mmu.c 66.7 KB
Newer Older
J
Jeremy Fitzhardinge 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Xen mmu operations
 *
 * This file contains the various mmu fetch and update operations.
 * The most important job they must perform is the mapping between the
 * domain's pfn and the overall machine mfns.
 *
 * Xen allows guests to directly update the pagetable, in a controlled
 * fashion.  In other words, the guest modifies the same pagetable
 * that the CPU actually uses, which eliminates the overhead of having
 * a separate shadow pagetable.
 *
 * In order to allow this, it falls on the guest domain to map its
 * notion of a "physical" pfn - which is just a domain-local linear
 * address - into a real "machine address" which the CPU's MMU can
 * use.
 *
 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
 * inserted directly into the pagetable.  When creating a new
 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
 * when reading the content back with __(pgd|pmd|pte)_val, it converts
 * the mfn back into a pfn.
 *
 * The other constraint is that all pages which make up a pagetable
 * must be mapped read-only in the guest.  This prevents uncontrolled
 * guest updates to the pagetable.  Xen strictly enforces this, and
 * will disallow any pagetable update which will end up mapping a
 * pagetable page RW, and will disallow using any writable page as a
 * pagetable.
 *
 * Naively, when loading %cr3 with the base of a new pagetable, Xen
 * would need to validate the whole pagetable before going on.
 * Naturally, this is quite slow.  The solution is to "pin" a
 * pagetable, which enforces all the constraints on the pagetable even
 * when it is not actively in use.  This menas that Xen can be assured
 * that it is still valid when you do load it into %cr3, and doesn't
 * need to revalidate it.
 *
 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 */
41
#include <linux/sched.h>
42
#include <linux/highmem.h>
J
Jeremy Fitzhardinge 已提交
43
#include <linux/debugfs.h>
J
Jeremy Fitzhardinge 已提交
44
#include <linux/bug.h>
45
#include <linux/vmalloc.h>
46
#include <linux/module.h>
47
#include <linux/gfp.h>
48
#include <linux/memblock.h>
J
Jeremy Fitzhardinge 已提交
49 50 51

#include <asm/pgtable.h>
#include <asm/tlbflush.h>
52
#include <asm/fixmap.h>
J
Jeremy Fitzhardinge 已提交
53
#include <asm/mmu_context.h>
54
#include <asm/setup.h>
55
#include <asm/paravirt.h>
56
#include <asm/e820.h>
57
#include <asm/linkage.h>
58
#include <asm/page.h>
59
#include <asm/init.h>
J
Jeremy Fitzhardinge 已提交
60
#include <asm/pat.h>
J
Jeremy Fitzhardinge 已提交
61 62

#include <asm/xen/hypercall.h>
63
#include <asm/xen/hypervisor.h>
J
Jeremy Fitzhardinge 已提交
64

65
#include <xen/xen.h>
J
Jeremy Fitzhardinge 已提交
66 67
#include <xen/page.h>
#include <xen/interface/xen.h>
68
#include <xen/interface/hvm/hvm_op.h>
69
#include <xen/interface/version.h>
70
#include <xen/interface/memory.h>
71
#include <xen/hvc-console.h>
J
Jeremy Fitzhardinge 已提交
72

73
#include "multicalls.h"
J
Jeremy Fitzhardinge 已提交
74
#include "mmu.h"
J
Jeremy Fitzhardinge 已提交
75 76 77 78
#include "debugfs.h"

#define MMU_UPDATE_HISTO	30

A
Alex Nixon 已提交
79 80 81 82 83 84 85
/*
 * Protects atomic reservation decrease/increase against concurrent increases.
 * Also protects non-atomic updates of current_pages and driver_pages, and
 * balloon lists.
 */
DEFINE_SPINLOCK(xen_reservation_lock);

J
Jeremy Fitzhardinge 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_XEN_DEBUG_FS

static struct {
	u32 pgd_update;
	u32 pgd_update_pinned;
	u32 pgd_update_batched;

	u32 pud_update;
	u32 pud_update_pinned;
	u32 pud_update_batched;

	u32 pmd_update;
	u32 pmd_update_pinned;
	u32 pmd_update_batched;

	u32 pte_update;
	u32 pte_update_pinned;
	u32 pte_update_batched;

	u32 mmu_update;
	u32 mmu_update_extended;
	u32 mmu_update_histo[MMU_UPDATE_HISTO];

	u32 prot_commit;
	u32 prot_commit_batched;

	u32 set_pte_at;
	u32 set_pte_at_batched;
	u32 set_pte_at_pinned;
	u32 set_pte_at_current;
	u32 set_pte_at_kernel;
} mmu_stats;

static u8 zero_stats;

static inline void check_zero(void)
{
	if (unlikely(zero_stats)) {
		memset(&mmu_stats, 0, sizeof(mmu_stats));
		zero_stats = 0;
	}
}

#define ADD_STATS(elem, val)			\
	do { check_zero(); mmu_stats.elem += (val); } while(0)

#else  /* !CONFIG_XEN_DEBUG_FS */

#define ADD_STATS(elem, val)	do { (void)(val); } while(0)

#endif /* CONFIG_XEN_DEBUG_FS */
J
Jeremy Fitzhardinge 已提交
137

138 139 140 141 142 143

/*
 * Identity map, in addition to plain kernel map.  This needs to be
 * large enough to allocate page table pages to allocate the rest.
 * Each page can map 2MB.
 */
144 145
#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

#ifdef CONFIG_X86_64
/* l3 pud for userspace vsyscall mapping */
static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
#endif /* CONFIG_X86_64 */

/*
 * Note about cr3 (pagetable base) values:
 *
 * xen_cr3 contains the current logical cr3 value; it contains the
 * last set cr3.  This may not be the current effective cr3, because
 * its update may be being lazily deferred.  However, a vcpu looking
 * at its own cr3 can use this value knowing that it everything will
 * be self-consistent.
 *
 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 * hypercall to set the vcpu cr3 is complete (so it may be a little
 * out of date, but it will never be set early).  If one vcpu is
 * looking at another vcpu's cr3 value, it should use this variable.
 */
DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */


170 171 172 173 174 175
/*
 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 * redzone above it, so round it up to a PGD boundary.
 */
#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/*
 * Xen leaves the responsibility for maintaining p2m mappings to the
 * guests themselves, but it must also access and update the p2m array
 * during suspend/resume when all the pages are reallocated.
 *
 * The p2m table is logically a flat array, but we implement it as a
 * three-level tree to allow the address space to be sparse.
 *
 *                               Xen
 *                                |
 *     p2m_top              p2m_top_mfn
 *       /  \                   /   \
 * p2m_mid p2m_mid	p2m_mid_mfn p2m_mid_mfn
 *    / \      / \         /           /
 *  p2m p2m p2m p2m p2m p2m p2m ...
 *
192 193
 * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p.
 *
194 195 196 197 198 199 200 201
 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the
 * maximum representable pseudo-physical address space is:
 *  P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages
 *
 * P2M_PER_PAGE depends on the architecture, as a mfn is always
 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to
 * 512 and 1024 entries respectively. 
 */
202

203
unsigned long xen_max_p2m_pfn __read_mostly;
204

205 206 207
#define P2M_PER_PAGE		(PAGE_SIZE / sizeof(unsigned long))
#define P2M_MID_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long *))
#define P2M_TOP_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long **))
208

209
#define MAX_P2M_PFN		(P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE)
210

211 212 213 214
/* Placeholders for holes in the address space */
static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE);
static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE);
static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE);
215

216 217
static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE);
static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE);
218
static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE);
J
Jeremy Fitzhardinge 已提交
219

220 221
RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE)));
J
Jeremy Fitzhardinge 已提交
222

223 224
static inline unsigned p2m_top_index(unsigned long pfn)
{
225 226 227 228 229 230 231
	BUG_ON(pfn >= MAX_P2M_PFN);
	return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE);
}

static inline unsigned p2m_mid_index(unsigned long pfn)
{
	return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE;
232 233 234 235
}

static inline unsigned p2m_index(unsigned long pfn)
{
236
	return pfn % P2M_PER_PAGE;
237 238
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static void p2m_top_init(unsigned long ***top)
{
	unsigned i;

	for (i = 0; i < P2M_TOP_PER_PAGE; i++)
		top[i] = p2m_mid_missing;
}

static void p2m_top_mfn_init(unsigned long *top)
{
	unsigned i;

	for (i = 0; i < P2M_TOP_PER_PAGE; i++)
		top[i] = virt_to_mfn(p2m_mid_missing_mfn);
}

255 256 257 258 259 260 261 262
static void p2m_top_mfn_p_init(unsigned long **top)
{
	unsigned i;

	for (i = 0; i < P2M_TOP_PER_PAGE; i++)
		top[i] = p2m_mid_missing_mfn;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void p2m_mid_init(unsigned long **mid)
{
	unsigned i;

	for (i = 0; i < P2M_MID_PER_PAGE; i++)
		mid[i] = p2m_missing;
}

static void p2m_mid_mfn_init(unsigned long *mid)
{
	unsigned i;

	for (i = 0; i < P2M_MID_PER_PAGE; i++)
		mid[i] = virt_to_mfn(p2m_missing);
277 278
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static void p2m_init(unsigned long *p2m)
{
	unsigned i;

	for (i = 0; i < P2M_MID_PER_PAGE; i++)
		p2m[i] = INVALID_P2M_ENTRY;
}

/*
 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures
 *
 * This is called both at boot time, and after resuming from suspend:
 * - At boot time we're called very early, and must use extend_brk()
 *   to allocate memory.
 *
 * - After resume we're called from within stop_machine, but the mfn
 *   tree should alreay be completely allocated.
 */
297
void xen_build_mfn_list_list(void)
J
Jeremy Fitzhardinge 已提交
298
{
299
	unsigned long pfn;
J
Jeremy Fitzhardinge 已提交
300

