mmu.c 58.0 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
49
#include <linux/seq_file.h>
J
Jeremy Fitzhardinge 已提交
50

51 52
#include <trace/events/xen.h>

J
Jeremy Fitzhardinge 已提交
53 54
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
55
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
56
#include <asm/mmu_context.h>
57
#include <asm/setup.h>
58
#include <asm/paravirt.h>
59
#include <asm/e820.h>
60
#include <asm/linkage.h>
61
#include <asm/page.h>
62
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
63
#include <asm/pat.h>
A
Andrew Jones 已提交
64
#include <asm/smp.h>
J
Jeremy Fitzhardinge 已提交
65 66

#include <asm/xen/hypercall.h>
67
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
68

69
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
70 71
#include <xen/page.h>
#include <xen/interface/xen.h>
72
#include <xen/interface/hvm/hvm_op.h>
73
#include <xen/interface/version.h>
74
#include <xen/interface/memory.h>
75
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
76

77
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
78
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
79 80
#include "debugfs.h"

A
Alex Nixon 已提交
81 82
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
83
 * Also protects non-atomic updates of current_pages and balloon lists.
A
Alex Nixon 已提交
84 85 86
 */
DEFINE_SPINLOCK(xen_reservation_lock);

87 88 89 90 91
/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
92 93
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


118 119 120 121 122 123
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

124 125 126 127 128 129 130
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

131
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
132
{
133
	unsigned long address = (unsigned long)vaddr;
134
	unsigned int level;
135 136
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
137

138 139 140 141 142 143 144 145
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
146

147 148 149
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
150
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
151
}
152
EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
J
Jeremy Fitzhardinge 已提交
153 154 155 156 157

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
158
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
159

160
	pte = lookup_address(address, &level);
161 162
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
163 164 165 166 167 168 169 170 171 172 173

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
174
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
175

176
	pte = lookup_address(address, &level);
177 178
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
179 180 181 182 183 184 185 186

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


187
static bool xen_page_pinned(void *ptr)
188 189 190 191 192 193
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

194
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195 196 197 198
{
	struct multicall_space mcs;
	struct mmu_update *u;

199 200
	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);

201 202 203 204
	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
205
	u->ptr = virt_to_machine(ptep).maddr;
206 207
	u->val = pte_val_ma(pteval);

208
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209 210 211

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
212 213
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

214
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
215
{
J
Jeremy Fitzhardinge 已提交
216 217
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
218

219 220
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
221
	if (mcs.mc != NULL) {
222
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
223
	} else {
224 225 226
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
	}
J
Jeremy Fitzhardinge 已提交
227 228

	u = mcs.args;
229 230 231
	*u = *update;
}

232
static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
233 234 235 236 237 238 239
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

240 241
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
242
	u.val = pmd_val_ma(val);
243
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
244 245 246 247

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
248 249
}

250
static void xen_set_pmd(pmd_t *ptr, pmd_t val)
251
{
252 253
	trace_xen_mmu_set_pmd(ptr, val);

254 255
	/* If page is not pinned, we can just update the entry
	   directly */
256
	if (!xen_page_pinned(ptr)) {
257 258 259 260 261 262 263
		*ptr = val;
		return;
	}

	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
264 265 266 267 268 269
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
270
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
271 272
}

273
static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
J
Jeremy Fitzhardinge 已提交
274
{
275
	struct mmu_update u;
276

277 278
	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
		return false;
J
Jeremy Fitzhardinge 已提交
279

280
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
281

282 283 284
	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
	u.val = pte_val_ma(pteval);
	xen_extend_mmu_update(&u);
285

286
	xen_mc_issue(PARAVIRT_LAZY_MMU);
287

288 289 290
	return true;
}

291
static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
292 293
{
	if (!xen_batched_set_pte(ptep, pteval))
294
		native_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
295 296
}

297 298 299 300 301 302
static void xen_set_pte(pte_t *ptep, pte_t pteval)
{
	trace_xen_mmu_set_pte(ptep, pteval);
	__xen_set_pte(ptep, pteval);
}

