mmu.c 63.7 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
50
#include <linux/crash_dump.h>
J
Jeremy Fitzhardinge 已提交
51

52 53
#include <trace/events/xen.h>

J
Jeremy Fitzhardinge 已提交
54 55
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
56
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
57
#include <asm/mmu_context.h>
58
#include <asm/setup.h>
59
#include <asm/paravirt.h>
60
#include <asm/e820.h>
61
#include <asm/linkage.h>
62
#include <asm/page.h>
63
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
64
#include <asm/pat.h>
A
Andrew Jones 已提交
65
#include <asm/smp.h>
J
Jeremy Fitzhardinge 已提交
66 67

#include <asm/xen/hypercall.h>
68
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
69

70
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
71 72
#include <xen/page.h>
#include <xen/interface/xen.h>
73
#include <xen/interface/hvm/hvm_op.h>
74
#include <xen/interface/version.h>
75
#include <xen/interface/memory.h>
76
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
77

78
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
79
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
80 81
#include "debugfs.h"

A
Alex Nixon 已提交
82 83
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
84
 * Also protects non-atomic updates of current_pages and balloon lists.
A
Alex Nixon 已提交
85 86 87
 */
DEFINE_SPINLOCK(xen_reservation_lock);

88
#ifdef CONFIG_X86_32
89 90 91 92 93
/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
94 95
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96
#endif
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


120 121 122 123 124 125
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

126 127 128 129 130 131 132
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

133
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
134
{
135
	unsigned long address = (unsigned long)vaddr;
136
	unsigned int level;
137 138
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
139

140 141 142 143 144 145 146 147
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
148

149 150 151
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
152
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
153
}
154
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
J
Jeremy Fitzhardinge 已提交
155 156 157 158 159

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
160
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
161

162
	pte = lookup_address(address, &level);
163 164
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
165 166 167 168 169 170 171 172 173 174 175

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
176
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
177

178
	pte = lookup_address(address, &level);
179 180
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
181 182 183 184 185 186 187 188

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


189
static bool xen_page_pinned(void *ptr)
190 191 192 193 194 195
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

196
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 198 199 200
{
	struct multicall_space mcs;
	struct mmu_update *u;

201 202
	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);

203 204 205 206
	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
207
	u->ptr = virt_to_machine(ptep).maddr;
208 209
	u->val = pte_val_ma(pteval);

210
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 212 213

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
214 215
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

216
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
217
{
J
Jeremy Fitzhardinge 已提交
218 219
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
220

221 222
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
223
	if (mcs.mc != NULL) {
224
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
225
	} else {
226 227 228
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
229 230

	u = mcs.args;
231 232 233
	*u = *update;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void xen_extend_mmuext_op(const struct mmuext_op *op)
{
	struct multicall_space mcs;
	struct mmuext_op *u;

	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));

	if (mcs.mc != NULL) {
		mcs.mc->args[1]++;
	} else {
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}

	u = mcs.args;
	*u = *op;
}

252
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 254 255 256 257 258 259
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

260 261
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262
	u.val = pmd_val_ma(val);
263
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
264 265 266 267

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
268 269
}

270
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271
{
272 273
	trace_xen_mmu_set_pmd(ptr, val);

274 275
	/* If page is not pinned, we can just update the entry
	   directly */
276
	if (!xen_page_pinned(ptr)) {
277 278 279 280 281 282 283
		*ptr = val;
		return;
	}

	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
284 285 286 287 288 289
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
290
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
291 292
}

293
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
J
Jeremy Fitzhardinge 已提交
294
{
295
	struct mmu_update u;
296

297 298
	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
		return false;
J
Jeremy Fitzhardinge 已提交
299

300
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
301

302 303 304
	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
	u.val = pte_val_ma(pteval);
	xen_extend_mmu_update(&u);
305

306
	xen_mc_issue(PARAVIRT_LAZY_MMU);
307

308 309 310
	return true;
}

311
static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312
{
313 314 315 316 317 318 319 320 321 322 323 324 325 326
	if (!xen_batched_set_pte(ptep, pteval)) {
		/*
		 * Could call native_set_pte() here and trap and
		 * emulate the PTE write but with 32-bit guests this
		 * needs two traps (one for each of the two 32-bit
		 * words in the PTE) so do one hypercall directly
		 * instead.
		 */
		struct mmu_update u;

		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
		u.val = pte_val_ma(pteval);
		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
327 328
}

329 330 331 332 333 334
static void xen_set_pte(pte_t *ptep, pte_t pteval)
{
	trace_xen_mmu_set_pte(ptep, pteval);
	__xen_set_pte(ptep, pteval);
}

335
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 337
		    pte_t *ptep, pte_t pteval)
{
338 339
	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
	__xen_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
340 341
}

T
Tej 已提交
342 343
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
344
{
345
	/* Just return the pte as-is.  We preserve the bits on commit */
346
	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 348 349 350 351 352
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
353
	struct mmu_update u;
354