301 302 303 304
	/* Pre-initialize p2m_top_mfn to be completely missing */
	if (p2m_top_mfn == NULL) {
		p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
		p2m_mid_mfn_init(p2m_mid_missing_mfn);
J
Jeremy Fitzhardinge 已提交
305

306 307
		p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
		p2m_top_mfn_p_init(p2m_top_mfn_p);
J
Jeremy Fitzhardinge 已提交
308

309 310
		p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE);
		p2m_top_mfn_init(p2m_top_mfn);
311 312 313
	} else {
		/* Reinitialise, mfn's all change after migration */
		p2m_mid_mfn_init(p2m_mid_missing_mfn);
J
Jeremy Fitzhardinge 已提交
314 315
	}

316
	for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) {
317 318 319 320 321 322
		unsigned topidx = p2m_top_index(pfn);
		unsigned mididx = p2m_mid_index(pfn);
		unsigned long **mid;
		unsigned long *mid_mfn_p;

		mid = p2m_top[topidx];
323
		mid_mfn_p = p2m_top_mfn_p[topidx];
324 325

		/* Don't bother allocating any mfn mid levels if
326 327 328 329 330 331 332 333
		 * they're just missing, just update the stored mfn,
		 * since all could have changed over a migrate.
		 */
		if (mid == p2m_mid_missing) {
			BUG_ON(mididx);
			BUG_ON(mid_mfn_p != p2m_mid_missing_mfn);
			p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn);
			pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE;
334
			continue;
335
		}
336 337 338 339 340 341 342 343 344 345 346

		if (mid_mfn_p == p2m_mid_missing_mfn) {
			/*
			 * XXX boot-time only!  We should never find
			 * missing parts of the mfn tree after
			 * runtime.  extend_brk() will BUG if we call
			 * it too late.
			 */
			mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE);
			p2m_mid_mfn_init(mid_mfn_p);

347
			p2m_top_mfn_p[topidx] = mid_mfn_p;
348 349
		}

350
		p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p);
351
		mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]);
J
Jeremy Fitzhardinge 已提交
352
	}
353
}
J
Jeremy Fitzhardinge 已提交
354

355 356
void xen_setup_mfn_list_list(void)
{
J
Jeremy Fitzhardinge 已提交
357 358 359
	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);

	HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
360
		virt_to_mfn(p2m_top_mfn);
361
	HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn;
J
Jeremy Fitzhardinge 已提交
362 363 364
}

/* Set up p2m_top to point to the domain-builder provided p2m pages */
365 366 367
void __init xen_build_dynamic_phys_to_machine(void)
{
	unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
368
	unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
369
	unsigned long pfn;
370

371
	xen_max_p2m_pfn = max_pfn;
372

373 374
	p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
	p2m_init(p2m_missing);
375

376 377
	p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE);
	p2m_mid_init(p2m_mid_missing);
378

379 380
	p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE);
	p2m_top_init(p2m_top);
381

382 383 384 385 386 387
	/*
	 * The domain builder gives us a pre-constructed p2m array in
	 * mfn_list for all the pages initially given to us, so we just
	 * need to graft that into our tree structure.
	 */
	for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) {
388
		unsigned topidx = p2m_top_index(pfn);
389
		unsigned mididx = p2m_mid_index(pfn);
390

391 392 393 394 395 396
		if (p2m_top[topidx] == p2m_mid_missing) {
			unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE);
			p2m_mid_init(mid);

			p2m_top[topidx] = mid;
		}
397

398
		p2m_top[topidx][mididx] = &mfn_list[pfn];
399 400 401 402 403
	}
}

unsigned long get_phys_to_machine(unsigned long pfn)
{
404
	unsigned topidx, mididx, idx;
405

406
	if (unlikely(pfn >= MAX_P2M_PFN))
407 408
		return INVALID_P2M_ENTRY;

409
	topidx = p2m_top_index(pfn);
410
	mididx = p2m_mid_index(pfn);
411
	idx = p2m_index(pfn);
412 413

	return p2m_top[topidx][mididx][idx];
414
}
I
Ingo Molnar 已提交
415
EXPORT_SYMBOL_GPL(get_phys_to_machine);
416

417
static void *alloc_p2m_page(void)
418
{
419 420
	return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT);
}
421

422 423 424 425
static void free_p2m_page(void *p)
{
	free_page((unsigned long)p);
}
426

427 428 429 430 431 432 433 434 435 436 437 438
/* 
 * Fully allocate the p2m structure for a given pfn.  We need to check
 * that both the top and mid levels are allocated, and make sure the
 * parallel mfn tree is kept in sync.  We may race with other cpus, so
 * the new pages are installed with cmpxchg; if we lose the race then
 * simply free the page we allocated and use the one that's there.
 */
static bool alloc_p2m(unsigned long pfn)
{
	unsigned topidx, mididx;
	unsigned long ***top_p, **mid;
	unsigned long *top_mfn_p, *mid_mfn;
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	topidx = p2m_top_index(pfn);
	mididx = p2m_mid_index(pfn);

	top_p = &p2m_top[topidx];
	mid = *top_p;

	if (mid == p2m_mid_missing) {
		/* Mid level is missing, allocate a new one */
		mid = alloc_p2m_page();
		if (!mid)
			return false;

		p2m_mid_init(mid);

		if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing)
			free_p2m_page(mid);
456 457
	}

458
	top_mfn_p = &p2m_top_mfn[topidx];
459
	mid_mfn = p2m_top_mfn_p[topidx];
460

461
	BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p);
462

463 464 465 466
	if (mid_mfn == p2m_mid_missing_mfn) {
		/* Separately check the mid mfn level */
		unsigned long missing_mfn;
		unsigned long mid_mfn_mfn;
467

468 469 470
		mid_mfn = alloc_p2m_page();
		if (!mid_mfn)
			return false;
471

472
		p2m_mid_mfn_init(mid_mfn);
473

474 475 476 477
		missing_mfn = virt_to_mfn(p2m_mid_missing_mfn);
		mid_mfn_mfn = virt_to_mfn(mid_mfn);
		if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn)
			free_p2m_page(mid_mfn);
478 479
		else
			p2m_top_mfn_p[topidx] = mid_mfn;
480
	}
481

482 483 484
	if (p2m_top[topidx][mididx] == p2m_missing) {
		/* p2m leaf page is missing */
		unsigned long *p2m;
485

486 487 488
		p2m = alloc_p2m_page();
		if (!p2m)
			return false;
489

490 491 492 493 494 495 496
		p2m_init(p2m);

		if (cmpxchg(&mid[mididx], p2m_missing, p2m) != p2m_missing)
			free_p2m_page(p2m);
		else
			mid_mfn[mididx] = virt_to_mfn(p2m);
	}
497

498
	return true;
499 500 501 502 503
}

/* Try to install p2m mapping; fail if intermediate bits missing */
bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn)
{
504
	unsigned topidx, mididx, idx;
505

506
	if (unlikely(pfn >= MAX_P2M_PFN)) {
507
		BUG_ON(mfn != INVALID_P2M_ENTRY);
508
		return true;
509 510 511
	}

	topidx = p2m_top_index(pfn);
512
	mididx = p2m_mid_index(pfn);
513
	idx = p2m_index(pfn);
514 515 516 517 518

	if (p2m_top[topidx][mididx] == p2m_missing)
		return mfn == INVALID_P2M_ENTRY;

	p2m_top[topidx][mididx][idx] = mfn;
519 520 521 522

	return true;
}

523
bool set_phys_to_machine(unsigned long pfn, unsigned long mfn)
524 525 526
{
	if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
		BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
527
		return true;
528 529 530
	}

	if (unlikely(!__set_phys_to_machine(pfn, mfn)))  {
531 532
		if (!alloc_p2m(pfn))
			return false;
533 534

		if (!__set_phys_to_machine(pfn, mfn))
535
			return false;
536
	}
537 538

	return true;
539 540
}

541 542 543 544 545 546 547
unsigned long arbitrary_virt_to_mfn(void *vaddr)
{
	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);

	return PFN_DOWN(maddr.maddr);
}

548
xmaddr_t arbitrary_virt_to_machine(void *vaddr)
J
Jeremy Fitzhardinge 已提交
549
{
550
	unsigned long address = (unsigned long)vaddr;
551
	unsigned int level;
552 553
	pte_t *pte;
	unsigned offset;
J
Jeremy Fitzhardinge 已提交
554

555 556 557 558 559 560 561 562
	/*
	 * if the PFN is in the linear mapped vaddr range, we can just use
	 * the (quick) virt_to_machine() p2m lookup
	 */
	if (virt_addr_valid(vaddr))
		return virt_to_machine(vaddr);

	/* otherwise we have to do a (slower) full page-table walk */
J
Jeremy Fitzhardinge 已提交
563

564 565 566
	pte = lookup_address(address, &level);
	BUG_ON(pte == NULL);
	offset = address & ~PAGE_MASK;
567
	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
J
Jeremy Fitzhardinge 已提交
568 569 570 571 572 573
}

void make_lowmem_page_readonly(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
574
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
575

576
	pte = lookup_address(address, &level);
577 578
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
579 580 581 582 583 584 585 586 587 588 589

	ptev = pte_wrprotect(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}

void make_lowmem_page_readwrite(void *vaddr)
{
	pte_t *pte, ptev;
	unsigned long address = (unsigned long)vaddr;
590
	unsigned int level;
J
Jeremy Fitzhardinge 已提交
591

592
	pte = lookup_address(address, &level);
593 594
	if (pte == NULL)
		return;		/* vaddr missing */
J
Jeremy Fitzhardinge 已提交
595 596 597 598 599 600 601 602

	ptev = pte_mkwrite(*pte);

	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
		BUG();
}


603
static bool xen_page_pinned(void *ptr)
604 605 606 607 608 609
{
	struct page *page = virt_to_page(ptr);

	return PagePinned(page);
}

610 611
static bool xen_iomap_pte(pte_t pte)
{
612
	return pte_flags(pte) & _PAGE_IOMAP;
613 614
}

