mmu.c 58.8 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
J
Jeremy Fitzhardinge 已提交
50

51 52
#include <trace/events/xen.h>

J
Jeremy Fitzhardinge 已提交
53 54
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
55
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
56
#include <asm/mmu_context.h>
57
#include <asm/setup.h>
58
#include <asm/paravirt.h>
59
#include <asm/e820.h>
60
#include <asm/linkage.h>
61
#include <asm/page.h>
62
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
63
#include <asm/pat.h>
A
Andrew Jones 已提交
64
#include <asm/smp.h>
J
Jeremy Fitzhardinge 已提交
65 66

#include <asm/xen/hypercall.h>
67
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
68

69
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
70 71
#include <xen/page.h>
#include <xen/interface/xen.h>
72
#include <xen/interface/hvm/hvm_op.h>
73
#include <xen/interface/version.h>
74
#include <xen/interface/memory.h>
75
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
76

77
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
78
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
79 80
#include "debugfs.h"

A
Alex Nixon 已提交
81 82
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
83
 * Also protects non-atomic updates of current_pages and balloon lists.
A
Alex Nixon 已提交
84 85 86
 */
DEFINE_SPINLOCK(xen_reservation_lock);

87
#ifdef CONFIG_X86_32
88 89 90 91 92
/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
93 94
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
95
#endif
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


119 120 121 122 123 124
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

125 126 127 128 129 130 131
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

132
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
133
{
134
	unsigned long address = (unsigned long)vaddr;
135
	unsigned int level;
136 137
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
138

139 140 141 142 143 144 145 146
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
147

148 149 150
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
151
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
152
}
153
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
J
Jeremy Fitzhardinge 已提交
154 155 156 157 158

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
159
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
160

161
	pte = lookup_address(address, &level);
162 163
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
164 165 166 167 168 169 170 171 172 173 174

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
175
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
176

177
	pte = lookup_address(address, &level);
178 179
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
180 181 182 183 184 185 186 187

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


188
static bool xen_page_pinned(void *ptr)
189 190 191 192 193 194
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

195
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
196 197 198 199
{
	struct multicall_space mcs;
	struct mmu_update *u;

200 201
	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);

202 203 204 205
	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
206
	u->ptr = virt_to_machine(ptep).maddr;
207 208
	u->val = pte_val_ma(pteval);

209
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
210 211 212

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
213 214
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

215
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
216
{
J
Jeremy Fitzhardinge 已提交
217 218
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
219

220 221
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
222
	if (mcs.mc != NULL) {
223
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
224
	} else {
225 226 227
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
228 229

	u = mcs.args;
230 231 232
	*u = *update;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void xen_extend_mmuext_op(const struct mmuext_op *op)
{
	struct multicall_space mcs;
	struct mmuext_op *u;

	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));

	if (mcs.mc != NULL) {
		mcs.mc->args[1]++;
	} else {
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}

	u = mcs.args;
	*u = *op;
}

251
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
252 253 254 255 256 257 258
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

259 260
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
261
	u.val = pmd_val_ma(val);
262
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
263 264 265 266

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
267 268
}

269
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
270
{
271 272
	trace_xen_mmu_set_pmd(ptr, val);

273 274
	/* If page is not pinned, we can just update the entry
	   directly */
275
	if (!xen_page_pinned(ptr)) {
276 277 278 279 280 281 282
		*ptr = val;
		return;
	}

	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
283 284 285 286 287 288
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
289
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
290 291
}

292
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
J
Jeremy Fitzhardinge 已提交
293
{
294
	struct mmu_update u;
295

296 297
	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
		return false;
J
Jeremy Fitzhardinge 已提交
298

299
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
300

301 302 303
	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
	u.val = pte_val_ma(pteval);
	xen_extend_mmu_update(&u);
304

305
	xen_mc_issue(PARAVIRT_LAZY_MMU);
306

307 308 309
	return true;
}

310
static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
311 312
{
	if (!xen_batched_set_pte(ptep, pteval))
313
		native_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
314 315
}

316 317 318 319 320 321
static void xen_set_pte(pte_t *ptep, pte_t pteval)
{
	trace_xen_mmu_set_pte(ptep, pteval);
	__xen_set_pte(ptep, pteval);
}

