				rx_limit--;
511
				dev->rx_outstanding++;
512
			} else
513
				dw_writel(dev, cmd | *buf++, DW_IC_DATA_CMD);
514 515
			tx_limit--; buf_len--;
		}
516

517
		dev->tx_buf = buf;
518 519 520 521 522 523
		dev->tx_buf_len = buf_len;

		if (buf_len > 0) {
			/* more bytes to be written */
			dev->status |= STATUS_WRITE_IN_PROGRESS;
			break;
524
		} else
525
			dev->status &= ~STATUS_WRITE_IN_PROGRESS;
526 527
	}

528 529 530 531 532 533 534
	/*
	 * If i2c_msg index search is completed, we don't need TX_EMPTY
	 * interrupt any more.
	 */
	if (dev->msg_write_idx == dev->msgs_num)
		intr_mask &= ~DW_IC_INTR_TX_EMPTY;

535 536 537
	if (dev->msg_err)
		intr_mask = 0;

538
	dw_writel(dev, intr_mask,  DW_IC_INTR_MASK);
539 540 541
}

static void
542
i2c_dw_read(struct dw_i2c_dev *dev)
543 544
{
	struct i2c_msg *msgs = dev->msgs;
545
	int rx_valid;
546

547
	for (; dev->msg_read_idx < dev->msgs_num; dev->msg_read_idx++) {
548
		u32 len;
549 550 551 552 553 554 555 556 557 558 559 560 561
		u8 *buf;

		if (!(msgs[dev->msg_read_idx].flags & I2C_M_RD))
			continue;

		if (!(dev->status & STATUS_READ_IN_PROGRESS)) {
			len = msgs[dev->msg_read_idx].len;
			buf = msgs[dev->msg_read_idx].buf;
		} else {
			len = dev->rx_buf_len;
			buf = dev->rx_buf;
		}

562
		rx_valid = dw_readl(dev, DW_IC_RXFLR);
563

564
		for (; len > 0 && rx_valid > 0; len--, rx_valid--) {
565
			*buf++ = dw_readl(dev, DW_IC_DATA_CMD);
566 567
			dev->rx_outstanding--;
		}
568 569 570 571 572 573 574 575 576 577 578

		if (len > 0) {
			dev->status |= STATUS_READ_IN_PROGRESS;
			dev->rx_buf_len = len;
			dev->rx_buf = buf;
			return;
		} else
			dev->status &= ~STATUS_READ_IN_PROGRESS;
	}
}

579 580 581 582 583
static int i2c_dw_handle_tx_abort(struct dw_i2c_dev *dev)
{
	unsigned long abort_source = dev->abort_source;
	int i;

584
	if (abort_source & DW_IC_TX_ABRT_NOACK) {
585
		for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
586 587 588 589 590
			dev_dbg(dev->dev,
				"%s: %s\n", __func__, abort_sources[i]);
		return -EREMOTEIO;
	}

591
	for_each_set_bit(i, &abort_source, ARRAY_SIZE(abort_sources))
592 593 594 595 596 597 598 599 600 601
		dev_err(dev->dev, "%s: %s\n", __func__, abort_sources[i]);

	if (abort_source & DW_IC_TX_ARB_LOST)
		return -EAGAIN;
	else if (abort_source & DW_IC_TX_ABRT_GCALL_READ)
		return -EINVAL; /* wrong msgs[] data */
	else
		return -EIO;
}

602 603 604
/*
 * Prepare controller for a transaction and call i2c_dw_xfer_msg
 */
605
int
606 607 608 609 610 611 612 613
i2c_dw_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
{
	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
	int ret;

	dev_dbg(dev->dev, "%s: msgs: %d\n", __func__, num);

	mutex_lock(&dev->lock);
614
	pm_runtime_get_sync(dev->dev);
615 616 617 618 619 620 621 622 623

	INIT_COMPLETION(dev->cmd_complete);
	dev->msgs = msgs;
	dev->msgs_num = num;
	dev->cmd_err = 0;
	dev->msg_write_idx = 0;
	dev->msg_read_idx = 0;
	dev->msg_err = 0;
	dev->status = STATUS_IDLE;
624
	dev->abort_source = 0;
625
	dev->rx_outstanding = 0;
626 627 628 629 630 631

	ret = i2c_dw_wait_bus_not_busy(dev);
	if (ret < 0)
		goto done;

