i915_guc_submission.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
25 26
#include <linux/debugfs.h>
#include <linux/relay.h>
27
#include "i915_drv.h"
28
#include "intel_uc.h"
29

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 *
 * i915_guc_client:
 * We use the term client to avoid confusion with contexts. A i915_guc_client is
 * equivalent to GuC object guc_context_desc. This context descriptor is
 * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
 * and workqueue for it. Also the process descriptor (guc_process_desc), which
 * is mapped to client space. So the client can write Work Item then ring the
 * doorbell.
 *
 * To simplify the implementation, we allocate one gem object that contains all
 * pages for doorbell, process descriptor and workqueue.
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
51
 * See intel_guc_send()
52 53 54 55 56 57 58 59 60 61 62
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
63
 * See guc_wq_item_append()
64 65 66 67 68 69 70
 *
 */

/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

71 72
static int guc_allocate_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
73
{
74 75 76 77
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
		client->ctx_index
	};
78

79
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
80 81
}

82 83
static int guc_release_doorbell(struct intel_guc *guc,
				struct i915_guc_client *client)
84
{
85 86 87 88
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
		client->ctx_index
	};
89

90
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
91 92
}

93 94 95 96 97 98 99
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

100 101 102
static int guc_update_doorbell_id(struct intel_guc *guc,
				  struct i915_guc_client *client,
				  u16 new_id)
103
{
104
	struct sg_table *sg = guc->ctx_pool_vma->pages;
105
	void *doorbell_bitmap = guc->doorbell_bitmap;
106
	struct guc_doorbell_info *doorbell;
107 108
	struct guc_context_desc desc;
	size_t len;
109

110
	doorbell = client->vaddr + client->doorbell_offset;
111

112 113 114 115
	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
	    test_bit(client->doorbell_id, doorbell_bitmap)) {
		/* Deactivate the old doorbell */
		doorbell->db_status = GUC_DOORBELL_DISABLED;
116
		(void)guc_release_doorbell(guc, client);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
		__clear_bit(client->doorbell_id, doorbell_bitmap);
	}

	/* Update the GuC's idea of the doorbell ID */
	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;
	desc.db_id = new_id;
	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;

	client->doorbell_id = new_id;
	if (new_id == GUC_INVALID_DOORBELL_ID)
		return 0;

	/* Activate the new doorbell */
	__set_bit(new_id, doorbell_bitmap);
	doorbell->db_status = GUC_DOORBELL_ENABLED;
138
	doorbell->cookie = client->doorbell_cookie;
139
	return guc_allocate_doorbell(guc, client);
140 141 142 143 144 145 146
}

static int guc_init_doorbell(struct intel_guc *guc,
			      struct i915_guc_client *client,
			      uint16_t db_id)
{
	return guc_update_doorbell_id(guc, client, db_id);
147 148 149 150 151
}

static void guc_disable_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
{
152
	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
153 154 155 156 157

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static uint16_t
select_doorbell_register(struct intel_guc *guc, uint32_t priority)
{
	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 * Note that logically higher priorities are numerically less than
	 * normal ones, so the test below means "is it high-priority?"
	 */
	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
	const uint16_t half = GUC_MAX_DOORBELLS / 2;
	const uint16_t start = hi_pri ? half : 0;
	const uint16_t end = start + half;
	uint16_t id;

	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
	if (id == end)
		id = GUC_INVALID_DOORBELL_ID;

	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
			hi_pri ? "high" : "normal", id);

	return id;
}

184 185 186 187
/*
 * Select, assign and relase doorbell cachelines
 *
 * These functions track which doorbell cachelines are in use.
188
 * The data they manipulate is protected by the intel_guc_send lock.
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 */

static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
{
	const uint32_t cacheline_size = cache_line_size();
	uint32_t offset;

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
	guc->db_cacheline += cacheline_size;

	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cacheline_size);

	return offset;
}

/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
211
static void guc_proc_desc_init(struct intel_guc *guc,
212 213 214 215
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

216
	desc = client->vaddr + client->proc_desc_offset;
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	memset(desc, 0, sizeof(*desc));

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

	desc->context_id = client->ctx_index;
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
 * Initialise/clear the context descriptor shared with the GuC firmware.
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */

243
static void guc_ctx_desc_init(struct intel_guc *guc,
244 245
			      struct i915_guc_client *client)
{
246
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
247
	struct intel_engine_cs *engine;
248
	struct i915_gem_context *ctx = client->owner;
249 250
	struct guc_context_desc desc;
	struct sg_table *sg;
251
	unsigned int tmp;
252
	u32 gfx_addr;
253 254 255 256 257 258 259 260

	memset(&desc, 0, sizeof(desc));