303
static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
304 305
		    pte_t *ptep, pte_t pteval)
{
306 307
	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
	__xen_set_pte(ptep, pteval);
J
Jeremy Fitzhardinge 已提交
308 309
}

T
Tej 已提交
310 311
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
312
{
313
	/* Just return the pte as-is.  We preserve the bits on commit */
314
	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
315 316 317 318 319 320
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
321
	struct mmu_update u;
322

323
	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
324
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
325

326
	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
327
	u.val = pte_val_ma(pte);
328
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
329

330
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
331 332
}

J
Jeremy Fitzhardinge 已提交
333 334
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
335
{
J
Jeremy Fitzhardinge 已提交
336
	if (val & _PAGE_PRESENT) {
337
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
338
		pteval_t flags = val & PTE_FLAGS_MASK;
339
		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
340
	}
J
Jeremy Fitzhardinge 已提交
341

J
Jeremy Fitzhardinge 已提交
342
	return val;
J
Jeremy Fitzhardinge 已提交
343 344
}

J
Jeremy Fitzhardinge 已提交
345
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
346
{
J
Jeremy Fitzhardinge 已提交
347
	if (val & _PAGE_PRESENT) {
348
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
349
		pteval_t flags = val & PTE_FLAGS_MASK;
350
		unsigned long mfn;
351

352 353 354 355
		if (!xen_feature(XENFEAT_auto_translated_physmap))
			mfn = get_phys_to_machine(pfn);
		else
			mfn = pfn;
356 357 358 359 360 361 362 363 364
		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
365 366 367 368 369 370 371 372 373 374 375
		} else {
			/*
			 * Paramount to do this test _after_ the
			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
			 * IDENTITY_FRAME_BIT resolves to true.
			 */
			mfn &= ~FOREIGN_FRAME_BIT;
			if (mfn & IDENTITY_FRAME_BIT) {
				mfn &= ~IDENTITY_FRAME_BIT;
				flags |= _PAGE_IOMAP;
			}
376 377
		}
		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
378 379
	}

J
Jeremy Fitzhardinge 已提交
380
	return val;
J
Jeremy Fitzhardinge 已提交
381 382
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396
static pteval_t iomap_pte(pteval_t val)
{
	if (val & _PAGE_PRESENT) {
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
		pteval_t flags = val & PTE_FLAGS_MASK;

		/* We assume the pte frame number is a MFN, so
		   just use it as-is. */
		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
	}

	return val;
}

397
static pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
398
{
J
Jeremy Fitzhardinge 已提交
399
	pteval_t pteval = pte.pte;
400

J
Jeremy Fitzhardinge 已提交
401 402 403 404 405
	/* If this is a WC pte, convert back from Xen WC to Linux WC */
	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
		WARN_ON(!pat_enabled);
		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
	}
406

J
Jeremy Fitzhardinge 已提交
407 408 409 410
	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
		return pteval;

	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
411
}
412
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
413

414
static pgdval_t xen_pgd_val(pgd_t pgd)
J
Jeremy Fitzhardinge 已提交
415
{
J
Jeremy Fitzhardinge 已提交
416
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
417
}
418
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
419

J
Jeremy Fitzhardinge 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/*
 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 * are reserved for now, to correspond to the Intel-reserved PAT
 * types.
 *
 * We expect Linux's PAT set as follows:
 *
 * Idx  PTE flags        Linux    Xen    Default
 * 0                     WB       WB     WB
 * 1            PWT      WC       WT     WT
 * 2        PCD          UC-      UC-    UC-
 * 3        PCD PWT      UC       UC     UC
 * 4    PAT              WB       WC     WB
 * 5    PAT     PWT      WC       WP     WT
 * 6    PAT PCD          UC-      UC     UC-
 * 7    PAT PCD PWT      UC       UC     UC
 */

void xen_set_pat(u64 pat)
{
	/* We expect Linux to use a PAT setting of
	 * UC UC- WC WB (ignoring the PAT flag) */
	WARN_ON(pat != 0x0007010600070106ull);
}