355
	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
357

358
	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359
	u.val = pte_val_ma(pte);
360
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
361

362
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
363 364
}

J
Jeremy Fitzhardinge 已提交
365 366
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
367
{
368
	if (val & _PAGE_PRESENT) {
369
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 371
		unsigned long pfn = mfn_to_pfn(mfn);

J
Jeremy Fitzhardinge 已提交
372
		pteval_t flags = val & PTE_FLAGS_MASK;
373 374 375 376
		if (unlikely(pfn == ~0))
			val = flags & ~_PAGE_PRESENT;
		else
			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
377
	}
J
Jeremy Fitzhardinge 已提交
378

J
Jeremy Fitzhardinge 已提交
379
	return val;
J
Jeremy Fitzhardinge 已提交
380 381
}

J
Jeremy Fitzhardinge 已提交
382
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
383
{
384
	if (val & _PAGE_PRESENT) {
385
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
386
		pteval_t flags = val & PTE_FLAGS_MASK;
387
		unsigned long mfn;
388

389
		if (!xen_feature(XENFEAT_auto_translated_physmap))
390
			mfn = __pfn_to_mfn(pfn);
391 392
		else
			mfn = pfn;
393 394 395 396 397 398 399 400 401
		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
402 403
		} else
			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404
		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
405 406
	}

J
Jeremy Fitzhardinge 已提交
407
	return val;
J
Jeremy Fitzhardinge 已提交
408 409
}

410
__visible pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
411
{
J
Jeremy Fitzhardinge 已提交
412
	pteval_t pteval = pte.pte;
413

J
Jeremy Fitzhardinge 已提交
414
	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
415
}
416
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
417

418
__visible pgdval_t xen_pgd_val(pgd_t pgd)
J
Jeremy Fitzhardinge 已提交
419
{
J
Jeremy Fitzhardinge 已提交
420
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
421
}
422
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
423

424
__visible pte_t xen_make_pte(pteval_t pte)
J
Jeremy Fitzhardinge 已提交
425
{
426
	pte = pte_pfn_to_mfn(pte);
427

J
Jeremy Fitzhardinge 已提交
428
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
429
}
430
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
431

432
__visible pgd_t xen_make_pgd(pgdval_t pgd)
J
Jeremy Fitzhardinge 已提交
433
{
J
Jeremy Fitzhardinge 已提交
434 435
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
436
}
437
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
438

439
__visible pmdval_t xen_pmd_val(pmd_t pmd)
J
Jeremy Fitzhardinge 已提交
440
{
J
Jeremy Fitzhardinge 已提交
441
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
442
}
443
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
444

445
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
446
{
447
	struct mmu_update u;
448

J
Jeremy Fitzhardinge 已提交
449 450
	preempt_disable();

451 452
	xen_mc_batch();

453 454
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
455
	u.val = pud_val_ma(val);
456
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
457 458 459 460

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
461 462
}

463
static void xen_set_pud(pud_t *ptr, pud_t val)
464
{
465 466
	trace_xen_mmu_set_pud(ptr, val);

467 468
	/* If page is not pinned, we can just update the entry
	   directly */
469
	if (!xen_page_pinned(ptr)) {
470 471 472 473 474 475 476
		*ptr = val;
		return;
	}

	xen_set_pud_hyper(ptr, val);
}

477
#ifdef CONFIG_X86_PAE
478
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
J
Jeremy Fitzhardinge 已提交
479
{
480
	trace_xen_mmu_set_pte_atomic(ptep, pte);
481
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
482 483
}

484
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
485
{
486
	trace_xen_mmu_pte_clear(mm, addr, ptep);
487 488
	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
		native_pte_clear(mm, addr, ptep);
J
Jeremy Fitzhardinge 已提交
489 490
}

491
static void xen_pmd_clear(pmd_t *pmdp)
J
Jeremy Fitzhardinge 已提交
492
{
493
	trace_xen_mmu_pmd_clear(pmdp);
494
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
495
}
496
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
497

498
__visible pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
499
{
J
Jeremy Fitzhardinge 已提交
500
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
501
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
502
}
503
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
504

505
#if PAGETABLE_LEVELS == 4
506
__visible pudval_t xen_pud_val(pud_t pud)
507 508 509
{
	return pte_mfn_to_pfn(pud.pud);
}
510
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
511

512
__visible pud_t xen_make_pud(pudval_t pud)
513 514 515 516 517
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
518
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
519

520
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
521
{
522 523 524
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
525

526 527 528 529 530 531
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
532

533 534 535 536 537 538
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
539 540 541

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
542
	xen_extend_mmu_update(&u);
543 544 545 546 547 548 549 550 551
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
552
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
553 554 555 556 557 558
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
559 560 561 562 563 564

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

565
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
566
{
567 568
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

569 570
	trace_xen_mmu_set_pgd(ptr, user_ptr, val);