	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
	desc.context_id = client->ctx_index;
	desc.priority = client->priority;
	desc.db_id = client->doorbell_id;

261
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
262
		struct intel_context *ce = &ctx->engine[engine->id];
263 264
		uint32_t guc_engine_id = engine->guc_id;
		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
265 266 267 268 269 270 271 272

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
273
		if (!ce->state)
274 275
			break;	/* XXX: continue? */

276
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
277 278

		/* The state page is after PPHWSP */
279
		lrc->ring_lcra =
280
			i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
281
		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
282
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
283

284
		lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
285 286
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
287 288
		lrc->ring_current_tail_pointer_value = 0;

289
		desc.engines_used |= (1 << guc_engine_id);
290 291
	}

292 293
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
			client->engines, desc.engines_used);
294 295
	WARN_ON(desc.engines_used == 0);

296
	/*
297 298
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
299
	 */
300
	gfx_addr = i915_ggtt_offset(client->vma);
301
	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
302
				client->doorbell_offset;
303 304
	desc.db_trigger_cpu =
		(uintptr_t)client->vaddr + client->doorbell_offset;
305 306 307
	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc.process_desc = gfx_addr + client->proc_desc_offset;
	desc.wq_addr = gfx_addr + client->wq_offset;
308 309 310
	desc.wq_size = client->wq_size;

	/*
311
	 * XXX: Take LRCs from an existing context if this is not an
312 313 314 315 316
	 * IsKMDCreatedContext client
	 */
	desc.desc_private = (uintptr_t)client;

	/* Pool context is pinned already */
317
	sg = guc->ctx_pool_vma->pages;
318 319 320 321
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

322
static void guc_ctx_desc_fini(struct intel_guc *guc,
323 324 325 326 327 328 329
			      struct i915_guc_client *client)
{
	struct guc_context_desc desc;
	struct sg_table *sg;

	memset(&desc, 0, sizeof(desc));

330
	sg = guc->ctx_pool_vma->pages;
331 332 333 334
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

335
/**
336
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
337 338 339 340 341 342 343
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
344 345
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
346
 *
347
 * Reservation allows the caller to determine in advance that space
348 349 350
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
351
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
352
{
353
	const size_t wqi_size = sizeof(struct guc_wq_item);
354
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
355
	struct guc_process_desc *desc = gc->vaddr + gc->proc_desc_offset;
356
	u32 freespace;
357
	int ret;
358

359
	spin_lock(&gc->wq_lock);
360
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
361 362 363 364 365 366 367 368 369
	freespace -= gc->wq_rsvd;
	if (likely(freespace >= wqi_size)) {
		gc->wq_rsvd += wqi_size;
		ret = 0;
	} else {
		gc->no_wq_space++;
		ret = -EAGAIN;
	}
	spin_unlock(&gc->wq_lock);
370

371
	return ret;
372 373
}

374 375 376 377 378 379 380 381 382 383 384 385
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
	const size_t wqi_size = sizeof(struct guc_wq_item);
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;

	GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);

	spin_lock(&gc->wq_lock);
	gc->wq_rsvd -= wqi_size;
	spin_unlock(&gc->wq_lock);
}

386 387 388
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct i915_guc_client *gc,
			       struct drm_i915_gem_request *rq)
389
{
390 391 392
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
393
	struct intel_engine_cs *engine = rq->engine;
394
	struct guc_process_desc *desc;
395
	struct guc_wq_item *wqi;
396
	u32 freespace, tail, wq_off;
397

398
	desc = gc->vaddr + gc->proc_desc_offset;
399

400
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
401 402 403 404 405 406 407 408
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
	GEM_BUG_ON(tail & 7);
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
409 410 411 412 413 414 415 416

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
417
	BUILD_BUG_ON(wqi_size != 16);
418
	GEM_BUG_ON(gc->wq_rsvd < wqi_size);
419

420 421
	/* postincrement WQ tail for next time */
	wq_off = gc->wq_tail;
422
	GEM_BUG_ON(wq_off & (wqi_size - 1));
423 424
	gc->wq_tail += wqi_size;
	gc->wq_tail &= gc->wq_size - 1;
425
	gc->wq_rsvd -= wqi_size;
426 427

	/* WQ starts from the page after doorbell / process_desc */
428
	wqi = gc->vaddr + wq_off + GUC_DB_SIZE;
429