322
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
323 324
		    pte_t *ptep, pte_t pteval)
{
325 326
	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
	__xen_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
327 328
}

T
Tej 已提交
329 330
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
331
{
332
	/* Just return the pte as-is.  We preserve the bits on commit */
333
	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
334 335 336 337 338 339
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
340
	struct mmu_update u;
341

342
	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
343
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
344

345
	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
346
	u.val = pte_val_ma(pte);
347
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
348

349
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
350 351
}

J
Jeremy Fitzhardinge 已提交
352 353
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
354
{
J
Jeremy Fitzhardinge 已提交
355
	if (val & _PAGE_PRESENT) {
356
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
357 358
		unsigned long pfn = mfn_to_pfn(mfn);

J
Jeremy Fitzhardinge 已提交
359
		pteval_t flags = val & PTE_FLAGS_MASK;
360 361 362 363
		if (unlikely(pfn == ~0))
			val = flags & ~_PAGE_PRESENT;
		else
			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
364
	}
J
Jeremy Fitzhardinge 已提交
365

J
Jeremy Fitzhardinge 已提交
366
	return val;
J
Jeremy Fitzhardinge 已提交
367 368
}

J
Jeremy Fitzhardinge 已提交
369
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
370
{
J
Jeremy Fitzhardinge 已提交
371
	if (val & _PAGE_PRESENT) {
372
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
373
		pteval_t flags = val & PTE_FLAGS_MASK;
374
		unsigned long mfn;
375

376 377 378 379
		if (!xen_feature(XENFEAT_auto_translated_physmap))
			mfn = get_phys_to_machine(pfn);
		else
			mfn = pfn;
380 381 382 383 384 385 386 387 388
		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
389 390 391 392 393 394 395 396 397 398 399
		} else {
			/*
			 * Paramount to do this test _after_ the
			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
			 * IDENTITY_FRAME_BIT resolves to true.
			 */
			mfn &= ~FOREIGN_FRAME_BIT;
			if (mfn & IDENTITY_FRAME_BIT) {
				mfn &= ~IDENTITY_FRAME_BIT;
				flags |= _PAGE_IOMAP;
			}
400 401
		}
		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
402 403
	}

J
Jeremy Fitzhardinge 已提交
404
	return val;
J
Jeremy Fitzhardinge 已提交
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420
static pteval_t iomap_pte(pteval_t val)
{
	if (val & _PAGE_PRESENT) {
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
		pteval_t flags = val & PTE_FLAGS_MASK;

		/* We assume the pte frame number is a MFN, so
		   just use it as-is. */
		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
	}

	return val;
}

421
static pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
422
{
J
Jeremy Fitzhardinge 已提交
423
	pteval_t pteval = pte.pte;
424
#if 0
J
Jeremy Fitzhardinge 已提交
425 426 427 428 429
	/* If this is a WC pte, convert back from Xen WC to Linux WC */
	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
		WARN_ON(!pat_enabled);
		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
	}
430
#endif
J
Jeremy Fitzhardinge 已提交
431 432 433 434
	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
		return pteval;

	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
435
}
436
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
437

438
static pgdval_t xen_pgd_val(pgd_t pgd)
J
Jeremy Fitzhardinge 已提交
439
{
J
Jeremy Fitzhardinge 已提交
440
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
441
}
442
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
443

J
Jeremy Fitzhardinge 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 * are reserved for now, to correspond to the Intel-reserved PAT
 * types.
 *
 * We expect Linux's PAT set as follows:
 *
 * Idx  PTE flags        Linux    Xen    Default
 * 0                     WB       WB     WB
 * 1            PWT      WC       WT     WT
 * 2        PCD          UC-      UC-    UC-
 * 3        PCD PWT      UC       UC     UC
 * 4    PAT              WB       WC     WB
 * 5    PAT     PWT      WC       WP     WT
 * 6    PAT PCD          UC-      UC     UC-
 * 7    PAT PCD PWT      UC       UC     UC
 */

void xen_set_pat(u64 pat)
{
	/* We expect Linux to use a PAT setting of
	 * UC UC- WC WB (ignoring the PAT flag) */
	WARN_ON(pat != 0x0007010600070106ull);
}