615
void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
616 617 618 619 620 621 622 623 624 625 626
{
	struct multicall_space mcs;
	struct mmu_update *u;

	mcs = xen_mc_entry(sizeof(*u));
	u = mcs.args;

	/* ptep might be kmapped when using 32-bit HIGHPTE */
	u->ptr = arbitrary_virt_to_machine(ptep).maddr;
	u->val = pte_val_ma(pteval);

627
	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
628 629 630

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}
631 632 633 634 635 636
EXPORT_SYMBOL_GPL(xen_set_domain_pte);

static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
{
	xen_set_domain_pte(ptep, pteval, DOMID_IO);
}
637

638
static void xen_extend_mmu_update(const struct mmu_update *update)
J
Jeremy Fitzhardinge 已提交
639
{
J
Jeremy Fitzhardinge 已提交
640 641
	struct multicall_space mcs;
	struct mmu_update *u;
J
Jeremy Fitzhardinge 已提交
642

643 644
	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));

J
Jeremy Fitzhardinge 已提交
645 646 647 648
	if (mcs.mc != NULL) {
		ADD_STATS(mmu_update_extended, 1);
		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);

649
		mcs.mc->args[1]++;
J
Jeremy Fitzhardinge 已提交
650 651 652 653 654 655 656

		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
		else
			ADD_STATS(mmu_update_histo[0], 1);
	} else {
		ADD_STATS(mmu_update, 1);
657 658
		mcs = __xen_mc_entry(sizeof(*u));
		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
J
Jeremy Fitzhardinge 已提交
659
		ADD_STATS(mmu_update_histo[1], 1);
660
	}
J
Jeremy Fitzhardinge 已提交
661 662

	u = mcs.args;
663 664 665 666 667 668 669 670 671 672 673
	*u = *update;
}

void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
{
	struct mmu_update u;

	preempt_disable();

	xen_mc_batch();

674 675
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
676
	u.val = pmd_val_ma(val);
677
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
678

J
Jeremy Fitzhardinge 已提交
679 680
	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);

J
Jeremy Fitzhardinge 已提交
681 682 683
	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
J
Jeremy Fitzhardinge 已提交
684 685
}

686 687
void xen_set_pmd(pmd_t *ptr, pmd_t val)
{
J
Jeremy Fitzhardinge 已提交
688 689
	ADD_STATS(pmd_update, 1);

690 691
	/* If page is not pinned, we can just update the entry
	   directly */
692
	if (!xen_page_pinned(ptr)) {
693 694 695 696
		*ptr = val;
		return;
	}

J
Jeremy Fitzhardinge 已提交
697 698
	ADD_STATS(pmd_update_pinned, 1);

699 700 701
	xen_set_pmd_hyper(ptr, val);
}

J
Jeremy Fitzhardinge 已提交
702 703 704 705 706 707
/*
 * Associate a virtual page frame with a given physical page frame
 * and protection flags for that frame.
 */
void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
{
J
Jeremy Fitzhardinge 已提交
708
	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
J
Jeremy Fitzhardinge 已提交
709 710 711 712 713
}

void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
		    pte_t *ptep, pte_t pteval)
{
714 715 716 717 718
	if (xen_iomap_pte(pteval)) {
		xen_set_iomap_pte(ptep, pteval);
		goto out;
	}

J
Jeremy Fitzhardinge 已提交
719 720 721 722 723
	ADD_STATS(set_pte_at, 1);
//	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
	ADD_STATS(set_pte_at_current, mm == current->mm);
	ADD_STATS(set_pte_at_kernel, mm == &init_mm);

J
Jeremy Fitzhardinge 已提交
724
	if (mm == current->mm || mm == &init_mm) {
725
		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
J
Jeremy Fitzhardinge 已提交
726 727 728 729
			struct multicall_space mcs;
			mcs = xen_mc_entry(0);

			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
J
Jeremy Fitzhardinge 已提交
730
			ADD_STATS(set_pte_at_batched, 1);
J
Jeremy Fitzhardinge 已提交
731
			xen_mc_issue(PARAVIRT_LAZY_MMU);
732
			goto out;
J
Jeremy Fitzhardinge 已提交
733 734
		} else
			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
735
				goto out;
J
Jeremy Fitzhardinge 已提交
736 737
	}
	xen_set_pte(ptep, pteval);
738

739
out:	return;
J
Jeremy Fitzhardinge 已提交
740 741
}

T
Tej 已提交
742 743
pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
				 unsigned long addr, pte_t *ptep)
J
Jeremy Fitzhardinge 已提交
744
{
745 746 747 748 749 750 751
	/* Just return the pte as-is.  We preserve the bits on commit */
	return *ptep;
}

void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
				 pte_t *ptep, pte_t pte)
{
752
	struct mmu_update u;
753

754
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
755

756
	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
757
	u.val = pte_val_ma(pte);
758
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
759

J
Jeremy Fitzhardinge 已提交
760 761 762
	ADD_STATS(prot_commit, 1);
	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);

763
	xen_mc_issue(PARAVIRT_LAZY_MMU);
J
Jeremy Fitzhardinge 已提交
764 765
}

J
Jeremy Fitzhardinge 已提交
766 767
/* Assume pteval_t is equivalent to all the other *val_t types. */
static pteval_t pte_mfn_to_pfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
768
{
J
Jeremy Fitzhardinge 已提交
769
	if (val & _PAGE_PRESENT) {
770
		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
771
		pteval_t flags = val & PTE_FLAGS_MASK;
772
		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
773
	}
J
Jeremy Fitzhardinge 已提交
774

J
Jeremy Fitzhardinge 已提交
775
	return val;
J
Jeremy Fitzhardinge 已提交
776 777
}

J
Jeremy Fitzhardinge 已提交
778
static pteval_t pte_pfn_to_mfn(pteval_t val)
J
Jeremy Fitzhardinge 已提交
779
{
J
Jeremy Fitzhardinge 已提交
780
	if (val & _PAGE_PRESENT) {
781
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
J
Jeremy Fitzhardinge 已提交
782
		pteval_t flags = val & PTE_FLAGS_MASK;
783 784 785 786 787 788 789 790 791 792 793 794 795 796
		unsigned long mfn = pfn_to_mfn(pfn);

		/*
		 * If there's no mfn for the pfn, then just create an
		 * empty non-present pte.  Unfortunately this loses
		 * information about the original pfn, so
		 * pte_mfn_to_pfn is asymmetric.
		 */
		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
			mfn = 0;
			flags = 0;
		}

		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
J
Jeremy Fitzhardinge 已提交
797 798
	}

J
Jeremy Fitzhardinge 已提交
799
	return val;
J
Jeremy Fitzhardinge 已提交
800 801
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815
static pteval_t iomap_pte(pteval_t val)
{
	if (val & _PAGE_PRESENT) {
		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
		pteval_t flags = val & PTE_FLAGS_MASK;

		/* We assume the pte frame number is a MFN, so
		   just use it as-is. */
		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
	}

	return val;
}

J
Jeremy Fitzhardinge 已提交
816
pteval_t xen_pte_val(pte_t pte)
J
Jeremy Fitzhardinge 已提交
817
{
J
Jeremy Fitzhardinge 已提交
818
	pteval_t pteval = pte.pte;
819

J
Jeremy Fitzhardinge 已提交
820 821 822 823 824
	/* If this is a WC pte, convert back from Xen WC to Linux WC */
	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
		WARN_ON(!pat_enabled);
		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
	}
825

J
Jeremy Fitzhardinge 已提交
826 827 828 829
	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
		return pteval;

	return pte_mfn_to_pfn(pteval);
J
Jeremy Fitzhardinge 已提交
830
}
831
PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
J
Jeremy Fitzhardinge 已提交
832 833 834

pgdval_t xen_pgd_val(pgd_t pgd)
{
J
Jeremy Fitzhardinge 已提交
835
	return pte_mfn_to_pfn(pgd.pgd);
J
Jeremy Fitzhardinge 已提交
836
}
837
PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
J
Jeremy Fitzhardinge 已提交
838

J
Jeremy Fitzhardinge 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/*
 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 * are reserved for now, to correspond to the Intel-reserved PAT
 * types.
 *
 * We expect Linux's PAT set as follows:
 *
 * Idx  PTE flags        Linux    Xen    Default
 * 0                     WB       WB     WB
 * 1            PWT      WC       WT     WT
 * 2        PCD          UC-      UC-    UC-
 * 3        PCD PWT      UC       UC     UC
 * 4    PAT              WB       WC     WB
 * 5    PAT     PWT      WC       WP     WT
 * 6    PAT PCD          UC-      UC     UC-
 * 7    PAT PCD PWT      UC       UC     UC
 */

void xen_set_pat(u64 pat)
{
	/* We expect Linux to use a PAT setting of
	 * UC UC- WC WB (ignoring the PAT flag) */
	WARN_ON(pat != 0x0007010600070106ull);
}

J
Jeremy Fitzhardinge 已提交
864 865
pte_t xen_make_pte(pteval_t pte)
{
866 867
	phys_addr_t addr = (pte & PTE_PFN_MASK);

J
Jeremy Fitzhardinge 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880
	/* If Linux is trying to set a WC pte, then map to the Xen WC.
	 * If _PAGE_PAT is set, then it probably means it is really
	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
	 * things work out OK...
	 *
	 * (We should never see kernel mappings with _PAGE_PSE set,
	 * but we could see hugetlbfs mappings, I think.).
	 */
	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
	}

881 882 883 884 885 886 887 888
	/*
	 * Unprivileged domains are allowed to do IOMAPpings for
	 * PCI passthrough, but not map ISA space.  The ISA
	 * mappings are just dummy local mappings to keep other
	 * parts of the kernel happy.
	 */
	if (unlikely(pte & _PAGE_IOMAP) &&
	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
889
		pte = iomap_pte(pte);
890 891
	} else {
		pte &= ~_PAGE_IOMAP;
892
		pte = pte_pfn_to_mfn(pte);
893
	}
894