	/* start the transfers */
632
	i2c_dw_xfer_init(dev);
633 634

	/* wait for tx to complete */
635
	ret = wait_for_completion_timeout(&dev->cmd_complete, HZ);
636 637
	if (ret == 0) {
		dev_err(dev->dev, "controller timed out\n");
638
		/* i2c_dw_init implicitly disables the adapter */
639 640 641
		i2c_dw_init(dev);
		ret = -ETIMEDOUT;
		goto done;
642
	}
643

644 645 646 647 648 649 650 651 652
	/*
	 * We must disable the adapter before unlocking the &dev->lock mutex
	 * below. Otherwise the hardware might continue generating interrupts
	 * which in turn causes a race condition with the following transfer.
	 * Needs some more investigation if the additional interrupts are
	 * a hardware bug or this driver doesn't handle them correctly yet.
	 */
	__i2c_dw_enable(dev, false);

653 654 655 656 657 658 659 660 661 662 663 664 665
	if (dev->msg_err) {
		ret = dev->msg_err;
		goto done;
	}

	/* no error */
	if (likely(!dev->cmd_err)) {
		ret = num;
		goto done;
	}

	/* We have an error */
	if (dev->cmd_err == DW_IC_ERR_TX_ABRT) {
666 667
		ret = i2c_dw_handle_tx_abort(dev);
		goto done;
668 669 670 671
	}
	ret = -EIO;

done:
672 673
	pm_runtime_mark_last_busy(dev->dev);
	pm_runtime_put_autosuspend(dev->dev);
674 675 676 677
	mutex_unlock(&dev->lock);

	return ret;
}
678
EXPORT_SYMBOL_GPL(i2c_dw_xfer);
679

680
u32 i2c_dw_func(struct i2c_adapter *adap)
681
{
682 683
	struct dw_i2c_dev *dev = i2c_get_adapdata(adap);
	return dev->functionality;
684
}
685
EXPORT_SYMBOL_GPL(i2c_dw_func);
686

687 688 689 690 691 692 693 694 695 696
static u32 i2c_dw_read_clear_intrbits(struct dw_i2c_dev *dev)
{
	u32 stat;

	/*
	 * The IC_INTR_STAT register just indicates "enabled" interrupts.
	 * Ths unmasked raw version of interrupt status bits are available
	 * in the IC_RAW_INTR_STAT register.
	 *
	 * That is,
697
	 *   stat = dw_readl(IC_INTR_STAT);
698
	 * equals to,
699
	 *   stat = dw_readl(IC_RAW_INTR_STAT) & dw_readl(IC_INTR_MASK);
700 701 702
	 *
	 * The raw version might be useful for debugging purposes.
	 */
703
	stat = dw_readl(dev, DW_IC_INTR_STAT);
704 705 706 707

	/*
	 * Do not use the IC_CLR_INTR register to clear interrupts, or
	 * you'll miss some interrupts, triggered during the period from
708
	 * dw_readl(IC_INTR_STAT) to dw_readl(IC_CLR_INTR).
709 710 711 712
	 *
	 * Instead, use the separately-prepared IC_CLR_* registers.
	 */
	if (stat & DW_IC_INTR_RX_UNDER)
713
		dw_readl(dev, DW_IC_CLR_RX_UNDER);
714
	if (stat & DW_IC_INTR_RX_OVER)
715
		dw_readl(dev, DW_IC_CLR_RX_OVER);
716
	if (stat & DW_IC_INTR_TX_OVER)
717
		dw_readl(dev, DW_IC_CLR_TX_OVER);
718
	if (stat & DW_IC_INTR_RD_REQ)
719
		dw_readl(dev, DW_IC_CLR_RD_REQ);
720 721 722 723 724
	if (stat & DW_IC_INTR_TX_ABRT) {
		/*
		 * The IC_TX_ABRT_SOURCE register is cleared whenever
		 * the IC_CLR_TX_ABRT is read.  Preserve it beforehand.
		 */
725 726
		dev->abort_source = dw_readl(dev, DW_IC_TX_ABRT_SOURCE);
		dw_readl(dev, DW_IC_CLR_TX_ABRT);
727 728
	}
	if (stat & DW_IC_INTR_RX_DONE)
729
		dw_readl(dev, DW_IC_CLR_RX_DONE);
730
	if (stat & DW_IC_INTR_ACTIVITY)
731
		dw_readl(dev, DW_IC_CLR_ACTIVITY);
732
	if (stat & DW_IC_INTR_STOP_DET)
733
		dw_readl(dev, DW_IC_CLR_STOP_DET);
734
	if (stat & DW_IC_INTR_START_DET)
735
		dw_readl(dev, DW_IC_CLR_START_DET);
736
	if (stat & DW_IC_INTR_GEN_CALL)
737
		dw_readl(dev, DW_IC_CLR_GEN_CALL);
738 739 740 741