445
static pte_t xen_make_pte(pteval_t pte)
J
Jeremy Fitzhardinge 已提交
446
{
447 448
	phys_addr_t addr = (pte & PTE_PFN_MASK);

J
Jeremy Fitzhardinge 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461
	/* If Linux is trying to set a WC pte, then map to the Xen WC.
	 * If _PAGE_PAT is set, then it probably means it is really
	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
	 * things work out OK...
	 *
	 * (We should never see kernel mappings with _PAGE_PSE set,
	 * but we could see hugetlbfs mappings, I think.).
	 */
	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
	}

462 463 464 465 466 467 468 469
	/*
	 * Unprivileged domains are allowed to do IOMAPpings for
	 * PCI passthrough, but not map ISA space.  The ISA
	 * mappings are just dummy local mappings to keep other
	 * parts of the kernel happy.
	 */
	if (unlikely(pte & _PAGE_IOMAP) &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
470
		pte = iomap_pte(pte);
471 472
	} else {
		pte &= ~_PAGE_IOMAP;
473
		pte = pte_pfn_to_mfn(pte);
474
	}
475

J
Jeremy Fitzhardinge 已提交
476
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
477
}
478
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
#ifdef CONFIG_XEN_DEBUG
pte_t xen_make_pte_debug(pteval_t pte)
{
	phys_addr_t addr = (pte & PTE_PFN_MASK);
	phys_addr_t other_addr;
	bool io_page = false;
	pte_t _pte;

	if (pte & _PAGE_IOMAP)
		io_page = true;

	_pte = xen_make_pte(pte);

	if (!addr)
		return _pte;

	if (io_page &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
		other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
499
		WARN_ONCE(addr != other_addr,
500 501 502 503 504
			"0x%lx is using VM_IO, but it is 0x%lx!\n",
			(unsigned long)addr, (unsigned long)other_addr);
	} else {
		pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
		other_addr = (_pte.pte & PTE_PFN_MASK);
505
		WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
506 507 508 509 510 511 512 513 514
			"0x%lx is missing VM_IO (and wasn't fixed)!\n",
			(unsigned long)addr);
	}

	return _pte;
}
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
#endif

515
static pgd_t xen_make_pgd(pgdval_t pgd)
J
Jeremy Fitzhardinge 已提交
516
{
J
Jeremy Fitzhardinge 已提交
517 518
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
519
}
520
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
521

522
static pmdval_t xen_pmd_val(pmd_t pmd)
J
Jeremy Fitzhardinge 已提交
523
{
J
Jeremy Fitzhardinge 已提交
524
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
525
}
526
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
527

528
static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
529
{
530
	struct mmu_update u;
531

J
Jeremy Fitzhardinge 已提交
532 533
	preempt_disable();

534 535
	xen_mc_batch();

536 537
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
538
	u.val = pud_val_ma(val);
539
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
540 541 542 543

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
544 545
}

546
static void xen_set_pud(pud_t *ptr, pud_t val)
547
{
548 549
	trace_xen_mmu_set_pud(ptr, val);

550 551
	/* If page is not pinned, we can just update the entry
	   directly */
552
	if (!xen_page_pinned(ptr)) {
553 554 555 556 557 558 559
		*ptr = val;
		return;
	}

	xen_set_pud_hyper(ptr, val);
}

560
#ifdef CONFIG_X86_PAE
561
static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
J
Jeremy Fitzhardinge 已提交
562
{
563
	trace_xen_mmu_set_pte_atomic(ptep, pte);
564
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
565 566
}

567
static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
568
{
569
	trace_xen_mmu_pte_clear(mm, addr, ptep);
570 571
	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
		native_pte_clear(mm, addr, ptep);
J
Jeremy Fitzhardinge 已提交
572 573
}

574
static void xen_pmd_clear(pmd_t *pmdp)
J
Jeremy Fitzhardinge 已提交
575
{
576
	trace_xen_mmu_pmd_clear(pmdp);
577
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
578
}
579
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
580

581
static pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
582
{
J
Jeremy Fitzhardinge 已提交
583
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
584
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
585
}
586
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
587