571 572
	/* If page is not pinned, we can just update the entry
	   directly */
573
	if (!xen_page_pinned(ptr)) {
574
		*ptr = val;
575
		if (user_ptr) {
576
			WARN_ON(xen_page_pinned(user_ptr));
577 578
			*user_ptr = val;
		}
579 580 581
		return;
	}

582 583 584 585 586 587 588 589 590
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
591 592 593
}
#endif	/* PAGETABLE_LEVELS == 4 */

594
/*
595 596 597 598 599 600 601 602 603 604 605 606 607 608
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
609 610 611 612
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
613
{
614
	int flush = 0;
615 616 617
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
618

619 620 621
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
622 623

	if (xen_feature(XENFEAT_auto_translated_physmap))
624 625
		return 0;

626 627 628 629 630
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
631
	hole_low = pgd_index(USER_LIMIT);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
647
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
648

649 650
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
651

652
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
653
			continue;
654

655
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
656 657

		if (PTRS_PER_PUD > 1) /* not folded */
658
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
659

660
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
661 662
			pmd_t *pmd;

663 664 665
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
666

667
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
668
				continue;
669

670
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
671 672

			if (PTRS_PER_PMD > 1) /* not folded */
673
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
674

675 676 677 678 679 680 681
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
682

683
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
684 685
					continue;

686
				pte = pmd_page(pmd[pmdidx]);
687
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
688 689 690
			}
		}
	}
691

692
out:
693 694
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
695
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
696 697

	return flush;
J
Jeremy Fitzhardinge 已提交
698 699
}

I
Ian Campbell 已提交
700 701 702 703 704 705 706 707
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

708 709
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
710
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
711 712 713
{
	spinlock_t *ptl = NULL;

714
#if USE_SPLIT_PTE_PTLOCKS
715
	ptl = ptlock_ptr(page);
716
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
717 718 719 720 721
#endif

	return ptl;
}

722
static void xen_pte_unlock(void *v)
723 724 725 726 727 728 729
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
730
	struct mmuext_op op;
731

732 733 734 735
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);

	xen_extend_mmuext_op(&op);
736 737
}

738 739
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
740
{
741
	unsigned pgfl = TestSetPagePinned(page);
742 743 744 745 746 747 748 749 750 751 752 753
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
754
		spinlock_t *ptl;
755 756 757

		flush = 0;

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
778 779
		ptl = NULL;
		if (level == PT_PTE)
780
			ptl = xen_pte_lock(page, mm);
781

782 783
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
784 785
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

786
		if (ptl) {
787 788 789 790
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
791
			xen_mc_callback(xen_pte_unlock, ptl);
792
		}
793 794 795 796
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
797

798 799 800
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
801
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
802
{
803 804
	trace_xen_mmu_pgd_pin(mm, pgd);

805
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
806

I
Ian Campbell 已提交
807
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
808
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
809
		xen_mc_issue(0);
810

811
		kmap_flush_unused();
812

J
Jeremy Fitzhardinge 已提交
813 814
		xen_mc_batch();
	}
815

816 817 818 819 820 821 822
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
823
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
824 825
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
826 827 828
		}
	}
#else /* CONFIG_X86_32 */
829 830
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
831
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
832
		     PT_PMD);
833
#endif
834
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
835
#endif /* CONFIG_X86_64 */
836
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
837 838
}

839 840 841 842 843
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

844 845 846 847 848
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
849 850 851 852
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
853 854 855 856
 */
void xen_mm_pin_all(void)
{
	struct page *page;
857

A
Andrea Arcangeli 已提交
858
	spin_lock(&pgd_lock);
859

860 861
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
862
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
863 864 865 866
			SetPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
867
	spin_unlock(&pgd_lock);
J
Jeremy Fitzhardinge 已提交
868 869
}

870 871 872 873 874
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
875
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
876
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
877
{
878 879 880
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
881

882
static void __init xen_mark_init_mm_pinned(void)
883
{
884
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
885
}
J
Jeremy Fitzhardinge 已提交
886

887 888
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
889
{
890
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
891

892 893 894
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
895 896 897
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

898 899 900 901 902 903 904
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
905
		if (level == PT_PTE) {
906
			ptl = xen_pte_lock(page, mm);
907

908 909
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
910 911 912
		}

		mcs = __xen_mc_entry(0);
913 914 915

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
916 917 918 919
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
920
			xen_mc_callback(xen_pte_unlock, ptl);
921
		}
922 923 924
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
925 926
}

927
/* Release a pagetables pages back as normal RW */
928
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
929
{
930 931
	trace_xen_mmu_pgd_unpin(mm, pgd);

932 933
	xen_mc_batch();

934
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
935

936 937 938 939 940
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
941 942
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
943
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
944 945 946 947
		}
	}
#endif

948 949
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
950
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
951
		       PT_PMD);
952
#endif
953

I
Ian Campbell 已提交
954
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
955 956 957