	return stat;
}

742 743 744 745
/*
 * Interrupt service routine. This gets called whenever an I2C interrupt
 * occurs.
 */
746
irqreturn_t i2c_dw_isr(int this_irq, void *dev_id)
747 748
{
	struct dw_i2c_dev *dev = dev_id;
749 750 751 752 753 754 755 756
	u32 stat, enabled;

	enabled = dw_readl(dev, DW_IC_ENABLE);
	stat = dw_readl(dev, DW_IC_RAW_INTR_STAT);
	dev_dbg(dev->dev, "%s:  %s enabled= 0x%x stat=0x%x\n", __func__,
		dev->adapter.name, enabled, stat);
	if (!enabled || !(stat & ~DW_IC_INTR_ACTIVITY))
		return IRQ_NONE;
757

758 759
	stat = i2c_dw_read_clear_intrbits(dev);

760 761 762
	if (stat & DW_IC_INTR_TX_ABRT) {
		dev->cmd_err |= DW_IC_ERR_TX_ABRT;
		dev->status = STATUS_IDLE;
763 764 765 766 767

		/*
		 * Anytime TX_ABRT is set, the contents of the tx/rx
		 * buffers are flushed.  Make sure to skip them.
		 */
768
		dw_writel(dev, 0, DW_IC_INTR_MASK);
769
		goto tx_aborted;
770 771
	}

772
	if (stat & DW_IC_INTR_RX_FULL)
773
		i2c_dw_read(dev);
774 775

	if (stat & DW_IC_INTR_TX_EMPTY)
776 777 778 779 780 781 782
		i2c_dw_xfer_msg(dev);

	/*
	 * No need to modify or disable the interrupt mask here.
	 * i2c_dw_xfer_msg() will take care of it according to
	 * the current transmit status.
	 */
783

784
tx_aborted:
785
	if ((stat & (DW_IC_INTR_TX_ABRT | DW_IC_INTR_STOP_DET)) || dev->msg_err)
786 787 788 789
		complete(&dev->cmd_complete);

	return IRQ_HANDLED;
}
790
EXPORT_SYMBOL_GPL(i2c_dw_isr);
791 792 793 794

void i2c_dw_enable(struct dw_i2c_dev *dev)
{
       /* Enable the adapter */
795
	__i2c_dw_enable(dev, true);
796
}
797
EXPORT_SYMBOL_GPL(i2c_dw_enable);
798

799
u32 i2c_dw_is_enabled(struct dw_i2c_dev *dev)
800
{
801 802
	return dw_readl(dev, DW_IC_ENABLE);
}
803
EXPORT_SYMBOL_GPL(i2c_dw_is_enabled);
804

805 806
void i2c_dw_disable(struct dw_i2c_dev *dev)
{
807
	/* Disable controller */
808
	__i2c_dw_enable(dev, false);
809 810 811 812 813

	/* Disable all interupts */
	dw_writel(dev, 0, DW_IC_INTR_MASK);
	dw_readl(dev, DW_IC_CLR_INTR);
}
814
EXPORT_SYMBOL_GPL(i2c_dw_disable);
815 816 817 818 819

void i2c_dw_clear_int(struct dw_i2c_dev *dev)
{
	dw_readl(dev, DW_IC_CLR_INTR);
}
820
EXPORT_SYMBOL_GPL(i2c_dw_clear_int);
821 822 823 824 825

void i2c_dw_disable_int(struct dw_i2c_dev *dev)
{
	dw_writel(dev, 0, DW_IC_INTR_MASK);
}
826
EXPORT_SYMBOL_GPL(i2c_dw_disable_int);
827 828 829 830 831

u32 i2c_dw_read_comp_param(struct dw_i2c_dev *dev)
{
	return dw_readl(dev, DW_IC_COMP_PARAM_1);
}
832
EXPORT_SYMBOL_GPL(i2c_dw_read_comp_param);
833 834 835

MODULE_DESCRIPTION("Synopsys DesignWare I2C bus adapter core");
MODULE_LICENSE("GPL");