588
#if PAGETABLE_LEVELS == 4
589
static pudval_t xen_pud_val(pud_t pud)
590 591 592
{
	return pte_mfn_to_pfn(pud.pud);
}
593
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
594

595
static pud_t xen_make_pud(pudval_t pud)
596 597 598 599 600
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
601
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
602

603
static pgd_t *xen_get_user_pgd(pgd_t *pgd)
604
{
605 606 607
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
608

609 610 611 612 613 614
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
615

616 617 618 619 620 621
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
622 623 624

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
625
	xen_extend_mmu_update(&u);
626 627 628 629 630 631 632 633 634
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
635
static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
636 637 638 639 640 641
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
642 643 644 645 646 647

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

648
static void xen_set_pgd(pgd_t *ptr, pgd_t val)
649
{
650 651
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

652 653
	trace_xen_mmu_set_pgd(ptr, user_ptr, val);

654 655
	/* If page is not pinned, we can just update the entry
	   directly */
656
	if (!xen_page_pinned(ptr)) {
657
		*ptr = val;
658
		if (user_ptr) {
659
			WARN_ON(xen_page_pinned(user_ptr));
660 661
			*user_ptr = val;
		}
662 663 664
		return;
	}

665 666 667 668 669 670 671 672 673
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
674 675 676
}
#endif	/* PAGETABLE_LEVELS == 4 */

677
/*
678 679 680 681 682 683 684 685 686 687 688 689 690 691
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
692 693 694 695
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
696
{
697
	int flush = 0;
698 699 700
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
701

702 703 704
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
705 706

	if (xen_feature(XENFEAT_auto_translated_physmap))
707 708
		return 0;

709 710 711 712 713
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
714
	hole_low = pgd_index(USER_LIMIT);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
730
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
731

732 733
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
734

735
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
736
			continue;
737

738
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
739 740

		if (PTRS_PER_PUD > 1) /* not folded */
741
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
742

743
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
744 745
			pmd_t *pmd;

746 747 748
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
749

750
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
751
				continue;
752

753
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
754 755

			if (PTRS_PER_PMD > 1) /* not folded */
756
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
757

758 759 760 761 762 763 764
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
765

766
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
767 768
					continue;

769
				pte = pmd_page(pmd[pmdidx]);
770
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
771 772 773
			}
		}
	}
774

775
out:
776 777
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
778
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
779 780

	return flush;
J
Jeremy Fitzhardinge 已提交
781 782
}

I
Ian Campbell 已提交
783 784 785 786 787 788 789 790
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

791 792
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
793
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
794 795 796
{
	spinlock_t *ptl = NULL;

797
#if USE_SPLIT_PTLOCKS
798
	ptl = __pte_lockptr(page);
799
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
800 801 802 803 804
#endif

	return ptl;
}

805
static void xen_pte_unlock(void *v)
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = level;
	op->arg1.mfn = pfn_to_mfn(pfn);
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
}

823 824
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
825
{
826
	unsigned pgfl = TestSetPagePinned(page);
827 828 829 830 831 832 833 834 835 836 837 838
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
839
		spinlock_t *ptl;
840 841 842

		flush = 0;

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
863 864
		ptl = NULL;
		if (level == PT_PTE)
865
			ptl = xen_pte_lock(page, mm);
866

867 868
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
869 870
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

871
		if (ptl) {
872 873 874 875
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
876
			xen_mc_callback(xen_pte_unlock, ptl);
877
		}
878 879 880 881
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
882

883 884 885
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
886
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
887
{
888 889
	trace_xen_mmu_pgd_pin(mm, pgd);

890
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
891

I
Ian Campbell 已提交
892
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
893
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
894
		xen_mc_issue(0);
895

896
		kmap_flush_unused();
897

J
Jeremy Fitzhardinge 已提交
898 899
		xen_mc_batch();
	}
900

901 902 903 904 905 906 907
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
908
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
909 910
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
911 912 913
		}
	}
#else /* CONFIG_X86_32 */
914 915
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
916
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
917
		     PT_PMD);
918
#endif
919
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
920
#endif /* CONFIG_X86_64 */
921
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
922 923
}