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
958

959 960 961 962 963
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

964 965 966 967 968 969 970 971
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	struct page *page;

A
Andrea Arcangeli 已提交
972
	spin_lock(&pgd_lock);
973 974 975 976

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
977
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
978 979 980 981
			ClearPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
982
	spin_unlock(&pgd_lock);
983 984
}

985
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
J
Jeremy Fitzhardinge 已提交
986
{
987
	spin_lock(&next->page_table_lock);
988
	xen_pgd_pin(next);
989
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
990 991
}

992
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
993
{
994
	spin_lock(&mm->page_table_lock);
995
	xen_pgd_pin(mm);
996
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
997 998 999
}


J
Jeremy Fitzhardinge 已提交
1000 1001 1002 1003 1004 1005
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1006
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1007

1008
	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1009

1010
	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
J
Jeremy Fitzhardinge 已提交
1011
		leave_mm(smp_processor_id());
1012 1013 1014

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1015
	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1016
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1017
}
J
Jeremy Fitzhardinge 已提交
1018

1019
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1020
{
1021
	cpumask_var_t mask;
1022 1023
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1024 1025 1026 1027 1028
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1029 1030 1031
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1032 1033
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1034
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1035 1036 1037 1038 1039 1040
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1041
	cpumask_copy(mask, mm_cpumask(mm));
1042 1043 1044 1045 1046 1047 1048 1049

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1050
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1051 1052
	}

1053 1054 1055
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1056 1057
}
#else
1058
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
1079
static void xen_exit_mmap(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1080 1081
{
	get_cpu();		/* make sure we don't move around */
1082
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1083
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1084

1085
	spin_lock(&mm->page_table_lock);
1086 1087

	/* pgd may not be pinned in the error exit path of execve */
1088
	if (xen_page_pinned(mm->pgd))
1089
		xen_pgd_unpin(mm);
1090

1091
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1092
}
J
Jeremy Fitzhardinge 已提交
1093

1094 1095
static void xen_post_allocator_init(void);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
#ifdef CONFIG_X86_64
static void __init xen_cleanhighmap(unsigned long vaddr,
				    unsigned long vaddr_end)
{
	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);

	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
	 * We include the PMD passed in on _both_ boundaries. */
	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
			pmd++, vaddr += PMD_SIZE) {
		if (pmd_none(*pmd))
			continue;
		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
			set_pmd(pmd, __pmd(0));
	}
	/* In case we did something silly, we should crash in this function
	 * instead of somewhere later and be confusing. */
	xen_mc_flush();
}
1116 1117

static void __init xen_pagetable_p2m_free(void)
1118
{
1119 1120
	unsigned long size;
	unsigned long addr;
1121 1122 1123

	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));

1124
	/* No memory or already called. */
1125
	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1126
		return;
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/* using __ka address and sticking INVALID_P2M_ENTRY! */
	memset((void *)xen_start_info->mfn_list, 0xff, size);

	/* We should be in __ka space. */
	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
	addr = xen_start_info->mfn_list;
	/* We roundup to the PMD, which means that if anybody at this stage is
	 * using the __ka address of xen_start_info or xen_start_info->shared_info
	 * they are in going to crash. Fortunatly we have already revectored
	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
	size = roundup(size, PMD_SIZE);
	xen_cleanhighmap(addr, addr + size);

	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
	memblock_free(__pa(xen_start_info->mfn_list), size);

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/* At this stage, cleanup_highmap has already cleaned __ka space
	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
	 * the ramdisk). We continue on, erasing PMD entries that point to page
	 * tables - do note that they are accessible at this stage via __va.
	 * For good measure we also round up to the PMD - which means that if
	 * anybody is using __ka address to the initial boot-stack - and try
	 * to use it - they are going to crash. The xen_start_info has been
	 * taken care of already in xen_setup_kernel_pagetable. */
	addr = xen_start_info->pt_base;
	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);

	xen_cleanhighmap(addr, addr + size);
	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
#ifdef DEBUG
	/* This is superflous and is not neccessary, but you know what
	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
	 * anything at this stage. */
	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
#endif
1163 1164 1165
}
#endif

1166
static void __init xen_pagetable_p2m_setup(void)
1167
{
1168 1169 1170 1171 1172
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	xen_vmalloc_p2m_tree();

1173
#ifdef CONFIG_X86_64
1174
	xen_pagetable_p2m_free();
1175
#endif
1176 1177 1178 1179 1180 1181 1182
	/* And revector! Bye bye old array */
	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
}

static void __init xen_pagetable_init(void)
{
	paging_init();
1183
	xen_post_allocator_init();
1184 1185 1186

	xen_pagetable_p2m_setup();

1187 1188 1189
	/* Allocate and initialize top and mid mfn levels for p2m structure */
	xen_build_mfn_list_list();

1190 1191 1192 1193
	/* Remap memory freed due to conflicts with E820 map */
	if (!xen_feature(XENFEAT_auto_translated_physmap))
		xen_remap_memory();