430
	/* Now fill in the 4-word work queue item */
431
	wqi->header = WQ_TYPE_INORDER |
432
			(wqi_len << WQ_LEN_SHIFT) |
433
			(engine->guc_id << WQ_TARGET_SHIFT) |
434 435 436
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
437
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
438 439

	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
440
	wqi->fence_id = rq->global_seqno;
441 442
}

443 444 445 446 447 448 449
static int guc_ring_doorbell(struct i915_guc_client *gc)
{
	struct guc_process_desc *desc;
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

450
	desc = gc->vaddr + gc->proc_desc_offset;
451 452 453 454 455 456

	/* Update the tail so it is visible to GuC */
	desc->tail = gc->wq_tail;

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
457
	db_cmp.cookie = gc->doorbell_cookie;
458 459 460

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
461
	db_exc.cookie = gc->doorbell_cookie + 1;
462 463 464 465
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
466
	db = gc->vaddr + gc->doorbell_offset;
467 468 469 470 471 472 473 474 475

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
476
			gc->doorbell_cookie = db_exc.cookie;
477 478 479 480 481 482 483 484
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

485 486
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
487 488 489 490 491 492 493 494 495 496 497

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

498 499
/**
 * i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
500
 * @rq:		request associated with the commands
501
 *
502 503 504
 * Return:	0 on success, otherwise an errno.
 * 		(Note: nonzero really shouldn't happen!)
 *
505 506 507
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
508 509
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
510 511
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
512 513 514
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
515
 */
516
static void i915_guc_submit(struct drm_i915_gem_request *rq)
517
{
518
	struct drm_i915_private *dev_priv = rq->i915;
519 520
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
521 522
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
523
	int b_ret;
524

525 526 527 528 529 530 531 532 533 534 535
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	rq->previous_context = engine->last_context;
	engine->last_context = rq->ctx;

	i915_gem_request_submit(rq);

536
	spin_lock(&client->wq_lock);
537
	guc_wq_item_append(client, rq);
538 539 540 541 542

	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

543
	b_ret = guc_ring_doorbell(client);
544

545
	client->submissions[engine_id] += 1;
546 547
	client->retcode = b_ret;
	if (b_ret)
548
		client->b_fail += 1;
549

550
	guc->submissions[engine_id] += 1;
551
	guc->last_seqno[engine_id] = rq->global_seqno;
552
	spin_unlock(&client->wq_lock);
553 554 555 556 557 558 559 560
}

/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

561
/**
562 563 564
 * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
565
 *
566 567 568 569 570
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
571
 *
572
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
573
 */
574
static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
575
{
576
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
577
	struct drm_i915_gem_object *obj;
578 579
	struct i915_vma *vma;
	int ret;
580

581
	obj = i915_gem_object_create(&dev_priv->drm, size);
582
	if (IS_ERR(obj))
583
		return ERR_CAST(obj);
584

585 586 587
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;
588

589 590 591 592 593
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
594 595 596 597 598
	}

	/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);

599 600 601 602 603
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
604 605
}

606 607 608
static void
guc_client_free(struct drm_i915_private *dev_priv,
		struct i915_guc_client *client)
609 610 611 612 613 614 615 616 617 618 619
{
	struct intel_guc *guc = &dev_priv->guc;

	if (!client)
		return;

	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

620
	if (client->vaddr) {
621
		/*
622 623
		 * If we got as far as setting up a doorbell, make sure we
		 * shut it down before unmapping & deallocating the memory.
624
		 */
625
		guc_disable_doorbell(guc, client);
626

627
		i915_gem_object_unpin_map(client->vma->obj);
628 629
	}

630
	i915_vma_unpin_and_release(&client->vma);
631 632

	if (client->ctx_index != GUC_INVALID_CTX_ID) {
633
		guc_ctx_desc_fini(guc, client);
634 635 636 637 638 639
		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
	}

	kfree(client);
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
/* Check that a doorbell register is in the expected state */
static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
	uint32_t value = I915_READ(drbreg);
	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
	bool expected = test_bit(db_id, guc->doorbell_bitmap);

	if (enabled == expected)
		return true;

	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
			 db_id, drbreg.reg, value,
			 expected ? "active" : "inactive");

	return false;
}

659
/*
660
 * Borrow the first client to set up & tear down each unused doorbell
661 662 663 664 665
 * in turn, to ensure that all doorbell h/w is (re)initialised.
 */
static void guc_init_doorbell_hw(struct intel_guc *guc)
{
	struct i915_guc_client *client = guc->execbuf_client;
666 667
	uint16_t db_id;
	int i, err;
668

669
	/* Save client's original doorbell selection */
670 671 672
	db_id = client->doorbell_id;