J
Jeremy Fitzhardinge 已提交
895
	return native_make_pte(pte);
J
Jeremy Fitzhardinge 已提交
896
}
897
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
J
Jeremy Fitzhardinge 已提交
898 899 900

pgd_t xen_make_pgd(pgdval_t pgd)
{
J
Jeremy Fitzhardinge 已提交
901 902
	pgd = pte_pfn_to_mfn(pgd);
	return native_make_pgd(pgd);
J
Jeremy Fitzhardinge 已提交
903
}
904
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
J
Jeremy Fitzhardinge 已提交
905 906 907

pmdval_t xen_pmd_val(pmd_t pmd)
{
J
Jeremy Fitzhardinge 已提交
908
	return pte_mfn_to_pfn(pmd.pmd);
J
Jeremy Fitzhardinge 已提交
909
}
910
PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
911

912
void xen_set_pud_hyper(pud_t *ptr, pud_t val)
913
{
914
	struct mmu_update u;
915

J
Jeremy Fitzhardinge 已提交
916 917
	preempt_disable();

918 919
	xen_mc_batch();

920 921
	/* ptr may be ioremapped for 64-bit pagetable setup */
	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
922
	u.val = pud_val_ma(val);
923
	xen_extend_mmu_update(&u);
J
Jeremy Fitzhardinge 已提交
924

J
Jeremy Fitzhardinge 已提交
925 926
	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);

J
Jeremy Fitzhardinge 已提交
927 928 929
	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
930 931
}

932 933
void xen_set_pud(pud_t *ptr, pud_t val)
{
J
Jeremy Fitzhardinge 已提交
934 935
	ADD_STATS(pud_update, 1);

936 937
	/* If page is not pinned, we can just update the entry
	   directly */
938
	if (!xen_page_pinned(ptr)) {
939 940 941 942
		*ptr = val;
		return;
	}

J
Jeremy Fitzhardinge 已提交
943 944
	ADD_STATS(pud_update_pinned, 1);

945 946 947
	xen_set_pud_hyper(ptr, val);
}

948 949
void xen_set_pte(pte_t *ptep, pte_t pte)
{
950 951 952 953 954
	if (xen_iomap_pte(pte)) {
		xen_set_iomap_pte(ptep, pte);
		return;
	}

J
Jeremy Fitzhardinge 已提交
955 956 957 958
	ADD_STATS(pte_update, 1);
//	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);

959
#ifdef CONFIG_X86_PAE
960 961 962
	ptep->pte_high = pte.pte_high;
	smp_wmb();
	ptep->pte_low = pte.pte_low;
963 964 965
#else
	*ptep = pte;
#endif
966 967
}

968
#ifdef CONFIG_X86_PAE
J
Jeremy Fitzhardinge 已提交
969 970
void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
{
971 972 973 974 975
	if (xen_iomap_pte(pte)) {
		xen_set_iomap_pte(ptep, pte);
		return;
	}

976
	set_64bit((u64 *)ptep, native_pte_val(pte));
J
Jeremy Fitzhardinge 已提交
977 978 979 980 981 982 983 984 985 986 987
}

void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
	ptep->pte_low = 0;
	smp_wmb();		/* make sure low gets written first */
	ptep->pte_high = 0;
}

void xen_pmd_clear(pmd_t *pmdp)
{
988
	set_pmd(pmdp, __pmd(0));
J
Jeremy Fitzhardinge 已提交
989
}
990
#endif	/* CONFIG_X86_PAE */
J
Jeremy Fitzhardinge 已提交
991

992
pmd_t xen_make_pmd(pmdval_t pmd)
J
Jeremy Fitzhardinge 已提交
993
{
J
Jeremy Fitzhardinge 已提交
994
	pmd = pte_pfn_to_mfn(pmd);
J
Jeremy Fitzhardinge 已提交
995
	return native_make_pmd(pmd);
J
Jeremy Fitzhardinge 已提交
996
}
997
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
J
Jeremy Fitzhardinge 已提交
998

999 1000 1001 1002 1003
#if PAGETABLE_LEVELS == 4
pudval_t xen_pud_val(pud_t pud)
{
	return pte_mfn_to_pfn(pud.pud);
}
1004
PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
1005 1006 1007 1008 1009 1010 1011

pud_t xen_make_pud(pudval_t pud)
{
	pud = pte_pfn_to_mfn(pud);

	return native_make_pud(pud);
}
1012
PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
1013

1014
pgd_t *xen_get_user_pgd(pgd_t *pgd)
1015
{
1016 1017 1018
	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
	unsigned offset = pgd - pgd_page;
	pgd_t *user_ptr = NULL;
1019

1020 1021 1022 1023 1024 1025
	if (offset < pgd_index(USER_LIMIT)) {
		struct page *page = virt_to_page(pgd_page);
		user_ptr = (pgd_t *)page->private;
		if (user_ptr)
			user_ptr += offset;
	}
1026

1027 1028 1029 1030 1031 1032
	return user_ptr;
}

static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	struct mmu_update u;
1033 1034 1035

	u.ptr = virt_to_machine(ptr).maddr;
	u.val = pgd_val_ma(val);
1036
	xen_extend_mmu_update(&u);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
}

/*
 * Raw hypercall-based set_pgd, intended for in early boot before
 * there's a page structure.  This implies:
 *  1. The only existing pagetable is the kernel's
 *  2. It is always pinned
 *  3. It has no user pagetable attached to it
 */
void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
{
	preempt_disable();

	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
1053 1054 1055 1056 1057 1058 1059 1060

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

void xen_set_pgd(pgd_t *ptr, pgd_t val)
{
1061 1062
	pgd_t *user_ptr = xen_get_user_pgd(ptr);

J
Jeremy Fitzhardinge 已提交
1063 1064
	ADD_STATS(pgd_update, 1);

1065 1066
	/* If page is not pinned, we can just update the entry
	   directly */
1067
	if (!xen_page_pinned(ptr)) {
1068
		*ptr = val;
1069
		if (user_ptr) {
1070
			WARN_ON(xen_page_pinned(user_ptr));
1071 1072
			*user_ptr = val;
		}
1073 1074 1075
		return;
	}

J
Jeremy Fitzhardinge 已提交
1076 1077 1078
	ADD_STATS(pgd_update_pinned, 1);
	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);

1079 1080 1081 1082 1083 1084 1085 1086 1087
	/* If it's pinned, then we can at least batch the kernel and
	   user updates together. */
	xen_mc_batch();

	__xen_set_pgd_hyper(ptr, val);
	if (user_ptr)
		__xen_set_pgd_hyper(user_ptr, val);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
1088 1089 1090
}
#endif	/* PAGETABLE_LEVELS == 4 */

1091
/*
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
 * (Yet another) pagetable walker.  This one is intended for pinning a
 * pagetable.  This means that it walks a pagetable and calls the
 * callback function on each page it finds making up the page table,
 * at every level.  It walks the entire pagetable, but it only bothers
 * pinning pte pages which are below limit.  In the normal case this
 * will be STACK_TOP_MAX, but at boot we need to pin up to
 * FIXADDR_TOP.
 *
 * For 32-bit the important bit is that we don't pin beyond there,
 * because then we start getting into Xen's ptes.
 *
 * For 64-bit, we must skip the Xen hole in the middle of the address
 * space, just after the big x86-64 virtual hole.
 */
I
Ian Campbell 已提交
1106 1107 1108 1109
static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
			  int (*func)(struct mm_struct *mm, struct page *,
				      enum pt_level),
			  unsigned long limit)
J
Jeremy Fitzhardinge 已提交
1110
{
1111
	int flush = 0;
1112 1113 1114
	unsigned hole_low, hole_high;
	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
	unsigned pgdidx, pudidx, pmdidx;
1115

1116 1117 1118
	/* The limit is the last byte to be touched */
	limit--;
	BUG_ON(limit >= FIXADDR_TOP);
J
Jeremy Fitzhardinge 已提交
1119 1120

	if (xen_feature(XENFEAT_auto_translated_physmap))
1121 1122
		return 0;

1123 1124 1125 1126 1127
	/*
	 * 64-bit has a great big hole in the middle of the address
	 * space, which contains the Xen mappings.  On 32-bit these
	 * will end up making a zero-sized hole and so is a no-op.
	 */
1128
	hole_low = pgd_index(USER_LIMIT);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	hole_high = pgd_index(PAGE_OFFSET);

	pgdidx_limit = pgd_index(limit);
#if PTRS_PER_PUD > 1
	pudidx_limit = pud_index(limit);
#else
	pudidx_limit = 0;
#endif
#if PTRS_PER_PMD > 1
	pmdidx_limit = pmd_index(limit);
#else
	pmdidx_limit = 0;
#endif

	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
1144
		pud_t *pud;
J
Jeremy Fitzhardinge 已提交
1145

1146 1147
		if (pgdidx >= hole_low && pgdidx < hole_high)
			continue;
1148

1149
		if (!pgd_val(pgd[pgdidx]))
J
Jeremy Fitzhardinge 已提交
1150
			continue;
1151

1152
		pud = pud_offset(&pgd[pgdidx], 0);
J
Jeremy Fitzhardinge 已提交
1153 1154

		if (PTRS_PER_PUD > 1) /* not folded */
1155
			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
1156

1157
		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
1158 1159
			pmd_t *pmd;

1160 1161 1162
			if (pgdidx == pgdidx_limit &&
			    pudidx > pudidx_limit)
				goto out;
J
Jeremy Fitzhardinge 已提交
1163

1164
			if (pud_none(pud[pudidx]))
J
Jeremy Fitzhardinge 已提交
1165
				continue;
1166

1167
			pmd = pmd_offset(&pud[pudidx], 0);
J
Jeremy Fitzhardinge 已提交
1168 1169

			if (PTRS_PER_PMD > 1) /* not folded */
1170
				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
1171