1194
	xen_setup_shared_info();
1195 1196 1197
}
static void xen_write_cr2(unsigned long cr2)
{
1198
	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1199 1200 1201 1202
}

static unsigned long xen_read_cr2(void)
{
1203
	return this_cpu_read(xen_vcpu)->arch.cr2;
1204 1205 1206 1207
}

unsigned long xen_read_cr2_direct(void)
{
1208
	return this_cpu_read(xen_vcpu_info.arch.cr2);
1209 1210
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
void xen_flush_tlb_all(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

	trace_xen_mmu_flush_tlb_all(0);

	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_ALL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}
1230 1231 1232 1233 1234
static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1235 1236
	trace_xen_mmu_flush_tlb(0);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1255 1256
	trace_xen_mmu_flush_tlb_single(addr);

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
1271 1272
				 struct mm_struct *mm, unsigned long start,
				 unsigned long end)
1273 1274 1275
{
	struct {
		struct mmuext_op op;
1276
#ifdef CONFIG_SMP
A
Andrew Jones 已提交
1277
		DECLARE_BITMAP(mask, num_processors);
1278 1279 1280
#else
		DECLARE_BITMAP(mask, NR_CPUS);
#endif
1281 1282 1283
	} *args;
	struct multicall_space mcs;

1284
	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1285

1286 1287
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1288 1289 1290 1291 1292 1293 1294 1295 1296

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

1297
	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1298
	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1299
		args->op.cmd = MMUEXT_INVLPG_MULTI;
1300
		args->op.arg1.linear_addr = start;
1301 1302 1303 1304 1305 1306 1307 1308 1309
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
1310
	return this_cpu_read(xen_cr3);
1311 1312 1313 1314
}

static void set_current_cr3(void *v)
{
1315
	this_cpu_write(xen_current_cr3, (unsigned long)v);
1316 1317 1318 1319
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
1320
	struct mmuext_op op;
1321 1322
	unsigned long mfn;

1323 1324
	trace_xen_mmu_write_cr3(kernel, cr3);

1325 1326 1327 1328 1329 1330 1331
	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

1332 1333
	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op.arg1.mfn = mfn;
1334

1335
	xen_extend_mmuext_op(&op);
1336 1337

	if (kernel) {
1338
		this_cpu_write(xen_cr3, cr3);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}
static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
1353
	this_cpu_write(xen_cr3, cr3);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
#ifdef CONFIG_X86_64
/*
 * At the start of the day - when Xen launches a guest, it has already
 * built pagetables for the guest. We diligently look over them
 * in xen_setup_kernel_pagetable and graft as appropiate them in the
 * init_level4_pgt and its friends. Then when we are happy we load
 * the new init_level4_pgt - and continue on.
 *
 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
 * up the rest of the pagetables. When it has completed it loads the cr3.
 * N.B. that baremetal would start at 'start_kernel' (and the early
 * #PF handler would create bootstrap pagetables) - so we are running
 * with the same assumptions as what to do when write_cr3 is executed
 * at this point.
 *
 * Since there are no user-page tables at all, we have two variants
 * of xen_write_cr3 - the early bootup (this one), and the late one
 * (xen_write_cr3). The reason we have to do that is that in 64-bit
 * the Linux kernel and user-space are both in ring 3 while the
 * hypervisor is in ring 0.
 */
static void __init xen_write_cr3_init(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
	this_cpu_write(xen_cr3, cr3);

	__xen_write_cr3(true, cr3);

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}
#endif

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
1427
#ifdef CONFIG_X86_VSYSCALL_EMULATION
1428
			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1429
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1430
#endif
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1451
#ifdef CONFIG_X86_32
1452
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1453 1454 1455 1456 1457
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1458 1459 1460 1461

	return pte;
}
#else /* CONFIG_X86_64 */
1462
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1463
{
1464 1465
	return pte;
}
1466
#endif /* CONFIG_X86_64 */
1467

1468 1469 1470 1471
/*
 * Init-time set_pte while constructing initial pagetables, which
 * doesn't allow RO page table pages to be remapped RW.
 *
1472 1473 1474 1475
 * If there is no MFN for this PFN then this page is initially
 * ballooned out so clear the PTE (as in decrease_reservation() in
 * drivers/xen/balloon.c).
 *
1476 1477 1478 1479 1480 1481
 * Many of these PTE updates are done on unpinned and writable pages
 * and doing a hypercall for these is unnecessary and expensive.  At
 * this point it is not possible to tell if a page is pinned or not,
 * so always write the PTE directly and rely on Xen trapping and
 * emulating any updates as necessary.
 */
1482
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1483
{
1484 1485 1486 1487
	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
		pte = mask_rw_pte(ptep, pte);
	else
		pte = __pte_ma(0);
1488