	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
673 674
		/* Skip if doorbell is OK */
		if (guc_doorbell_check(guc, i))
675 676
			continue;

677
		err = guc_update_doorbell_id(guc, client, i);
678 679 680
		if (err)
			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
					i, err);
681 682 683 684 685
	}

	/* Restore to original value */
	err = guc_update_doorbell_id(guc, client, db_id);
	if (err)
686 687
		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
			 db_id, err);
688

689 690 691
	/* Read back & verify all doorbell registers */
	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
		(void)guc_doorbell_check(guc, i);
692 693
}

694 695
/**
 * guc_client_alloc() - Allocate an i915_guc_client
696
 * @dev_priv:	driver private data structure
697
 * @engines:	The set of engines to enable for this client
698 699 700 701
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
702 703
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
704
 *
705
 * Return:	An i915_guc_client object if success, else NULL.
706
 */
707 708
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
709
		 uint32_t engines,
710 711
		 uint32_t priority,
		 struct i915_gem_context *ctx)
712 713 714
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
715
	struct i915_vma *vma;
716
	void *vaddr;
717
	uint16_t db_id;
718 719 720 721 722

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
		return NULL;

723
	client->owner = ctx;
724
	client->guc = guc;
725 726 727
	client->engines = engines;
	client->priority = priority;
	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
728 729 730 731 732 733 734 735 736

	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
		client->ctx_index = GUC_INVALID_CTX_ID;
		goto err;
	}

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
737 738
	vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
	if (IS_ERR(vma))
739 740
		goto err;

741
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
742
	client->vma = vma;
743 744 745 746 747 748

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr))
		goto err;

	client->vaddr = vaddr;
749 750

	spin_lock_init(&client->wq_lock);
751 752 753
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;

754 755 756 757 758
	db_id = select_doorbell_register(guc, client->priority);
	if (db_id == GUC_INVALID_DOORBELL_ID)
		/* XXX: evict a doorbell instead? */
		goto err;

759 760 761 762 763 764 765 766 767 768 769 770
	client->doorbell_offset = select_doorbell_cacheline(guc);

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

771 772
	guc_proc_desc_init(guc, client);
	guc_ctx_desc_init(guc, client);
773
	if (guc_init_doorbell(guc, client, db_id))
774 775
		goto err;

776 777
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
		priority, client, client->engines, client->ctx_index);
778 779
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
		client->doorbell_id, client->doorbell_offset);
780 781 782 783

	return client;

err:
784
	guc_client_free(dev_priv, client);
785 786 787
	return NULL;
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/*
 * Sub buffer switch callback. Called whenever relay has to switch to a new
 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 */
static int subbuf_start_callback(struct rchan_buf *buf,
				 void *subbuf,
				 void *prev_subbuf,
				 size_t prev_padding)
{
	/* Use no-overwrite mode by default, where relay will stop accepting
	 * new data if there are no empty sub buffers left.
	 * There is no strict synchronization enforced by relay between Consumer
	 * and Producer. In overwrite mode, there is a possibility of getting
	 * inconsistent/garbled data, the producer could be writing on to the
	 * same sub buffer from which Consumer is reading. This can't be avoided
	 * unless Consumer is fast enough and can always run in tandem with
	 * Producer.
	 */
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * file_create() callback. Creates relay file in debugfs.
 */
static struct dentry *create_buf_file_callback(const char *filename,
					       struct dentry *parent,
					       umode_t mode,
					       struct rchan_buf *buf,
					       int *is_global)
{
	struct dentry *buf_file;

	/* This to enable the use of a single buffer for the relay channel and
	 * correspondingly have a single file exposed to User, through which
	 * it can collect the logs in order without any post-processing.
826
	 * Need to set 'is_global' even if parent is NULL for early logging.
827 828 829
	 */
	*is_global = 1;

830 831 832
	if (!parent)
		return NULL;

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	/* Not using the channel filename passed as an argument, since for each
	 * channel relay appends the corresponding CPU number to the filename
	 * passed in relay_open(). This should be fine as relay just needs a
	 * dentry of the file associated with the channel buffer and that file's
	 * name need not be same as the filename passed as an argument.
	 */
	buf_file = debugfs_create_file("guc_log", mode,
				       parent, buf, &relay_file_operations);
	return buf_file;
}

/*
 * file_remove() default callback. Removes relay file in debugfs.
 */
static int remove_buf_file_callback(struct dentry *dentry)
{
	debugfs_remove(dentry);
	return 0;
}