469
static pte_t xen_make_pte(pteval_t pte)
J
Jeremy Fitzhardinge 已提交
470
{
471
	phys_addr_t addr = (pte & PTE_PFN_MASK);
472
#if 0
J
Jeremy Fitzhardinge 已提交
473 474 475 476 477 478 479 480 481 482 483 484
	/* If Linux is trying to set a WC pte, then map to the Xen WC.
	 * If _PAGE_PAT is set, then it probably means it is really
	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
	 * things work out OK...
	 *
	 * (We should never see kernel mappings with _PAGE_PSE set,
	 * but we could see hugetlbfs mappings, I think.).
	 */
	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
	}
485
#endif
486 487 488 489 490 491 492 493
	/*
	 * Unprivileged domains are allowed to do IOMAPpings for
	 * PCI passthrough, but not map ISA space.  The ISA
	 * mappings are just dummy local mappings to keep other
	 * parts of the kernel happy.
	 */
	if (unlikely(pte & _PAGE_IOMAP) &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
494
		pte = iomap_pte(pte);
495 496
	} else {
		pte &= ~_PAGE_IOMAP;
497
		pte = pte_pfn_to_mfn(pte);
498
	}
499

J
Jeremy Fitzhardinge 已提交
500
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
501
}
502
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
503

504
static pgd_t xen_make_pgd(pgdval_t pgd)
J
Jeremy Fitzhardinge 已提交
505
{
J
Jeremy Fitzhardinge 已提交
506 507
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
508
}
509
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
510

511
static pmdval_t xen_pmd_val(pmd_t pmd)
J
Jeremy Fitzhardinge 已提交
512
{
J
Jeremy Fitzhardinge 已提交
513
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
514
}
515
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
516

517
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
518
{
519
	struct mmu_update u;
520

J
Jeremy Fitzhardinge 已提交
521 522
	preempt_disable();

523 524
	xen_mc_batch();

525 526
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
527
	u.val = pud_val_ma(val);
528
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
529 530 531 532

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
533 534
}

535
static void xen_set_pud(pud_t *ptr, pud_t val)
536
{
537 538
	trace_xen_mmu_set_pud(ptr, val);

539 540
	/* If page is not pinned, we can just update the entry
	   directly */
541
	if (!xen_page_pinned(ptr)) {
542 543 544 545 546 547 548
		*ptr = val;
		return;
	}

	xen_set_pud_hyper(ptr, val);
}

549
#ifdef CONFIG_X86_PAE
550
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
J
Jeremy Fitzhardinge 已提交
551
{
552
	trace_xen_mmu_set_pte_atomic(ptep, pte);
553
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
554 555
}

556
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
557
{
558
	trace_xen_mmu_pte_clear(mm, addr, ptep);
559 560
	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
		native_pte_clear(mm, addr, ptep);
J
Jeremy Fitzhardinge 已提交
561 562
}

563
static void xen_pmd_clear(pmd_t *pmdp)
J
Jeremy Fitzhardinge 已提交
564
{
565
	trace_xen_mmu_pmd_clear(pmdp);
566
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
567
}
568
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
569

570
static pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
571
{
J
Jeremy Fitzhardinge 已提交
572
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
573
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
574
}
575
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
576

577
#if PAGETABLE_LEVELS == 4
578
static pudval_t xen_pud_val(pud_t pud)
579 580 581
{
	return pte_mfn_to_pfn(pud.pud);
}
582
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
583

584
static pud_t xen_make_pud(pudval_t pud)
585 586 587 588 589
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
590
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
591

592
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
593
{
594 595 596
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
597

598 599 600 601 602 603
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
604

605 606 607 608 609 610
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
611 612 613

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
614
	xen_extend_mmu_update(&u);
615 616 617 618 619 620 621 622 623
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
624
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
625 626 627 628 629 630
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
631 632 633 634 635 636

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

637
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
638
{
639 640
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

641 642
	trace_xen_mmu_set_pgd(ptr, user_ptr, val);

643 644
	/* If page is not pinned, we can just update the entry
	   directly */
645
	if (!xen_page_pinned(ptr)) {
646
		*ptr = val;
647
		if (user_ptr) {
648
			WARN_ON(xen_page_pinned(user_ptr));
649 650
			*user_ptr = val;
		}
651 652 653
		return;
	}

654 655 656 657 658 659 660 661 662
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
663 664 665
}
#endif	/* PAGETABLE_LEVELS == 4 */