1172 1173 1174 1175 1176 1177 1178
			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
				struct page *pte;

				if (pgdidx == pgdidx_limit &&
				    pudidx == pudidx_limit &&
				    pmdidx > pmdidx_limit)
					goto out;
J
Jeremy Fitzhardinge 已提交
1179

1180
				if (pmd_none(pmd[pmdidx]))
J
Jeremy Fitzhardinge 已提交
1181 1182
					continue;

1183
				pte = pmd_page(pmd[pmdidx]);
1184
				flush |= (*func)(mm, pte, PT_PTE);
J
Jeremy Fitzhardinge 已提交
1185 1186 1187
			}
		}
	}
1188

1189
out:
1190 1191
	/* Do the top level last, so that the callbacks can use it as
	   a cue to do final things like tlb flushes. */
1192
	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
1193 1194

	return flush;
J
Jeremy Fitzhardinge 已提交
1195 1196
}

I
Ian Campbell 已提交
1197 1198 1199 1200 1201 1202 1203 1204
static int xen_pgd_walk(struct mm_struct *mm,
			int (*func)(struct mm_struct *mm, struct page *,
				    enum pt_level),
			unsigned long limit)
{
	return __xen_pgd_walk(mm, mm->pgd, func, limit);
}

1205 1206
/* If we're using split pte locks, then take the page's lock and
   return a pointer to it.  Otherwise return NULL. */
1207
static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
1208 1209 1210
{
	spinlock_t *ptl = NULL;

1211
#if USE_SPLIT_PTLOCKS
1212
	ptl = __pte_lockptr(page);
1213
	spin_lock_nest_lock(ptl, &mm->page_table_lock);
1214 1215 1216 1217 1218
#endif

	return ptl;
}

1219
static void xen_pte_unlock(void *v)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
{
	spinlock_t *ptl = v;
	spin_unlock(ptl);
}

static void xen_do_pin(unsigned level, unsigned long pfn)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

	mcs = __xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = level;
	op->arg1.mfn = pfn_to_mfn(pfn);
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
}

1237 1238
static int xen_pin_page(struct mm_struct *mm, struct page *page,
			enum pt_level level)
1239
{
1240
	unsigned pgfl = TestSetPagePinned(page);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	int flush;

	if (pgfl)
		flush = 0;		/* already pinned */
	else if (PageHighMem(page))
		/* kmaps need flushing if we found an unpinned
		   highpage */
		flush = 1;
	else {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
		struct multicall_space mcs = __xen_mc_entry(0);
1253
		spinlock_t *ptl;
1254 1255 1256

		flush = 0;

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		/*
		 * We need to hold the pagetable lock between the time
		 * we make the pagetable RO and when we actually pin
		 * it.  If we don't, then other users may come in and
		 * attempt to update the pagetable by writing it,
		 * which will fail because the memory is RO but not
		 * pinned, so Xen won't do the trap'n'emulate.
		 *
		 * If we're using split pte locks, we can't hold the
		 * entire pagetable's worth of locks during the
		 * traverse, because we may wrap the preempt count (8
		 * bits).  The solution is to mark RO and pin each PTE
		 * page while holding the lock.  This means the number
		 * of locks we end up holding is never more than a
		 * batch size (~32 entries, at present).
		 *
		 * If we're not using split pte locks, we needn't pin
		 * the PTE pages independently, because we're
		 * protected by the overall pagetable lock.
		 */
1277 1278
		ptl = NULL;
		if (level == PT_PTE)
1279
			ptl = xen_pte_lock(page, mm);
1280

1281 1282
		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL_RO),
1283 1284
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

1285
		if (ptl) {
1286 1287 1288 1289
			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);

			/* Queue a deferred unlock for when this batch
			   is completed. */
1290
			xen_mc_callback(xen_pte_unlock, ptl);
1291
		}
1292 1293 1294 1295
	}

	return flush;
}
J
Jeremy Fitzhardinge 已提交
1296

1297 1298 1299
/* This is called just after a mm has been created, but it has not
   been used yet.  We need to make sure that its pagetable is all
   read-only, and can be pinned. */
1300
static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
J
Jeremy Fitzhardinge 已提交
1301
{
1302
	xen_mc_batch();
J
Jeremy Fitzhardinge 已提交
1303

I
Ian Campbell 已提交
1304
	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
1305
		/* re-enable interrupts for flushing */
J
Jeremy Fitzhardinge 已提交
1306
		xen_mc_issue(0);
1307

1308
		kmap_flush_unused();
1309

J
Jeremy Fitzhardinge 已提交
1310 1311
		xen_mc_batch();
	}
1312

1313 1314 1315 1316 1317 1318 1319
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));

		if (user_pgd) {
1320
			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
T
Tej 已提交
1321 1322
			xen_do_pin(MMUEXT_PIN_L4_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1323 1324 1325
		}
	}
#else /* CONFIG_X86_32 */
1326 1327
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is pinnable */
1328
	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1329
		     PT_PMD);
1330
#endif
1331
	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1332
#endif /* CONFIG_X86_64 */
1333
	xen_mc_issue(0);
J
Jeremy Fitzhardinge 已提交
1334 1335
}

1336 1337 1338 1339 1340
static void xen_pgd_pin(struct mm_struct *mm)
{
	__xen_pgd_pin(mm, mm->pgd);
}

1341 1342 1343 1344 1345
/*
 * On save, we need to pin all pagetables to make sure they get their
 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 * them (unpinned pgds are not currently in use, probably because the
 * process is under construction or destruction).
1346 1347 1348 1349
 *
 * Expected to be called in stop_machine() ("equivalent to taking
 * every spinlock in the system"), so the locking doesn't really
 * matter all that much.
1350 1351 1352 1353 1354
 */
void xen_mm_pin_all(void)
{
	unsigned long flags;
	struct page *page;
1355

1356
	spin_lock_irqsave(&pgd_lock, flags);
1357

1358 1359
	list_for_each_entry(page, &pgd_list, lru) {
		if (!PagePinned(page)) {
1360
			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1361 1362 1363 1364 1365
			SetPageSavePinned(page);
		}
	}

	spin_unlock_irqrestore(&pgd_lock, flags);
J
Jeremy Fitzhardinge 已提交
1366 1367
}

1368 1369 1370 1371 1372
/*
 * The init_mm pagetable is really pinned as soon as its created, but
 * that's before we have page structures to store the bits.  So do all
 * the book-keeping now.
 */
1373 1374
static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
				  enum pt_level level)
J
Jeremy Fitzhardinge 已提交
1375
{
1376 1377 1378
	SetPagePinned(page);
	return 0;
}
J
Jeremy Fitzhardinge 已提交
1379

1380
static void __init xen_mark_init_mm_pinned(void)
1381
{
1382
	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1383
}
J
Jeremy Fitzhardinge 已提交
1384

1385 1386
static int xen_unpin_page(struct mm_struct *mm, struct page *page,
			  enum pt_level level)
1387
{
1388
	unsigned pgfl = TestClearPagePinned(page);
J
Jeremy Fitzhardinge 已提交
1389

1390 1391 1392
	if (pgfl && !PageHighMem(page)) {
		void *pt = lowmem_page_address(page);
		unsigned long pfn = page_to_pfn(page);
1393 1394 1395
		spinlock_t *ptl = NULL;
		struct multicall_space mcs;

1396 1397 1398 1399 1400 1401 1402
		/*
		 * Do the converse to pin_page.  If we're using split
		 * pte locks, we must be holding the lock for while
		 * the pte page is unpinned but still RO to prevent
		 * concurrent updates from seeing it in this
		 * partially-pinned state.
		 */
1403
		if (level == PT_PTE) {
1404
			ptl = xen_pte_lock(page, mm);
1405

1406 1407
			if (ptl)
				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1408 1409 1410
		}

		mcs = __xen_mc_entry(0);
1411 1412 1413

		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
					pfn_pte(pfn, PAGE_KERNEL),
1414 1415 1416 1417
					level == PT_PGD ? UVMF_TLB_FLUSH : 0);

		if (ptl) {
			/* unlock when batch completed */
1418
			xen_mc_callback(xen_pte_unlock, ptl);
1419
		}
1420 1421 1422
	}

	return 0;		/* never need to flush on unpin */
J
Jeremy Fitzhardinge 已提交
1423 1424
}

1425
/* Release a pagetables pages back as normal RW */
1426
static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1427 1428 1429
{
	xen_mc_batch();

1430
	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1431

1432 1433 1434 1435 1436
#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(pgd);

		if (user_pgd) {
T
Tej 已提交
1437 1438
			xen_do_pin(MMUEXT_UNPIN_TABLE,
				   PFN_DOWN(__pa(user_pgd)));
1439
			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1440 1441 1442 1443
		}
	}
#endif

1444 1445
#ifdef CONFIG_X86_PAE
	/* Need to make sure unshared kernel PMD is unpinned */
1446
	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1447
		       PT_PMD);
1448
#endif
1449

I
Ian Campbell 已提交
1450
	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1451 1452 1453

	xen_mc_issue(0);
}
J
Jeremy Fitzhardinge 已提交
1454

1455 1456 1457 1458 1459
static void xen_pgd_unpin(struct mm_struct *mm)
{
	__xen_pgd_unpin(mm, mm->pgd);
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/*
 * On resume, undo any pinning done at save, so that the rest of the
 * kernel doesn't see any unexpected pinned pagetables.
 */
void xen_mm_unpin_all(void)
{
	unsigned long flags;
	struct page *page;

	spin_lock_irqsave(&pgd_lock, flags);

	list_for_each_entry(page, &pgd_list, lru) {
		if (PageSavePinned(page)) {
			BUG_ON(!PagePinned(page));
1474
			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1475 1476 1477 1478 1479 1480 1481
			ClearPageSavePinned(page);
		}
	}

	spin_unlock_irqrestore(&pgd_lock, flags);
}

J
Jeremy Fitzhardinge 已提交
1482 1483
void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
{
1484
	spin_lock(&next->page_table_lock);
1485
	xen_pgd_pin(next);
1486
	spin_unlock(&next->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1487 1488 1489 1490
}

void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
{
1491
	spin_lock(&mm->page_table_lock);
1492
	xen_pgd_pin(mm);
1493
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1494 1495 1496
}