924 925 926 927 928
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

929 930 931 932 933
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
934 935 936 937
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
938 939 940 941
 */
void xen_mm_pin_all(void)
{
	struct page *page;
942

A
Andrea Arcangeli 已提交
943
	spin_lock(&pgd_lock);
944

945 946
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
947
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
948 949 950 951
			SetPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
952
	spin_unlock(&pgd_lock);
J
Jeremy Fitzhardinge 已提交
953 954
}

955 956 957 958 959
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
960
static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
961
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
962
{
963 964 965
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
966

967
static void __init xen_mark_init_mm_pinned(void)
968
{
969
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
970
}
J
Jeremy Fitzhardinge 已提交
971

972 973
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
974
{
975
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
976

977 978 979
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
980 981 982
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

983 984 985 986 987 988 989
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
990
		if (level == PT_PTE) {
991
			ptl = xen_pte_lock(page, mm);
992

993 994
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
995 996 997
		}

		mcs = __xen_mc_entry(0);
998 999 1000

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
1001 1002 1003 1004
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
1005
			xen_mc_callback(xen_pte_unlock, ptl);
1006
		}
1007 1008 1009
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
1010 1011
}

1012
/* Release a pagetables pages back as normal RW */
1013
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014
{
1015 1016
	trace_xen_mmu_pgd_unpin(mm, pgd);

1017 1018
	xen_mc_batch();

1019
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020

1021 1022 1023 1024 1025
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
1026 1027
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1028
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029 1030 1031 1032
		}
	}
#endif

1033 1034
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
1035
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036
		       PT_PMD);
1037
#endif
1038

I
Ian Campbell 已提交
1039
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040 1041 1042

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
1043

1044 1045 1046 1047 1048
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

1049 1050 1051 1052 1053 1054 1055 1056
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	struct page *page;

A
Andrea Arcangeli 已提交
1057
	spin_lock(&pgd_lock);
1058 1059 1060 1061

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
1062
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063 1064 1065 1066
			ClearPageSavePinned(page);
		}
	}

A
Andrea Arcangeli 已提交
1067
	spin_unlock(&pgd_lock);
1068 1069
}

1070
static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
J
Jeremy Fitzhardinge 已提交
1071
{
1072
	spin_lock(&next->page_table_lock);
1073
	xen_pgd_pin(next);
1074
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1075 1076
}

1077
static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1078
{
1079
	spin_lock(&mm->page_table_lock);
1080
	xen_pgd_pin(mm);
1081
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1082 1083 1084
}


J
Jeremy Fitzhardinge 已提交
1085 1086 1087 1088 1089 1090
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1091
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1092

1093
	active_mm = percpu_read(cpu_tlbstate.active_mm);
1094

1095
	if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
J
Jeremy Fitzhardinge 已提交
1096
		leave_mm(smp_processor_id());
1097 1098 1099

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1100
	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1101
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1102
}
J
Jeremy Fitzhardinge 已提交
1103

1104
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1105
{
1106
	cpumask_var_t mask;
1107 1108
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1109 1110 1111 1112 1113
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1114 1115 1116
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1117 1118
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1119
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120 1121 1122 1123 1124 1125
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1126
	cpumask_copy(mask, mm_cpumask(mm));
1127 1128 1129 1130 1131 1132 1133 1134

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1136 1137
	}

1138 1139 1140
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1141 1142
}
#else
1143
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
1164
static void xen_exit_mmap(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1165 1166
{
	get_cpu();		/* make sure we don't move around */
1167
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1168
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1169

1170
	spin_lock(&mm->page_table_lock);
1171 1172

	/* pgd may not be pinned in the error exit path of execve */
1173
	if (xen_page_pinned(mm->pgd))
1174
		xen_pgd_unpin(mm);
1175

1176
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1177
}
J
Jeremy Fitzhardinge 已提交
1178

1179
static void __init xen_pagetable_setup_start(pgd_t *base)
1180 1181 1182
{
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
{
	/* reserve the range used */
	native_pagetable_reserve(start, end);