666
/*
667 668 669 670 671 672 673 674 675 676 677 678 679 680
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
681 682 683 684
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
685
{
686
	int flush = 0;
687 688 689
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
690

691 692 693
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
694 695

	if (xen_feature(XENFEAT_auto_translated_physmap))
696 697
		return 0;

698 699 700 701 702
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
703
	hole_low = pgd_index(USER_LIMIT);
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
719
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
720

721 722
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
723

724
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
725
			continue;
726

727
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
728 729

		if (PTRS_PER_PUD > 1) /* not folded */
730
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
731

732
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
733 734
			pmd_t *pmd;

735 736 737
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
738

739
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
740
				continue;
741

742
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
743 744

			if (PTRS_PER_PMD > 1) /* not folded */
745
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
746

747 748 749 750 751 752 753
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
754

755
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
756 757
					continue;

758
				pte = pmd_page(pmd[pmdidx]);
759
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
760 761 762
			}
		}
	}
763

764
out:
765 766
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
767
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
768 769

	return flush;
J
Jeremy Fitzhardinge 已提交
770 771
}

I
Ian Campbell 已提交
772 773 774 775 776 777 778 779
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

780 781
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
782
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
783 784 785
{
	spinlock_t *ptl = NULL;

786
#if USE_SPLIT_PTLOCKS
787
	ptl = __pte_lockptr(page);
788
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
789 790 791 792 793
#endif

	return ptl;
}

794
static void xen_pte_unlock(void *v)
795 796 797 798 799 800 801
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
802
	struct mmuext_op op;
803

804 805 806 807
	op.cmd = level;
	op.arg1.mfn = pfn_to_mfn(pfn);

	xen_extend_mmuext_op(&op);
808 809
}

810 811
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
812
{
813
	unsigned pgfl = TestSetPagePinned(page);
814 815 816 817 818 819 820 821 822 823 824 825
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
826
		spinlock_t *ptl;
827 828 829

		flush = 0;

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
850 851
		ptl = NULL;
		if (level == PT_PTE)
852
			ptl = xen_pte_lock(page, mm);
853

854 855
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
856 857
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

858
		if (ptl) {
859 860 861 862
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
863
			xen_mc_callback(xen_pte_unlock, ptl);
864
		}
865 866 867 868
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
869

870 871 872
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
873
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
874
{
875 876
	trace_xen_mmu_pgd_pin(mm, pgd);

877
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
878

I
Ian Campbell 已提交
879
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
880
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
881
		xen_mc_issue(0);
882

883
		kmap_flush_unused();
884

J
Jeremy Fitzhardinge 已提交
885 886
		xen_mc_batch();
	}
887

888 889 890 891 892 893 894
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
895
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
896 897
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
898 899 900
		}
	}
#else /* CONFIG_X86_32 */
901 902
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
903
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
904
		     PT_PMD);
905
#endif
906
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
907
#endif /* CONFIG_X86_64 */
908
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
909 910
}

911 912 913 914 915
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

916 917 918 919 920
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
921 922 923 924
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
925 926 927 928
 */
void xen_mm_pin_all(void)
{
	struct page *page;
929

A
Andrea Arcangeli 已提交
930
	spin_lock(&pgd_lock);
931

932 933
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
934
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
935 936 937 938
			SetPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
939
	spin_unlock(&pgd_lock);
J
Jeremy Fitzhardinge 已提交
940 941
}

942 943 944 945 946
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
947
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
948
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
949
{
950 951 952
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
953

954
static void __init xen_mark_init_mm_pinned(void)
955
{
956
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
957
}
J
Jeremy Fitzhardinge 已提交
958

959 960
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
961
{
962
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
963

964 965 966
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
967 968 969
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

970 971 972 973 974 975 976
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
977
		if (level == PT_PTE) {
978
			ptl = xen_pte_lock(page, mm);
979

980 981
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
982 983 984
		}

		mcs = __xen_mc_entry(0);
985 986 987

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
988 989 990 991
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
992
			xen_mc_callback(xen_pte_unlock, ptl);
993
		}
994 995 996
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
997 998
}

999
/* Release a pagetables pages back as normal RW */
1000
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1001
{
1002 1003
	trace_xen_mmu_pgd_unpin(mm, pgd);

1004 1005
	xen_mc_batch();