1489
	native_set_pte(ptep, pte);
1490
}
1491

1492
static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1493 1494 1495 1496 1497 1498 1499 1500
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1501 1502
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
1503
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1504
{
1505 1506 1507 1508 1509 1510 1511 1512
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
1513
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1514
{
1515 1516 1517 1518 1519 1520 1521 1522
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1523
static void __init xen_release_pte_init(unsigned long pfn)
1524
{
1525
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1526 1527 1528
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1529
static void __init xen_release_pmd_init(unsigned long pfn)
1530
{
1531
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1532 1533
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct multicall_space mcs;
	struct mmuext_op *op;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = cmd;
	op->arg1.mfn = pfn_to_mfn(pfn);

	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
}

static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
{
	struct multicall_space mcs;
	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);

	mcs = __xen_mc_entry(0);
	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
				pfn_pte(pfn, prot), 0);
}

1557 1558
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
1559 1560
static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
				    unsigned level)
1561
{
1562 1563
	bool pinned = PagePinned(virt_to_page(mm->pgd));

1564
	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1565

1566
	if (pinned) {
1567
		struct page *page = pfn_to_page(pfn);
1568 1569 1570 1571

		SetPagePinned(page);

		if (!PageHighMem(page)) {
1572 1573 1574 1575
			xen_mc_batch();

			__set_pfn_prot(pfn, PAGE_KERNEL_RO);

1576
			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1577 1578 1579
				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
1599
static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1600 1601
{
	struct page *page = pfn_to_page(pfn);
1602
	bool pinned = PagePinned(page);
1603

1604
	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1605

1606
	if (pinned) {
1607
		if (!PageHighMem(page)) {
1608 1609
			xen_mc_batch();

1610
			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1611 1612 1613 1614 1615
				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);

			__set_pfn_prot(pfn, PAGE_KERNEL);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
1660
static void * __init __ka(phys_addr_t paddr)
1661 1662 1663 1664 1665 1666 1667 1668 1669
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
1670
static unsigned long __init m2p(phys_addr_t maddr)
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
1681
static void * __init m2v(phys_addr_t maddr)
1682 1683 1684 1685
{
	return __ka(m2p(maddr));
}

1686
/* Set the page permissions on an identity-mapped pages */
1687 1688
static void __init set_page_prot_flags(void *addr, pgprot_t prot,
				       unsigned long flags)
1689 1690 1691 1692
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

1693 1694 1695 1696
	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

1697
	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1698 1699
		BUG();
}
1700
static void __init set_page_prot(void *addr, pgprot_t prot)
1701 1702 1703
{
	return set_page_prot_flags(addr, prot, UVMF_NONE);
}
1704
#ifdef CONFIG_X86_32
1705
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1706 1707 1708 1709 1710
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1711 1712 1713
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
1724
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

1737 1738 1739
			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}
1753
#endif
1754 1755 1756 1757 1758 1759
void __init xen_setup_machphys_mapping(void)
{
	struct xen_machphys_mapping mapping;

	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1760
		machine_to_phys_nr = mapping.max_mfn + 1;
1761
	} else {
1762
		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1763
	}
1764
#ifdef CONFIG_X86_32
1765 1766
	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
		< machine_to_phys_mapping);
1767
#endif
1768 1769
}

1770
#ifdef CONFIG_X86_64
1771
static void __init convert_pfn_mfn(void *v)
1772 1773 1774 1775 1776 1777 1778 1779 1780
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}
1781 1782 1783 1784
static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
				 unsigned long addr)
{
	if (*pt_base == PFN_DOWN(__pa(addr))) {
1785
		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1786 1787 1788 1789
		clear_page((void *)addr);
		(*pt_base)++;
	}
	if (*pt_end == PFN_DOWN(__pa(addr))) {
1790
		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1791 1792 1793 1794
		clear_page((void *)addr);
		(*pt_end)--;
	}
}
1795
/*
L
Lucas De Marchi 已提交
1796
 * Set up the initial kernel pagetable.
1797 1798 1799
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1800 1801 1802 1803 1804
 * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
 * kernel has a physical mapping to start with - but that's enough to
 * get __va working.  We need to fill in the rest of the physical
 * mapping once some sort of allocator has been set up.  NOTE: for
 * PVH, the page tables are native.
1805
 */
1806
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1807 1808 1809
{
	pud_t *l3;
	pmd_t *l2;
1810 1811 1812
	unsigned long addr[3];
	unsigned long pt_base, pt_end;
	unsigned i;
1813

1814 1815 1816 1817 1818 1819
	/* max_pfn_mapped is the last pfn mapped in the initial memory
	 * mappings. Considering that on Xen after the kernel mappings we
	 * have the mappings of some pages that don't exist in pfn space, we
	 * set max_pfn_mapped to the last real pfn mapped. */
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));

1820 1821 1822
	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
	pt_end = pt_base + xen_start_info->nr_pt_frames;