	/* set as RW the rest */
	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
			PFN_PHYS(pgt_buf_top));
	while (end < PFN_PHYS(pgt_buf_top)) {
		make_lowmem_page_readwrite(__va(end));
		end += PAGE_SIZE;
	}
}

1197 1198
static void xen_post_allocator_init(void);

1199
static void __init xen_pagetable_setup_done(pgd_t *base)
1200 1201
{
	xen_setup_shared_info();
1202
	xen_post_allocator_init();
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
}

static void xen_write_cr2(unsigned long cr2)
{
	percpu_read(xen_vcpu)->arch.cr2 = cr2;
}

static unsigned long xen_read_cr2(void)
{
	return percpu_read(xen_vcpu)->arch.cr2;
}

unsigned long xen_read_cr2_direct(void)
{
	return percpu_read(xen_vcpu_info.arch.cr2);
}

static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1225 1226
	trace_xen_mmu_flush_tlb(0);

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

1245 1246
	trace_xen_mmu_flush_tlb_single(addr);

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
				 struct mm_struct *mm, unsigned long va)
{
	struct {
		struct mmuext_op op;
1265
#ifdef CONFIG_SMP
A
Andrew Jones 已提交
1266
		DECLARE_BITMAP(mask, num_processors);
1267 1268 1269
#else
		DECLARE_BITMAP(mask, NR_CPUS);
#endif
1270 1271 1272
	} *args;
	struct multicall_space mcs;

1273 1274
	trace_xen_mmu_flush_tlb_others(cpus, mm, va);

1275 1276
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

	if (va == TLB_FLUSH_ALL) {
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
	} else {
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
	return percpu_read(xen_cr3);
}

static void set_current_cr3(void *v)
{
	percpu_write(xen_current_cr3, (unsigned long)v);
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn;

1314 1315
	trace_xen_mmu_write_cr3(kernel, cr3);

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

	mcs = __xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op->arg1.mfn = mfn;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	if (kernel) {
		percpu_write(xen_cr3, cr3);

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}

static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
	percpu_write(xen_cr3, cr3);

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
			user_pgd[pgd_index(VSYSCALL_START)] =
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1407
#ifdef CONFIG_X86_32
1408
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1409 1410 1411 1412 1413
{
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1414 1415 1416 1417

	return pte;
}
#else /* CONFIG_X86_64 */
1418
static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1419 1420
{
	unsigned long pfn = pte_pfn(pte);
1421 1422 1423 1424

	/*
	 * If the new pfn is within the range of the newly allocated
	 * kernel pagetable, and it isn't being mapped into an
1425 1426
	 * early_ioremap fixmap slot as a freshly allocated page, make sure
	 * it is RO.
1427
	 */
1428
	if (((!is_early_ioremap_ptep(ptep) &&
1429
			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1430
			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1431
		pte = pte_wrprotect(pte);
1432 1433 1434

	return pte;
}
1435
#endif /* CONFIG_X86_64 */
1436 1437 1438

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
1439
static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1440 1441 1442 1443 1444
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1455 1456
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
1457
static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1458
{
1459 1460 1461 1462 1463 1464 1465 1466
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
1467
static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1468
{
1469 1470 1471 1472 1473 1474 1475 1476
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1477
static void __init xen_release_pte_init(unsigned long pfn)
1478
{
1479
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1480 1481 1482
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1483
static void __init xen_release_pmd_init(unsigned long pfn)
1484
{
1485
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1486 1487 1488 1489 1490 1491 1492
}

/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
{
	struct page *page = pfn_to_page(pfn);
1493 1494 1495
	int pinned = PagePinned(virt_to_page(mm->pgd));
 
	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1496

1497
	if (pinned) {
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		SetPagePinned(page);

		if (!PageHighMem(page)) {
			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
static void xen_release_ptpage(unsigned long pfn, unsigned level)
{
	struct page *page = pfn_to_page(pfn);
1526
	bool pinned = PagePinned(page);
1527