1006
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1007

1008 1009 1010 1011 1012
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
1013 1014
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1015
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1016 1017 1018 1019
		}
	}
#endif

1020 1021
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
1022
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1023
		       PT_PMD);
1024
#endif
1025

I
Ian Campbell 已提交
1026
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1027 1028 1029

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
1030

1031 1032 1033 1034 1035
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

1036 1037 1038 1039 1040 1041 1042 1043
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	struct page *page;

A
Andrea Arcangeli 已提交
1044
	spin_lock(&pgd_lock);
1045 1046 1047 1048

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
1049
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1050 1051 1052 1053
			ClearPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
1054
	spin_unlock(&pgd_lock);
1055 1056
}

1057
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
J
Jeremy Fitzhardinge 已提交
1058
{
1059
	spin_lock(&next->page_table_lock);
1060
	xen_pgd_pin(next);
1061
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1062 1063
}

1064
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1065
{
1066
	spin_lock(&mm->page_table_lock);
1067
	xen_pgd_pin(mm);
1068
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1069 1070 1071
}


J
Jeremy Fitzhardinge 已提交
1072 1073 1074 1075 1076 1077
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1078
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1079

1080
	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1081

1082
	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
J
Jeremy Fitzhardinge 已提交
1083
		leave_mm(smp_processor_id());
1084 1085 1086

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1087
	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1088
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1089
}
J
Jeremy Fitzhardinge 已提交
1090

1091
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1092
{
1093
	cpumask_var_t mask;
1094 1095
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1096 1097 1098 1099 1100
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1101 1102 1103
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1104 1105
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1106
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1107 1108 1109 1110 1111 1112
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1113
	cpumask_copy(mask, mm_cpumask(mm));
1114 1115 1116 1117 1118 1119 1120 1121

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1122
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1123 1124
	}

1125 1126 1127
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1128 1129
}
#else
1130
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
1151
static void xen_exit_mmap(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1152 1153
{
	get_cpu();		/* make sure we don't move around */
1154
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1155
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1156

1157
	spin_lock(&mm->page_table_lock);
1158 1159

	/* pgd may not be pinned in the error exit path of execve */
1160
	if (xen_page_pinned(mm->pgd))
1161
		xen_pgd_unpin(mm);
1162

1163
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1164
}
J
Jeremy Fitzhardinge 已提交
1165

1166
static void __init xen_pagetable_setup_start(pgd_t *base)
1167 1168 1169
{
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
{
	/* reserve the range used */
	native_pagetable_reserve(start, end);

	/* set as RW the rest */
	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
			PFN_PHYS(pgt_buf_top));
	while (end < PFN_PHYS(pgt_buf_top)) {
		make_lowmem_page_readwrite(__va(end));
		end += PAGE_SIZE;
	}
}

1184 1185
static void xen_post_allocator_init(void);

1186
static void __init xen_pagetable_setup_done(pgd_t *base)
1187 1188
{
	xen_setup_shared_info();
1189
	xen_post_allocator_init();
1190 1191 1192 1193
}

static void xen_write_cr2(unsigned long cr2)
{
1194
	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1195 1196 1197 1198
}

static unsigned long xen_read_cr2(void)
{
1199
	return this_cpu_read(xen_vcpu)->arch.cr2;
1200 1201 1202 1203
}

unsigned long xen_read_cr2_direct(void)
{
1204
	return this_cpu_read(xen_vcpu_info.arch.cr2);
1205 1206 1207 1208 1209 1210 1211
}

static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1212 1213
	trace_xen_mmu_flush_tlb(0);

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1232 1233
	trace_xen_mmu_flush_tlb_single(addr);

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
				 struct mm_struct *mm, unsigned long va)
{
	struct {
		struct mmuext_op op;
1252
#ifdef CONFIG_SMP
A
Andrew Jones 已提交
1253
		DECLARE_BITMAP(mask, num_processors);
1254 1255 1256
#else
		DECLARE_BITMAP(mask, NR_CPUS);
#endif
1257 1258 1259
	} *args;
	struct multicall_space mcs;

1260 1261
	trace_xen_mmu_flush_tlb_others(cpus, mm, va);