J
Jeremy Fitzhardinge 已提交
1497 1498 1499 1500 1501 1502
#ifdef CONFIG_SMP
/* Another cpu may still have their %cr3 pointing at the pagetable, so
   we need to repoint it somewhere else before we can unpin it. */
static void drop_other_mm_ref(void *info)
{
	struct mm_struct *mm = info;
1503
	struct mm_struct *active_mm;
J
Jeremy Fitzhardinge 已提交
1504

1505
	active_mm = percpu_read(cpu_tlbstate.active_mm);
1506 1507

	if (active_mm == mm)
J
Jeremy Fitzhardinge 已提交
1508
		leave_mm(smp_processor_id());
1509 1510 1511

	/* If this cpu still has a stale cr3 reference, then make sure
	   it has been flushed. */
1512
	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1513
		load_cr3(swapper_pg_dir);
J
Jeremy Fitzhardinge 已提交
1514
}
J
Jeremy Fitzhardinge 已提交
1515

1516
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1517
{
1518
	cpumask_var_t mask;
1519 1520
	unsigned cpu;

J
Jeremy Fitzhardinge 已提交
1521 1522 1523 1524 1525
	if (current->active_mm == mm) {
		if (current->mm == mm)
			load_cr3(swapper_pg_dir);
		else
			leave_mm(smp_processor_id());
1526 1527 1528
	}

	/* Get the "official" set of cpus referring to our pagetable. */
1529 1530
	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
		for_each_online_cpu(cpu) {
1531
			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1532 1533 1534 1535 1536 1537
			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
				continue;
			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
		}
		return;
	}
1538
	cpumask_copy(mask, mm_cpumask(mm));
1539 1540 1541 1542 1543 1544 1545 1546

	/* It's possible that a vcpu may have a stale reference to our
	   cr3, because its in lazy mode, and it hasn't yet flushed
	   its set of pending hypercalls yet.  In this case, we can
	   look at its actual current cr3 value, and force it to flush
	   if needed. */
	for_each_online_cpu(cpu) {
		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1547
			cpumask_set_cpu(cpu, mask);
J
Jeremy Fitzhardinge 已提交
1548 1549
	}

1550 1551 1552
	if (!cpumask_empty(mask))
		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
	free_cpumask_var(mask);
J
Jeremy Fitzhardinge 已提交
1553 1554
}
#else
1555
static void xen_drop_mm_ref(struct mm_struct *mm)
J
Jeremy Fitzhardinge 已提交
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
{
	if (current->active_mm == mm)
		load_cr3(swapper_pg_dir);
}
#endif

/*
 * While a process runs, Xen pins its pagetables, which means that the
 * hypervisor forces it to be read-only, and it controls all updates
 * to it.  This means that all pagetable updates have to go via the
 * hypervisor, which is moderately expensive.
 *
 * Since we're pulling the pagetable down, we switch to use init_mm,
 * unpin old process pagetable and mark it all read-write, which
 * allows further operations on it to be simple memory accesses.
 *
 * The only subtle point is that another CPU may be still using the
 * pagetable because of lazy tlb flushing.  This means we need need to
 * switch all CPUs off this pagetable before we can unpin it.
 */
void xen_exit_mmap(struct mm_struct *mm)
{
	get_cpu();		/* make sure we don't move around */
1579
	xen_drop_mm_ref(mm);
J
Jeremy Fitzhardinge 已提交
1580
	put_cpu();
J
Jeremy Fitzhardinge 已提交
1581

1582
	spin_lock(&mm->page_table_lock);
1583 1584

	/* pgd may not be pinned in the error exit path of execve */
1585
	if (xen_page_pinned(mm->pgd))
1586
		xen_pgd_unpin(mm);
1587

1588
	spin_unlock(&mm->page_table_lock);
J
Jeremy Fitzhardinge 已提交
1589
}
J
Jeremy Fitzhardinge 已提交
1590

1591 1592 1593 1594
static __init void xen_pagetable_setup_start(pgd_t *base)
{
}

1595 1596
static void xen_post_allocator_init(void);

1597 1598 1599
static __init void xen_pagetable_setup_done(pgd_t *base)
{
	xen_setup_shared_info();
1600
	xen_post_allocator_init();
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

static void xen_write_cr2(unsigned long cr2)
{
	percpu_read(xen_vcpu)->arch.cr2 = cr2;
}

static unsigned long xen_read_cr2(void)
{
	return percpu_read(xen_vcpu)->arch.cr2;
}

unsigned long xen_read_cr2_direct(void)
{
	return percpu_read(xen_vcpu_info.arch.cr2);
}

static void xen_flush_tlb(void)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_single(unsigned long addr)
{
	struct mmuext_op *op;
	struct multicall_space mcs;

	preempt_disable();

	mcs = xen_mc_entry(sizeof(*op));
	op = mcs.args;
	op->cmd = MMUEXT_INVLPG_LOCAL;
	op->arg1.linear_addr = addr & PAGE_MASK;
	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);

	preempt_enable();
}

static void xen_flush_tlb_others(const struct cpumask *cpus,
				 struct mm_struct *mm, unsigned long va)
{
	struct {
		struct mmuext_op op;
		DECLARE_BITMAP(mask, NR_CPUS);
	} *args;
	struct multicall_space mcs;

1663 1664
	if (cpumask_empty(cpus))
		return;		/* nothing to do */
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

	mcs = xen_mc_entry(sizeof(*args));
	args = mcs.args;
	args->op.arg2.vcpumask = to_cpumask(args->mask);

	/* Remove us, and any offline CPUS. */
	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));

	if (va == TLB_FLUSH_ALL) {
		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
	} else {
		args->op.cmd = MMUEXT_INVLPG_MULTI;
		args->op.arg1.linear_addr = va;
	}

	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);

	xen_mc_issue(PARAVIRT_LAZY_MMU);
}

static unsigned long xen_read_cr3(void)
{
	return percpu_read(xen_cr3);
}

static void set_current_cr3(void *v)
{
	percpu_write(xen_current_cr3, (unsigned long)v);
}

static void __xen_write_cr3(bool kernel, unsigned long cr3)
{
	struct mmuext_op *op;
	struct multicall_space mcs;
	unsigned long mfn;

	if (cr3)
		mfn = pfn_to_mfn(PFN_DOWN(cr3));
	else
		mfn = 0;

	WARN_ON(mfn == 0 && kernel);

	mcs = __xen_mc_entry(sizeof(*op));

	op = mcs.args;
	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
	op->arg1.mfn = mfn;

	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);

	if (kernel) {
		percpu_write(xen_cr3, cr3);

		/* Update xen_current_cr3 once the batch has actually
		   been submitted. */
		xen_mc_callback(set_current_cr3, (void *)cr3);
	}
}

static void xen_write_cr3(unsigned long cr3)
{
	BUG_ON(preemptible());

	xen_mc_batch();  /* disables interrupts */

	/* Update while interrupts are disabled, so its atomic with
	   respect to ipis */
	percpu_write(xen_cr3, cr3);

	__xen_write_cr3(true, cr3);

#ifdef CONFIG_X86_64
	{
		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
		if (user_pgd)
			__xen_write_cr3(false, __pa(user_pgd));
		else
			__xen_write_cr3(false, 0);
	}
#endif

	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
}

static int xen_pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd = mm->pgd;
	int ret = 0;

	BUG_ON(PagePinned(virt_to_page(pgd)));

#ifdef CONFIG_X86_64
	{
		struct page *page = virt_to_page(pgd);
		pgd_t *user_pgd;

		BUG_ON(page->private != 0);

		ret = -ENOMEM;

		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		page->private = (unsigned long)user_pgd;

		if (user_pgd != NULL) {
			user_pgd[pgd_index(VSYSCALL_START)] =
				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
			ret = 0;
		}

		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
	}
#endif

	return ret;
}

static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
#ifdef CONFIG_X86_64
	pgd_t *user_pgd = xen_get_user_pgd(pgd);

	if (user_pgd)
		free_page((unsigned long)user_pgd);
#endif
}

1793 1794
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
{
1795 1796 1797
	unsigned long pfn = pte_pfn(pte);

#ifdef CONFIG_X86_32
1798 1799 1800 1801
	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
			       pte_val_ma(pte));
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
#endif

	/*
	 * If the new pfn is within the range of the newly allocated
	 * kernel pagetable, and it isn't being mapped into an
	 * early_ioremap fixmap slot, make sure it is RO.
	 */
	if (!is_early_ioremap_ptep(ptep) &&
	    pfn >= e820_table_start && pfn < e820_table_end)
		pte = pte_wrprotect(pte);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

	return pte;
}

/* Init-time set_pte while constructing initial pagetables, which
   doesn't allow RO pagetable pages to be remapped RW */
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
{
	pte = mask_rw_pte(ptep, pte);

	xen_set_pte(ptep, pte);
}
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833
static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
{
	struct mmuext_op op;
	op.cmd = cmd;
	op.arg1.mfn = pfn_to_mfn(pfn);
	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
		BUG();
}

1834 1835 1836 1837
/* Early in boot, while setting up the initial pagetable, assume
   everything is pinned. */
static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
{
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
}

/* Used for pmd and pud */
static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
{
1848 1849 1850 1851 1852 1853 1854 1855
#ifdef CONFIG_FLATMEM
	BUG_ON(mem_map);	/* should only be used early */
#endif
	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
}

/* Early release_pte assumes that all pts are pinned, since there's
   only init_mm and anything attached to that is pinned. */
1856
static __init void xen_release_pte_init(unsigned long pfn)
1857
{
1858
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1859 1860 1861
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
}

1862
static __init void xen_release_pmd_init(unsigned long pfn)
1863
{
1864
	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
}