1528 1529 1530
	trace_xen_mmu_release_ptpage(pfn, level, pinned);

	if (pinned) {
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
		if (!PageHighMem(page)) {
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
static void *__ka(phys_addr_t paddr)
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
static unsigned long m2p(phys_addr_t maddr)
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
static void *m2v(phys_addr_t maddr)
{
	return __ka(m2p(maddr));
}

1605
/* Set the page permissions on an identity-mapped pages */
1606 1607 1608 1609 1610 1611 1612 1613 1614
static void set_page_prot(void *addr, pgprot_t prot)
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
		BUG();
}

1615
static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1616 1617 1618 1619 1620
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1621 1622 1623
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
1634
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

1647 1648 1649 1650 1651
#ifdef CONFIG_X86_32
			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;
#endif

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
void __init xen_setup_machphys_mapping(void)
{
	struct xen_machphys_mapping mapping;
	unsigned long machine_to_phys_nr_ents;

	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
		machine_to_phys_nr_ents = mapping.max_mfn + 1;
	} else {
		machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
	}
	machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
}

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
#ifdef CONFIG_X86_64
static void convert_pfn_mfn(void *v)
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}

/*
L
Lucas De Marchi 已提交
1693
 * Set up the initial kernel pagetable.
1694 1695 1696 1697 1698 1699 1700 1701 1702
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 * means that only the kernel has a physical mapping to start with -
 * but that's enough to get __va working.  We need to fill in the rest
 * of the physical mapping once some sort of allocator has been set
 * up.
 */
1703
pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1704 1705 1706 1707 1708
					 unsigned long max_pfn)
{
	pud_t *l3;
	pmd_t *l2;

1709 1710 1711 1712 1713 1714
	/* max_pfn_mapped is the last pfn mapped in the initial memory
	 * mappings. Considering that on Xen after the kernel mappings we
	 * have the mappings of some pages that don't exist in pfn space, we
	 * set max_pfn_mapped to the last real pfn mapped. */
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

	/* Pre-constructed entries are in pfn, so convert to mfn */
	convert_pfn_mfn(init_level4_pgt);
	convert_pfn_mfn(level3_ident_pgt);
	convert_pfn_mfn(level3_kernel_pgt);

	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);

	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);

	/* Set up identity map */
	xen_map_identity_early(level2_ident_pgt, max_pfn);

	/* Make pagetable pieces RO */
	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);

	/* Pin down new L4 */
	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
			  PFN_DOWN(__pa_symbol(init_level4_pgt)));

	/* Unpin Xen-provided one */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

	/* Switch over */
	pgd = init_level4_pgt;

	/*
	 * At this stage there can be no user pgd, and no page
	 * structure to attach it to, so make sure we just set kernel
	 * pgd.
	 */
	xen_mc_batch();
	__xen_write_cr3(true, __pa(pgd));
	xen_mc_issue(PARAVIRT_LAZY_CPU);

1763
	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1764 1765 1766 1767 1768 1769 1770
		      __pa(xen_start_info->pt_base +
			   xen_start_info->nr_pt_frames * PAGE_SIZE),
		      "XEN PAGETABLES");

	return pgd;
}
#else	/* !CONFIG_X86_64 */
1771 1772 1773
static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);

1774
static void __init xen_write_cr3_init(unsigned long cr3)
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
{
	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));

	BUG_ON(read_cr3() != __pa(initial_page_table));
	BUG_ON(cr3 != __pa(swapper_pg_dir));

	/*
	 * We are switching to swapper_pg_dir for the first time (from
	 * initial_page_table) and therefore need to mark that page
	 * read-only and then pin it.
	 *
	 * Xen disallows sharing of kernel PMDs for PAE
	 * guests. Therefore we must copy the kernel PMD from
	 * initial_page_table into a new kernel PMD to be used in
	 * swapper_pg_dir.
	 */
	swapper_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
	       sizeof(pmd_t) * PTRS_PER_PMD);
	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);

	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	xen_write_cr3(cr3);
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	set_page_prot(initial_page_table, PAGE_KERNEL);
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);

	pv_mmu_ops.write_cr3 = &xen_write_cr3;
}
1810

1811
pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1812 1813 1814 1815
					 unsigned long max_pfn)
{
	pmd_t *kernel_pmd;