1823 1824 1825
	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/* Pre-constructed entries are in pfn, so convert to mfn */
		/* L4[272] -> level3_ident_pgt
		 * L4[511] -> level3_kernel_pgt */
		convert_pfn_mfn(init_level4_pgt);

		/* L3_i[0] -> level2_ident_pgt */
		convert_pfn_mfn(level3_ident_pgt);
		/* L3_k[510] -> level2_kernel_pgt
1835
		 * L3_k[511] -> level2_fixmap_pgt */
1836
		convert_pfn_mfn(level3_kernel_pgt);
1837 1838 1839

		/* L3_k[511][506] -> level1_fixmap_pgt */
		convert_pfn_mfn(level2_fixmap_pgt);
1840
	}
1841
	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1842 1843 1844
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

1845 1846 1847
	addr[0] = (unsigned long)pgd;
	addr[1] = (unsigned long)l3;
	addr[2] = (unsigned long)l2;
1848
	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1849
	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1850 1851 1852 1853
	 * L2 (PMD) tables. Meaning that if you modify it in __va space
	 * it will be also modified in the __ka space! (But if you just
	 * modify the PMD table to point to other PTE's or none, then you
	 * are OK - which is what cleanup_highmap does) */
1854
	copy_page(level2_ident_pgt, l2);
1855
	/* Graft it onto L4[511][510] */
1856
	copy_page(level2_kernel_pgt, l2);
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866
	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
		/* Make pagetable pieces RO */
		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1867
		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1868 1869 1870 1871 1872 1873 1874

		/* Pin down new L4 */
		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
				  PFN_DOWN(__pa_symbol(init_level4_pgt)));

		/* Unpin Xen-provided one */
		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
		/*
		 * At this stage there can be no user pgd, and no page
		 * structure to attach it to, so make sure we just set kernel
		 * pgd.
		 */
		xen_mc_batch();
		__xen_write_cr3(true, __pa(init_level4_pgt));
		xen_mc_issue(PARAVIRT_LAZY_CPU);
	} else
		native_write_cr3(__pa(init_level4_pgt));
1886

1887 1888 1889 1890 1891 1892 1893 1894
	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
	 * the initial domain. For guests using the toolstack, they are in:
	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
	 * rip out the [L4] (pgd), but for guests we shave off three pages.
	 */
	for (i = 0; i < ARRAY_SIZE(addr); i++)
		check_pt_base(&pt_base, &pt_end, addr[i]);
1895

1896 1897
	/* Our (by three pages) smaller Xen pagetable that we are using */
	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1898 1899
	/* Revector the xen_start_info */
	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1900 1901
}
#else	/* !CONFIG_X86_64 */
1902 1903 1904
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);

1905
static void __init xen_write_cr3_init(unsigned long cr3)
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
{
	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));

	BUG_ON(read_cr3() != __pa(initial_page_table));
	BUG_ON(cr3 != __pa(swapper_pg_dir));

	/*
	 * We are switching to swapper_pg_dir for the first time (from
	 * initial_page_table) and therefore need to mark that page
	 * read-only and then pin it.
	 *
	 * Xen disallows sharing of kernel PMDs for PAE
	 * guests. Therefore we must copy the kernel PMD from
	 * initial_page_table into a new kernel PMD to be used in
	 * swapper_pg_dir.
	 */
	swapper_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1924
	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);

	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	xen_write_cr3(cr3);
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	set_page_prot(initial_page_table, PAGE_KERNEL);
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);

	pv_mmu_ops.write_cr3 = &xen_write_cr3;
}
1940

1941
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1942 1943 1944
{
	pmd_t *kernel_pmd;

1945 1946
	initial_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1947

1948 1949 1950
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
1951 1952

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1953
	copy_page(initial_kernel_pmd, kernel_pmd);
1954

1955
	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1956

1957
	copy_page(initial_page_table, pgd);
1958 1959
	initial_page_table[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1960

1961 1962
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1963 1964 1965 1966
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

1967 1968 1969
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	xen_write_cr3(__pa(initial_page_table));
1970

1971
	memblock_reserve(__pa(xen_start_info->pt_base),
1972
			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1973 1974 1975
}
#endif	/* CONFIG_X86_64 */

1976 1977
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

1978
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1979 1980 1981 1982 1983 1984 1985
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1986
	case FIX_RO_IDT:
1987 1988 1989 1990 1991
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
1992
#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
1993
	case VSYSCALL_PAGE:
1994
#endif
1995 1996 1997
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
1998 1999 2000
		pte = pfn_pte(phys, prot);
		break;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
2013
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2014 2015 2016
		break;
#endif

2017 2018 2019
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
2020 2021
		pte = mfn_pte(phys, prot);
		break;
2022 2023 2024

	default:
		/* By default, set_fixmap is used for hardware mappings */
2025
		pte = mfn_pte(phys, prot);
2026
		break;
2027 2028 2029 2030
	}