1262 1263
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

	if (va == TLB_FLUSH_ALL) {
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
	} else {
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
1287
	return this_cpu_read(xen_cr3);
1288 1289 1290 1291
}

static void set_current_cr3(void *v)
{
1292
	this_cpu_write(xen_current_cr3, (unsigned long)v);
1293 1294 1295 1296
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
1297
	struct mmuext_op op;
1298 1299
	unsigned long mfn;

1300 1301
	trace_xen_mmu_write_cr3(kernel, cr3);

1302 1303 1304 1305 1306 1307 1308
	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

1309 1310
	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op.arg1.mfn = mfn;
1311

1312
	xen_extend_mmuext_op(&op);
1313 1314

	if (kernel) {
1315
		this_cpu_write(xen_cr3, cr3);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}

static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
1331
	this_cpu_write(xen_cr3, cr3);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
			user_pgd[pgd_index(VSYSCALL_START)] =
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1390
#ifdef CONFIG_X86_32
1391
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1392 1393 1394 1395 1396
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1397 1398 1399 1400

	return pte;
}
#else /* CONFIG_X86_64 */
1401
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1402 1403
{
	unsigned long pfn = pte_pfn(pte);
1404 1405 1406 1407

	/*
	 * If the new pfn is within the range of the newly allocated
	 * kernel pagetable, and it isn't being mapped into an
1408 1409
	 * early_ioremap fixmap slot as a freshly allocated page, make sure
	 * it is RO.
1410
	 */
1411
	if (((!is_early_ioremap_ptep(ptep) &&
1412
			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1413
			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1414
		pte = pte_wrprotect(pte);
1415 1416 1417

	return pte;
}
1418
#endif /* CONFIG_X86_64 */
1419 1420 1421

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
1422
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1423 1424 1425 1426 1427
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1438 1439
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
1440
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1441
{
1442 1443 1444 1445 1446 1447 1448 1449
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
1450
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1451
{
1452 1453 1454 1455 1456 1457 1458 1459
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1460
static void __init xen_release_pte_init(unsigned long pfn)
1461
{
1462
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1463 1464 1465
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1466
static void __init xen_release_pmd_init(unsigned long pfn)
1467
{
1468
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct multicall_space mcs;
	struct mmuext_op *op;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = cmd;
	op->arg1.mfn = pfn_to_mfn(pfn);

	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
}

static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
{
	struct multicall_space mcs;
	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);

	mcs = __xen_mc_entry(0);
	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
				pfn_pte(pfn, prot), 0);
}

1494 1495
/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
1496 1497
static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
				    unsigned level)
1498
{
1499 1500
	bool pinned = PagePinned(virt_to_page(mm->pgd));

1501
	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1502

1503
	if (pinned) {
1504
		struct page *page = pfn_to_page(pfn);
1505 1506 1507 1508

		SetPagePinned(page);

		if (!PageHighMem(page)) {
1509 1510 1511 1512
			xen_mc_batch();

			__set_pfn_prot(pfn, PAGE_KERNEL_RO);

1513
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1514 1515 1516
				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
1536
static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1537 1538
{
	struct page *page = pfn_to_page(pfn);
1539
	bool pinned = PagePinned(page);
1540

1541
	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1542

1543
	if (pinned) {
1544
		if (!PageHighMem(page)) {
1545 1546
			xen_mc_batch();

1547
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1548 1549 1550 1551 1552
				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);

			__set_pfn_prot(pfn, PAGE_KERNEL);

			xen_mc_issue(PARAVIRT_LAZY_MMU);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
static void *__ka(phys_addr_t paddr)
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
static unsigned long m2p(phys_addr_t maddr)
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
static void *m2v(phys_addr_t maddr)
{
	return __ka(m2p(maddr));
}

1623
/* Set the page permissions on an identity-mapped pages */
1624 1625 1626 1627 1628 1629 1630 1631
static void set_page_prot(void *addr, pgprot_t prot)
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
		BUG();
}
1632
#ifdef CONFIG_X86_32
1633
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1634 1635 1636 1637 1638
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1639 1640 1641
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
1652
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

1665 1666 1667 1668 1669
#ifdef CONFIG_X86_32
			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;
#endif

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}
1683
#endif
1684 1685 1686 1687 1688 1689
void __init xen_setup_machphys_mapping(void)
{
	struct xen_machphys_mapping mapping;