/* This needs to make sure the new pte page is pinned iff its being
   attached to a pinned pagetable. */
static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
{
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(virt_to_page(mm->pgd))) {
		SetPagePinned(page);

		if (!PageHighMem(page)) {
			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
		} else {
			/* make sure there are no stray mappings of
			   this page */
			kmap_flush_unused();
		}
	}
}

static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PTE);
}

static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PMD);
}

/* This should never happen until we're OK to use struct page */
static void xen_release_ptpage(unsigned long pfn, unsigned level)
{
	struct page *page = pfn_to_page(pfn);

	if (PagePinned(page)) {
		if (!PageHighMem(page)) {
			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
		}
		ClearPagePinned(page);
	}
}

static void xen_release_pte(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PTE);
}

static void xen_release_pmd(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PMD);
}

#if PAGETABLE_LEVELS == 4
static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
{
	xen_alloc_ptpage(mm, pfn, PT_PUD);
}

static void xen_release_pud(unsigned long pfn)
{
	xen_release_ptpage(pfn, PT_PUD);
}
#endif

void __init xen_reserve_top(void)
{
#ifdef CONFIG_X86_32
	unsigned long top = HYPERVISOR_VIRT_START;
	struct xen_platform_parameters pp;

	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
		top = pp.virt_start;

	reserve_top_address(-top);
#endif	/* CONFIG_X86_32 */
}

/*
 * Like __va(), but returns address in the kernel mapping (which is
 * all we have until the physical memory mapping has been set up.
 */
static void *__ka(phys_addr_t paddr)
{
#ifdef CONFIG_X86_64
	return (void *)(paddr + __START_KERNEL_map);
#else
	return __va(paddr);
#endif
}

/* Convert a machine address to physical address */
static unsigned long m2p(phys_addr_t maddr)
{
	phys_addr_t paddr;

	maddr &= PTE_PFN_MASK;
	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;

	return paddr;
}

/* Convert a machine address to kernel virtual */
static void *m2v(phys_addr_t maddr)
{
	return __ka(m2p(maddr));
}

1978
/* Set the page permissions on an identity-mapped pages */
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
static void set_page_prot(void *addr, pgprot_t prot)
{
	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
	pte_t pte = pfn_pte(pfn, prot);

	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
		BUG();
}

static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
{
	unsigned pmdidx, pteidx;
	unsigned ident_pte;
	unsigned long pfn;

1994 1995 1996
	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
				      PAGE_SIZE);

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	ident_pte = 0;
	pfn = 0;
	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
		pte_t *pte_page;

		/* Reuse or allocate a page of ptes */
		if (pmd_present(pmd[pmdidx]))
			pte_page = m2v(pmd[pmdidx].pmd);
		else {
			/* Check for free pte pages */
2007
			if (ident_pte == LEVEL1_IDENT_ENTRIES)
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
				break;

			pte_page = &level1_ident_pgt[ident_pte];
			ident_pte += PTRS_PER_PTE;

			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
		}

		/* Install mappings */
		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
			pte_t pte;

			if (pfn > max_pfn_mapped)
				max_pfn_mapped = pfn;

			if (!pte_none(pte_page[pteidx]))
				continue;

			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
			pte_page[pteidx] = pte;
		}
	}

	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);

	set_page_prot(pmd, PAGE_KERNEL_RO);
}

#ifdef CONFIG_X86_64
static void convert_pfn_mfn(void *v)
{
	pte_t *pte = v;
	int i;

	/* All levels are converted the same way, so just treat them
	   as ptes. */
	for (i = 0; i < PTRS_PER_PTE; i++)
		pte[i] = xen_make_pte(pte[i].pte);
}

/*
 * Set up the inital kernel pagetable.
 *
 * We can construct this by grafting the Xen provided pagetable into
 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
 * means that only the kernel has a physical mapping to start with -
 * but that's enough to get __va working.  We need to fill in the rest
 * of the physical mapping once some sort of allocator has been set
 * up.
 */
__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
					 unsigned long max_pfn)
{
	pud_t *l3;
	pmd_t *l2;

	/* Zap identity mapping */
	init_level4_pgt[0] = __pgd(0);

	/* Pre-constructed entries are in pfn, so convert to mfn */
	convert_pfn_mfn(init_level4_pgt);
	convert_pfn_mfn(level3_ident_pgt);
	convert_pfn_mfn(level3_kernel_pgt);

	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);

	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);

	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);

	/* Set up identity map */
	xen_map_identity_early(level2_ident_pgt, max_pfn);

	/* Make pagetable pieces RO */
	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);

	/* Pin down new L4 */
	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
			  PFN_DOWN(__pa_symbol(init_level4_pgt)));

	/* Unpin Xen-provided one */
	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

	/* Switch over */
	pgd = init_level4_pgt;

	/*
	 * At this stage there can be no user pgd, and no page
	 * structure to attach it to, so make sure we just set kernel
	 * pgd.
	 */
	xen_mc_batch();
	__xen_write_cr3(true, __pa(pgd));
	xen_mc_issue(PARAVIRT_LAZY_CPU);

2114
	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
2115 2116 2117 2118 2119 2120 2121
		      __pa(xen_start_info->pt_base +
			   xen_start_info->nr_pt_frames * PAGE_SIZE),
		      "XEN PAGETABLES");

	return pgd;
}
#else	/* !CONFIG_X86_64 */
2122
static RESERVE_BRK_ARRAY(pmd_t, level2_kernel_pgt, PTRS_PER_PMD);
2123 2124 2125 2126 2127 2128

__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
					 unsigned long max_pfn)
{
	pmd_t *kernel_pmd;

2129
	level2_kernel_pgt = extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2130

2131 2132 2133
	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
				  xen_start_info->nr_pt_frames * PAGE_SIZE +
				  512*1024);
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
	memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);

	xen_map_identity_early(level2_kernel_pgt, max_pfn);

	memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
	set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
			__pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));

	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);

	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));

	xen_write_cr3(__pa(swapper_pg_dir));

	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));

2154
	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
2155 2156 2157 2158
		      __pa(xen_start_info->pt_base +
			   xen_start_info->nr_pt_frames * PAGE_SIZE),
		      "XEN PAGETABLES");

2159 2160 2161 2162
	return swapper_pg_dir;
}
#endif	/* CONFIG_X86_64 */

2163 2164
static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;

2165
static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
{
	pte_t pte;

	phys >>= PAGE_SHIFT;

	switch (idx) {
	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
#ifdef CONFIG_X86_F00F_BUG
	case FIX_F00F_IDT:
#endif
#ifdef CONFIG_X86_32
	case FIX_WP_TEST:
	case FIX_VDSO:
# ifdef CONFIG_HIGHMEM
	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
# endif
#else
	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
#endif
2185 2186 2187
	case FIX_TEXT_POKE0:
	case FIX_TEXT_POKE1:
		/* All local page mappings */
2188 2189 2190
		pte = pfn_pte(phys, prot);
		break;

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
#ifdef CONFIG_X86_LOCAL_APIC
	case FIX_APIC_BASE:	/* maps dummy local APIC */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

#ifdef CONFIG_X86_IO_APIC
	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
		/*
		 * We just don't map the IO APIC - all access is via
		 * hypercalls.  Keep the address in the pte for reference.
		 */
		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
		break;
#endif

2207 2208 2209
	case FIX_PARAVIRT_BOOTMAP:
		/* This is an MFN, but it isn't an IO mapping from the
		   IO domain */
2210 2211
		pte = mfn_pte(phys, prot);
		break;
2212 2213 2214 2215 2216

	default:
		/* By default, set_fixmap is used for hardware mappings */
		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
		break;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	}

	__native_set_fixmap(idx, pte);

#ifdef CONFIG_X86_64
	/* Replicate changes to map the vsyscall page into the user
	   pagetable vsyscall mapping. */
	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
		unsigned long vaddr = __fix_to_virt(idx);
		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
	}
#endif
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
__init void xen_ident_map_ISA(void)
{
	unsigned long pa;

	/*
	 * If we're dom0, then linear map the ISA machine addresses into
	 * the kernel's address space.
	 */
	if (!xen_initial_domain())
		return;

	xen_raw_printk("Xen: setup ISA identity maps\n");

	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);

		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
			BUG();
	}

	xen_flush_tlb();
}

2254
static __init void xen_post_allocator_init(void)
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
{
	pv_mmu_ops.set_pte = xen_set_pte;
	pv_mmu_ops.set_pmd = xen_set_pmd;
	pv_mmu_ops.set_pud = xen_set_pud;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.set_pgd = xen_set_pgd;
#endif

	/* This will work as long as patching hasn't happened yet
	   (which it hasn't) */
	pv_mmu_ops.alloc_pte = xen_alloc_pte;
	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
	pv_mmu_ops.release_pte = xen_release_pte;
	pv_mmu_ops.release_pmd = xen_release_pmd;
#if PAGETABLE_LEVELS == 4
	pv_mmu_ops.alloc_pud = xen_alloc_pud;
	pv_mmu_ops.release_pud = xen_release_pud;
#endif

#ifdef CONFIG_X86_64
	SetPagePinned(virt_to_page(level3_user_vsyscall));
#endif
	xen_mark_init_mm_pinned();
}

2280 2281
static void xen_leave_lazy_mmu(void)
{
2282
	preempt_disable();
2283 2284
	xen_mc_flush();
	paravirt_leave_lazy_mmu();
2285
	preempt_enable();
2286
}
2287

2288
static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	.read_cr2 = xen_read_cr2,
	.write_cr2 = xen_write_cr2,

	.read_cr3 = xen_read_cr3,
	.write_cr3 = xen_write_cr3,

	.flush_tlb_user = xen_flush_tlb,
	.flush_tlb_kernel = xen_flush_tlb,
	.flush_tlb_single = xen_flush_tlb_single,
	.flush_tlb_others = xen_flush_tlb_others,