1816 1817
	initial_kernel_pmd =
		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1818

1819 1820 1821
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
1822 1823

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1824
	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1825

1826
	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1827

1828 1829 1830
	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
	initial_page_table[KERNEL_PGD_BOUNDARY] =
		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1831

1832 1833
	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1834 1835 1836 1837
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

1838 1839 1840
	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
			  PFN_DOWN(__pa(initial_page_table)));
	xen_write_cr3(__pa(initial_page_table));
1841

1842
	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1843 1844 1845 1846
		      __pa(xen_start_info->pt_base +
			   xen_start_info->nr_pt_frames * PAGE_SIZE),
		      "XEN PAGETABLES");

1847
	return initial_page_table;
1848 1849 1850
}
#endif	/* CONFIG_X86_64 */

1851 1852
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

1853
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
#ifdef CONFIG_X86_F00F_BUG
	case FIX_F00F_IDT:
#endif
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
	case FIX_VDSO:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
#endif
1873 1874 1875
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
1876 1877 1878
		pte = pfn_pte(phys, prot);
		break;

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

1895 1896 1897
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
1898 1899
		pte = mfn_pte(phys, prot);
		break;
1900 1901 1902 1903 1904

	default:
		/* By default, set_fixmap is used for hardware mappings */
		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
		break;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
	}

	__native_set_fixmap(idx, pte);

#ifdef CONFIG_X86_64
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

1919
void __init xen_ident_map_ISA(void)
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
{
	unsigned long pa;

	/*
	 * If we're dom0, then linear map the ISA machine addresses into
	 * the kernel's address space.
	 */
	if (!xen_initial_domain())
		return;

	xen_raw_printk("Xen: setup ISA identity maps\n");

	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);

		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
			BUG();
	}

	xen_flush_tlb();
}

1942
static void __init xen_post_allocator_init(void)
1943
{
1944 1945 1946
#ifdef CONFIG_XEN_DEBUG
	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
#endif
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

1971 1972
static void xen_leave_lazy_mmu(void)
{
1973
	preempt_disable();
1974 1975
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
1976
	preempt_enable();
1977
}
1978

1979
static const struct pv_mmu_ops xen_mmu_ops __initconst = {
1980 1981 1982 1983
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
1984 1985 1986
#ifdef CONFIG_X86_32
	.write_cr3 = xen_write_cr3_init,
#else
1987
	.write_cr3 = xen_write_cr3,
1988
#endif
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
2003 2004
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
2005 2006 2007 2008 2009 2010 2011 2012

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2013 2014
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2015

2016 2017
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2018 2019 2020 2021 2022 2023 2024 2025

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2026 2027
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2028 2029

#if PAGETABLE_LEVELS == 4
2030 2031
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2032 2033
	.set_pgd = xen_set_pgd_hyper,

2034 2035
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2036 2037 2038 2039 2040 2041 2042 2043
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2044
		.leave = xen_leave_lazy_mmu,
2045 2046 2047 2048 2049
	},

	.set_fixmap = xen_set_fixmap,
};

2050 2051
void __init xen_init_mmu_ops(void)
{
2052
	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2053 2054 2055
	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
	pv_mmu_ops = xen_mmu_ops;
2056

2057
	memset(dummy_mapping, 0xff, PAGE_SIZE);
2058
}
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2080
		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
				 unsigned int address_bits)
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2253
}
2254
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2255

2256
#ifdef CONFIG_XEN_PVHVM
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
}
2288
#endif
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));

2304
	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
			       unsigned long mfn, int nr,
			       pgprot_t prot, unsigned domid)
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);

2324 2325
	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356

	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

		err = -EFAULT;
		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

	flush_tlb_all();

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);

J
Jeremy Fitzhardinge 已提交
2357
#ifdef CONFIG_XEN_DEBUG_FS
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
static int p2m_dump_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, p2m_dump_show, NULL);
}

static const struct file_operations p2m_dump_fops = {
	.open		= p2m_dump_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2369
#endif /* CONFIG_XEN_DEBUG_FS */