	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1690
		machine_to_phys_nr = mapping.max_mfn + 1;
1691
	} else {
1692
		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1693
	}
1694
#ifdef CONFIG_X86_32
1695 1696
	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
		< machine_to_phys_mapping);
1697
#endif
1698 1699
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
#ifdef CONFIG_X86_64
static void convert_pfn_mfn(void *v)
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
				 unsigned long addr)
{
	if (*pt_base == PFN_DOWN(__pa(addr))) {
		set_page_prot((void *)addr, PAGE_KERNEL);
		clear_page((void *)addr);
		(*pt_base)++;
	}
	if (*pt_end == PFN_DOWN(__pa(addr))) {
		set_page_prot((void *)addr, PAGE_KERNEL);
		clear_page((void *)addr);
		(*pt_end)--;
	}
}
1725
/*
L
Lucas De Marchi 已提交
1726
 * Set up the initial kernel pagetable.
1727 1728 1729 1730 1731 1732 1733 1734 1735
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 * means that only the kernel has a physical mapping to start with -
 * but that's enough to get __va working.  We need to fill in the rest
 * of the physical mapping once some sort of allocator has been set
 * up.
 */
1736
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1737 1738 1739
{
	pud_t *l3;
	pmd_t *l2;
1740 1741 1742
	unsigned long addr[3];
	unsigned long pt_base, pt_end;
	unsigned i;
1743

1744 1745 1746 1747 1748 1749
	/* max_pfn_mapped is the last pfn mapped in the initial memory
	 * mappings. Considering that on Xen after the kernel mappings we
	 * have the mappings of some pages that don't exist in pfn space, we
	 * set max_pfn_mapped to the last real pfn mapped. */
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));

1750 1751 1752
	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
	pt_end = pt_base + xen_start_info->nr_pt_frames;

1753 1754 1755 1756
	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

	/* Pre-constructed entries are in pfn, so convert to mfn */
1757 1758
	/* L4[272] -> level3_ident_pgt
	 * L4[511] -> level3_kernel_pgt */
1759
	convert_pfn_mfn(init_level4_pgt);
1760 1761

	/* L3_i[0] -> level2_ident_pgt */
1762
	convert_pfn_mfn(level3_ident_pgt);
1763 1764
	/* L3_k[510] -> level2_kernel_pgt
	 * L3_i[511] -> level2_fixmap_pgt */
1765 1766
	convert_pfn_mfn(level3_kernel_pgt);

1767
	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1768 1769 1770
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

1771 1772 1773
	addr[0] = (unsigned long)pgd;
	addr[1] = (unsigned long)l3;
	addr[2] = (unsigned long)l2;
1774 1775 1776 1777 1778 1779
	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
	 * Both L4[272][0] and L4[511][511] have entries that point to the same
	 * L2 (PMD) tables. Meaning that if you modify it in __va space
	 * it will be also modified in the __ka space! (But if you just
	 * modify the PMD table to point to other PTE's or none, then you
	 * are OK - which is what cleanup_highmap does) */
1780
	copy_page(level2_ident_pgt, l2);
1781
	/* Graft it onto L4[511][511] */
1782
	copy_page(level2_kernel_pgt, l2);
1783

1784
	/* Get [511][510] and graft that in level2_fixmap_pgt */
1785 1786
	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1787
	copy_page(level2_fixmap_pgt, l2);
1788 1789
	/* Note that we don't do anything with level1_fixmap_pgt which
	 * we don't need. */
1790 1791 1792 1793 1794 1795

	/* Make pagetable pieces RO */
	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1796
	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);

	/* Pin down new L4 */
	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
			  PFN_DOWN(__pa_symbol(init_level4_pgt)));

	/* Unpin Xen-provided one */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

	/*
	 * At this stage there can be no user pgd, and no page
	 * structure to attach it to, so make sure we just set kernel
	 * pgd.
	 */
	xen_mc_batch();
1813
	__xen_write_cr3(true, __pa(init_level4_pgt));
1814 1815
	xen_mc_issue(PARAVIRT_LAZY_CPU);

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
	 * the initial domain. For guests using the toolstack, they are in:
	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
	 * rip out the [L4] (pgd), but for guests we shave off three pages.
	 */
	for (i = 0; i < ARRAY_SIZE(addr); i++)
		check_pt_base(&pt_base, &pt_end, addr[i]);