	__native_set_fixmap(idx, pte);

2031
#ifdef CONFIG_X86_VSYSCALL_EMULATION
2032 2033
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
2034
	if (idx == VSYSCALL_PAGE) {
2035 2036 2037 2038 2039 2040
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

2041
static void __init xen_post_allocator_init(void)
2042
{
2043 2044 2045
	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
2065
	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2066 2067 2068 2069 2070
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

2071 2072
static void xen_leave_lazy_mmu(void)
{
2073
	preempt_disable();
2074 2075
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
2076
	preempt_enable();
2077
}
2078

2079
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2080 2081 2082 2083
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
2084
	.write_cr3 = xen_write_cr3_init,
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
2099 2100
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
2101 2102 2103 2104 2105 2106 2107 2108

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2109 2110
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2111

2112 2113
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2114 2115 2116 2117 2118 2119 2120 2121

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2122 2123
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2124 2125

#if PAGETABLE_LEVELS == 4
2126 2127
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2128 2129
	.set_pgd = xen_set_pgd_hyper,

2130 2131
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2132 2133 2134 2135 2136 2137 2138 2139
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2140
		.leave = xen_leave_lazy_mmu,
2141
		.flush = paravirt_flush_lazy_mmu,
2142 2143 2144 2145 2146
	},

	.set_fixmap = xen_set_fixmap,
};

2147 2148
void __init xen_init_mmu_ops(void)
{
2149
	x86_init.paging.pagetable_init = xen_pagetable_init;
2150 2151 2152 2153 2154 2155 2156 2157 2158

	/* Optimization - we can use the HVM one but it has no idea which
	 * VCPUs are descheduled - which means that it will needlessly IPI
	 * them. Xen knows so let it do the job.
	 */
	if (xen_feature(XENFEAT_auto_translated_physmap)) {
		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
		return;
	}
2159
	pv_mmu_ops = xen_mmu_ops;
2160

2161
	memset(dummy_mapping, 0xff, PAGE_SIZE);
2162
}
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2184
		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

2280
int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2281 2282
				 unsigned int address_bits,
				 dma_addr_t *dma_handle)
2283 2284 2285 2286
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;
2287
	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

2322
	*dma_handle = virt_to_machine(vstart).maddr;
2323 2324 2325 2326
	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

2327
void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2328 2329 2330 2331
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;
2332
	unsigned long vstart;
2333 2334 2335 2336 2337 2338 2339

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

2340
	vstart = (unsigned long)phys_to_virt(pstart);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2362
}
2363
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2364

2365
#ifdef CONFIG_XEN_PVHVM
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
#ifdef CONFIG_PROC_VMCORE
/*
 * This function is used in two contexts:
 * - the kdump kernel has to check whether a pfn of the crashed kernel
 *   was a ballooned page. vmcore is using this function to decide
 *   whether to access a pfn of the crashed kernel.
 * - the kexec kernel has to check whether a pfn was ballooned by the
 *   previous kernel. If the pfn is ballooned, handle it properly.
 * Returns 0 if the pfn is not backed by a RAM page, the caller may
 * handle the pfn special in this case.
 */
static int xen_oldmem_pfn_is_ram(unsigned long pfn)
{
	struct xen_hvm_get_mem_type a = {
		.domid = DOMID_SELF,
		.pfn = pfn,
	};
	int ram;

	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
		return -ENXIO;

	switch (a.mem_type) {
		case HVMMEM_mmio_dm:
			ram = 0;
			break;
		case HVMMEM_ram_rw:
		case HVMMEM_ram_ro:
		default:
			ram = 1;
			break;
	}

	return ram;
}
#endif

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2433 2434 2435
#ifdef CONFIG_PROC_VMCORE
	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
#endif
2436
}
2437
#endif
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
2451
	pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2452

2453
	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2454 2455 2456 2457 2458 2459 2460 2461
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
2462
			       xen_pfn_t mfn, int nr,
2463 2464 2465
			       pgprot_t prot, unsigned domid,
			       struct page **pages)

2466 2467 2468 2469 2470 2471 2472
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

2473
	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2474

2475 2476 2477
	if (xen_feature(XENFEAT_auto_translated_physmap)) {
#ifdef CONFIG_XEN_PVH
		/* We need to update the local page tables and the xen HAP */
2478 2479
		return xen_xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
						 domid, pages);
2480 2481 2482 2483 2484
#else
		return -EINVAL;
#endif
        }

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

2498 2499
		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
		if (err < 0)
2500 2501 2502 2503 2504 2505 2506 2507 2508
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

2509
	xen_flush_tlb_all();
2510 2511 2512 2513

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2514 2515 2516 2517 2518 2519 2520 2521

/* Returns: 0 success */
int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
			       int numpgs, struct page **pages)
{
	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

2522
#ifdef CONFIG_XEN_PVH
2523
	return xen_xlate_unmap_gfn_range(vma, numpgs, pages);
2524
#else
2525
	return -EINVAL;
2526
#endif
2527 2528
}
EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);