	.pte_update = paravirt_nop,
	.pte_update_defer = paravirt_nop,

	.pgd_alloc = xen_pgd_alloc,
	.pgd_free = xen_pgd_free,

	.alloc_pte = xen_alloc_pte_init,
	.release_pte = xen_release_pte_init,
2308 2309
	.alloc_pmd = xen_alloc_pmd_init,
	.release_pmd = xen_release_pmd_init,
2310 2311 2312 2313 2314 2315 2316 2317

	.set_pte = xen_set_pte_init,
	.set_pte_at = xen_set_pte_at,
	.set_pmd = xen_set_pmd_hyper,

	.ptep_modify_prot_start = __ptep_modify_prot_start,
	.ptep_modify_prot_commit = __ptep_modify_prot_commit,

2318 2319
	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2320

2321 2322
	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2323 2324 2325 2326 2327 2328 2329 2330

#ifdef CONFIG_X86_PAE
	.set_pte_atomic = xen_set_pte_atomic,
	.pte_clear = xen_pte_clear,
	.pmd_clear = xen_pmd_clear,
#endif	/* CONFIG_X86_PAE */
	.set_pud = xen_set_pud_hyper,

2331 2332
	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2333 2334

#if PAGETABLE_LEVELS == 4
2335 2336
	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2337 2338
	.set_pgd = xen_set_pgd_hyper,

2339 2340
	.alloc_pud = xen_alloc_pmd_init,
	.release_pud = xen_release_pmd_init,
2341 2342 2343 2344 2345 2346 2347 2348
#endif	/* PAGETABLE_LEVELS == 4 */

	.activate_mm = xen_activate_mm,
	.dup_mmap = xen_dup_mmap,
	.exit_mmap = xen_exit_mmap,

	.lazy_mode = {
		.enter = paravirt_enter_lazy_mmu,
2349
		.leave = xen_leave_lazy_mmu,
2350 2351 2352 2353 2354
	},

	.set_fixmap = xen_set_fixmap,
};

2355 2356 2357 2358 2359
void __init xen_init_mmu_ops(void)
{
	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
	pv_mmu_ops = xen_mmu_ops;
2360 2361

	vmap_lazy_unmap = false;
2362 2363

	memset(dummy_mapping, 0xff, PAGE_SIZE);
2364
}
2365

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/* Protected by xen_reservation_lock. */
#define MAX_CONTIG_ORDER 9 /* 2MB */
static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];

#define VOID_PTE (mfn_pte(0, __pgprot(0)))
static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
				unsigned long *in_frames,
				unsigned long *out_frames)
{
	int i;
	struct multicall_space mcs;

	xen_mc_batch();
	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
		mcs = __xen_mc_entry(0);

		if (in_frames)
			in_frames[i] = virt_to_mfn(vaddr);

		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
		set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);

		if (out_frames)
			out_frames[i] = virt_to_pfn(vaddr);
	}
	xen_mc_issue(0);
}

/*
 * Update the pfn-to-mfn mappings for a virtual address range, either to
 * point to an array of mfns, or contiguously from a single starting
 * mfn.
 */
static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
				     unsigned long *mfns,
				     unsigned long first_mfn)
{
	unsigned i, limit;
	unsigned long mfn;

	xen_mc_batch();

	limit = 1u << order;
	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
		struct multicall_space mcs;
		unsigned flags;

		mcs = __xen_mc_entry(0);
		if (mfns)
			mfn = mfns[i];
		else
			mfn = first_mfn + i;

		if (i < (limit - 1))
			flags = 0;
		else {
			if (order == 0)
				flags = UVMF_INVLPG | UVMF_ALL;
			else
				flags = UVMF_TLB_FLUSH | UVMF_ALL;
		}

		MULTI_update_va_mapping(mcs.mc, vaddr,
				mfn_pte(mfn, PAGE_KERNEL), flags);

		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
	}

	xen_mc_issue(0);
}

/*
 * Perform the hypercall to exchange a region of our pfns to point to
 * memory with the required contiguous alignment.  Takes the pfns as
 * input, and populates mfns as output.
 *
 * Returns a success code indicating whether the hypervisor was able to
 * satisfy the request or not.
 */
static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
			       unsigned long *pfns_in,
			       unsigned long extents_out,
			       unsigned int order_out,
			       unsigned long *mfns_out,
			       unsigned int address_bits)
{
	long rc;
	int success;

	struct xen_memory_exchange exchange = {
		.in = {
			.nr_extents   = extents_in,
			.extent_order = order_in,
			.extent_start = pfns_in,
			.domid        = DOMID_SELF
		},
		.out = {
			.nr_extents   = extents_out,
			.extent_order = order_out,
			.extent_start = mfns_out,
			.address_bits = address_bits,
			.domid        = DOMID_SELF
		}
	};

	BUG_ON(extents_in << order_in != extents_out << order_out);

	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
	success = (exchange.nr_exchanged == extents_in);

	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
	BUG_ON(success && (rc != 0));

	return success;
}

int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
				 unsigned int address_bits)
{
	unsigned long *in_frames = discontig_frames, out_frame;
	unsigned long  flags;
	int            success;

	/*
	 * Currently an auto-translated guest will not perform I/O, nor will
	 * it require PAE page directories below 4GB. Therefore any calls to
	 * this function are redundant and can be ignored.
	 */

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return 0;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return -ENOMEM;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Zap current PTEs, remembering MFNs. */
	xen_zap_pfn_range(vstart, order, in_frames, NULL);

	/* 2. Get a new contiguous memory extent. */
	out_frame = virt_to_pfn(vstart);
	success = xen_exchange_memory(1UL << order, 0, in_frames,
				      1, order, &out_frame,
				      address_bits);

	/* 3. Map the new extent in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
	else
		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);

	return success ? 0 : -ENOMEM;
}
EXPORT_SYMBOL_GPL(xen_create_contiguous_region);

void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
{
	unsigned long *out_frames = discontig_frames, in_frame;
	unsigned long  flags;
	int success;

	if (xen_feature(XENFEAT_auto_translated_physmap))
		return;

	if (unlikely(order > MAX_CONTIG_ORDER))
		return;

	memset((void *) vstart, 0, PAGE_SIZE << order);

	spin_lock_irqsave(&xen_reservation_lock, flags);

	/* 1. Find start MFN of contiguous extent. */
	in_frame = virt_to_mfn(vstart);

	/* 2. Zap current PTEs. */
	xen_zap_pfn_range(vstart, order, NULL, out_frames);

	/* 3. Do the exchange for non-contiguous MFNs. */
	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
					0, out_frames, 0);

	/* 4. Map new pages in place of old pages. */
	if (success)
		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
	else
		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);

	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2559
}
2560
EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2561

2562
#ifdef CONFIG_XEN_PVHVM
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static void xen_hvm_exit_mmap(struct mm_struct *mm)
{
	struct xen_hvm_pagetable_dying a;
	int rc;

	a.domid = DOMID_SELF;
	a.gpa = __pa(mm->pgd);
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	WARN_ON_ONCE(rc < 0);
}

static int is_pagetable_dying_supported(void)
{
	struct xen_hvm_pagetable_dying a;
	int rc = 0;

	a.domid = DOMID_SELF;
	a.gpa = 0x00;
	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
	if (rc < 0) {
		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
		return 0;
	}
	return 1;
}

void __init xen_hvm_init_mmu_ops(void)
{
	if (is_pagetable_dying_supported())
		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
}
2594
#endif
2595

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
#define REMAP_BATCH_SIZE 16

struct remap_data {
	unsigned long mfn;
	pgprot_t prot;
	struct mmu_update *mmu_update;
};

static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
				 unsigned long addr, void *data)
{
	struct remap_data *rmd = data;
	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));

	rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
	rmd->mmu_update->val = pte_val_ma(pte);
	rmd->mmu_update++;

	return 0;
}

int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
			       unsigned long addr,
			       unsigned long mfn, int nr,
			       pgprot_t prot, unsigned domid)
{
	struct remap_data rmd;
	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
	int batch;
	unsigned long range;
	int err = 0;

	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);

	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;

	rmd.mfn = mfn;
	rmd.prot = prot;

	while (nr) {
		batch = min(REMAP_BATCH_SIZE, nr);
		range = (unsigned long)batch << PAGE_SHIFT;

		rmd.mmu_update = mmu_update;
		err = apply_to_page_range(vma->vm_mm, addr, range,
					  remap_area_mfn_pte_fn, &rmd);
		if (err)
			goto out;

		err = -EFAULT;
		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
			goto out;

		nr -= batch;
		addr += range;
	}

	err = 0;
out:

	flush_tlb_all();

	return err;
}
EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);

J
Jeremy Fitzhardinge 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
#ifdef CONFIG_XEN_DEBUG_FS

static struct dentry *d_mmu_debug;

static int __init xen_mmu_debugfs(void)
{
	struct dentry *d_xen = xen_init_debugfs();

	if (d_xen == NULL)
		return -ENOMEM;

	d_mmu_debug = debugfs_create_dir("mmu", d_xen);

	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);

	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
			   &mmu_stats.pgd_update_pinned);
	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
			   &mmu_stats.pgd_update_pinned);

	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
			   &mmu_stats.pud_update_pinned);
	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
			   &mmu_stats.pud_update_pinned);

	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
			   &mmu_stats.pmd_update_pinned);
	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
			   &mmu_stats.pmd_update_pinned);

	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
//	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
//			   &mmu_stats.pte_update_pinned);
	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
			   &mmu_stats.pte_update_pinned);

	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
			   &mmu_stats.mmu_update_extended);
	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
				     mmu_stats.mmu_update_histo, 20);

	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
			   &mmu_stats.set_pte_at_batched);
	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
			   &mmu_stats.set_pte_at_current);
	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
			   &mmu_stats.set_pte_at_kernel);

	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
			   &mmu_stats.prot_commit_batched);

	return 0;
}
fs_initcall(xen_mmu_debugfs);

#endif	/* CONFIG_XEN_DEBUG_FS */