	/* Our (by three pages) smaller Xen pagetable that we are using */
	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1827 1828
}
#else	/* !CONFIG_X86_64 */
1829 1830 1831
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);

1832
static void __init xen_write_cr3_init(unsigned long cr3)
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));

	BUG_ON(read_cr3() != __pa(initial_page_table));
	BUG_ON(cr3 != __pa(swapper_pg_dir));

	/*
	 * We are switching to swapper_pg_dir for the first time (from
	 * initial_page_table) and therefore need to mark that page
	 * read-only and then pin it.
	 *
	 * Xen disallows sharing of kernel PMDs for PAE
	 * guests. Therefore we must copy the kernel PMD from
	 * initial_page_table into a new kernel PMD to be used in
	 * swapper_pg_dir.
	 */
	swapper_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1851
	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);

	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	xen_write_cr3(cr3);
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	set_page_prot(initial_page_table, PAGE_KERNEL);
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);

	pv_mmu_ops.write_cr3 = &xen_write_cr3;
}
1867

1868
void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1869 1870 1871
{
	pmd_t *kernel_pmd;

1872 1873
	initial_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1874

1875 1876 1877
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
1878 1879

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1880
	copy_page(initial_kernel_pmd, kernel_pmd);
1881

1882
	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1883

1884
	copy_page(initial_page_table, pgd);
1885 1886
	initial_page_table[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1887

1888 1889
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1890 1891 1892 1893
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

1894 1895 1896
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	xen_write_cr3(__pa(initial_page_table));
1897

1898
	memblock_reserve(__pa(xen_start_info->pt_base),
1899
			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1900 1901 1902
}
#endif	/* CONFIG_X86_64 */

1903 1904
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

1905
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
#ifdef CONFIG_X86_F00F_BUG
	case FIX_F00F_IDT:
#endif
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
	case FIX_VDSO:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1924
	case VVAR_PAGE:
1925
#endif
1926 1927 1928
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
1929 1930 1931
		pte = pfn_pte(phys, prot);
		break;

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
1944
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1945 1946 1947
		break;
#endif

1948 1949 1950
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
1951 1952
		pte = mfn_pte(phys, prot);
		break;
1953 1954 1955 1956 1957

	default:
		/* By default, set_fixmap is used for hardware mappings */
		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
		break;
1958 1959 1960 1961 1962 1963 1964
	}

	__native_set_fixmap(idx, pte);

#ifdef CONFIG_X86_64
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
1965 1966
	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
	    idx == VVAR_PAGE) {
1967 1968 1969 1970 1971 1972
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

1973
static void __init xen_post_allocator_init(void)
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
{
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

1999 2000
static void xen_leave_lazy_mmu(void)
{
2001
	preempt_disable();
2002 2003
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
2004
	preempt_enable();
2005
}
2006

2007
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2008 2009 2010 2011
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
2012 2013 2014
#ifdef CONFIG_X86_32
	.write_cr3 = xen_write_cr3_init,
#else
2015
	.write_cr3 = xen_write_cr3,
2016
#endif
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
2031 2032
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
2033 2034 2035 2036 2037 2038 2039 2040

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2041 2042
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2043

2044 2045
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2046 2047 2048 2049 2050 2051 2052 2053

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2054 2055
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2056 2057

#if PAGETABLE_LEVELS == 4
2058 2059
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2060 2061
	.set_pgd = xen_set_pgd_hyper,

2062 2063
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2064 2065 2066 2067 2068 2069 2070 2071
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2072
		.leave = xen_leave_lazy_mmu,
2073 2074 2075 2076 2077
	},

	.set_fixmap = xen_set_fixmap,
};

2078 2079
void __init xen_init_mmu_ops(void)
{
2080
	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2081 2082 2083
	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
	pv_mmu_ops = xen_mmu_ops;
2084

2085
	memset(dummy_mapping, 0xff, PAGE_SIZE);
2086
}
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2108
		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
				 unsigned int address_bits)
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2281
}
2282
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2283

2284
#ifdef CONFIG_XEN_PVHVM
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
}
2316
#endif
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));

2332
	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
			       unsigned long mfn, int nr,
			       pgprot_t prot, unsigned domid)
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);

2352 2353
	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

		err = -EFAULT;
		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

	flush_tlb_all();

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);