/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
	.subbuf_start = subbuf_start_callback,
	.create_buf_file = create_buf_file_callback,
	.remove_buf_file = remove_buf_file_callback,
};

static void guc_log_remove_relay_file(struct intel_guc *guc)
{
	relay_close(guc->log.relay_chan);
}

865
static int guc_log_create_relay_channel(struct intel_guc *guc)
866 867 868 869 870
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct rchan *guc_log_relay_chan;
	size_t n_subbufs, subbuf_size;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	/* Keep the size of sub buffers same as shared log buffer */
	subbuf_size = guc->log.vma->obj->base.size;

	/* Store up to 8 snapshots, which is large enough to buffer sufficient
	 * boot time logs and provides enough leeway to User, in terms of
	 * latency, for consuming the logs from relay. Also doesn't take
	 * up too much memory.
	 */
	n_subbufs = 8;

	guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
					n_subbufs, &relay_callbacks, dev_priv);
	if (!guc_log_relay_chan) {
		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
		return -ENOMEM;
	}

	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
	guc->log.relay_chan = guc_log_relay_chan;
	return 0;
}

static int guc_log_create_relay_file(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct dentry *log_dir;
	int ret;

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
	log_dir = dev_priv->drm.primary->debugfs_root;

	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
	 * not mounted and so can't create the relay file.
	 * The relay API seems to fit well with debugfs only, for availing relay
	 * there are 3 requirements which can be met for debugfs file only in a
	 * straightforward/clean manner :-
	 * i)   Need the associated dentry pointer of the file, while opening the
	 *      relay channel.
	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
	 * iii) Set the 'i_private' field of file's inode to the pointer of
	 *	relay channel buffer.
	 */
	if (!log_dir) {
		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
		return -ENODEV;
	}

918 919 920 921
	ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir);
	if (ret) {
		DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
		return ret;
922 923 924 925 926
	}

	return 0;
}

927 928
static void guc_move_to_next_buf(struct intel_guc *guc)
{
929 930 931 932 933 934 935 936 937 938
	/* Make sure the updates made in the sub buffer are visible when
	 * Consumer sees the following update to offset inside the sub buffer.
	 */
	smp_wmb();

	/* All data has been written, so now move the offset of sub buffer. */
	relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size);

	/* Switch to the next sub buffer */
	relay_flush(guc->log.relay_chan);
939 940 941 942
}

static void *guc_get_write_buffer(struct intel_guc *guc)
{
943 944 945 946 947 948 949 950 951 952 953 954
	if (!guc->log.relay_chan)
		return NULL;

	/* Just get the base address of a new sub buffer and copy data into it
	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
	 * buffers are full. Could have used the relay_write() to indirectly
	 * copy the data, but that would have been bit convoluted, as we need to
	 * write to only certain locations inside a sub buffer which cannot be
	 * done without using relay_reserve() along with relay_write(). So its
	 * better to use relay_reserve() alone.
	 */
	return relay_reserve(guc->log.relay_chan, 0);
955 956
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
static bool
guc_check_log_buf_overflow(struct intel_guc *guc,
			   enum guc_log_buffer_type type, unsigned int full_cnt)
{
	unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
	bool overflow = false;

	if (full_cnt != prev_full_cnt) {
		overflow = true;

		guc->log.prev_overflow_count[type] = full_cnt;
		guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;

		if (full_cnt < prev_full_cnt) {
			/* buffer_full_cnt is a 4 bit counter */
			guc->log.total_overflow_count[type] += 16;
		}
		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
	}

	return overflow;
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
	case GUC_DPC_LOG_BUFFER:
		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
	case GUC_CRASH_DUMP_LOG_BUFFER:
		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
	default:
		MISSING_CASE(type);
	}

	return 0;
}

static void guc_read_update_log_buffer(struct intel_guc *guc)
{
998
	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
999 1000 1001 1002
	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
	struct guc_log_buffer_state log_buf_state_local;
	enum guc_log_buffer_type type;
	void *src_data, *dst_data;
1003
	bool new_overflow;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	if (WARN_ON(!guc->log.buf_addr))
		return;

	/* Get the pointer to shared GuC log buffer */
	log_buf_state = src_data = guc->log.buf_addr;

	/* Get the pointer to local buffer to store the logs */
	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);

	/* Actual logs are present from the 2nd page */
	src_data += PAGE_SIZE;
	dst_data += PAGE_SIZE;

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
		/* Make a copy of the state structure, inside GuC log buffer
		 * (which is uncached mapped), on the stack to avoid reading
		 * from it multiple times.
		 */
		memcpy(&log_buf_state_local, log_buf_state,
		       sizeof(struct guc_log_buffer_state));
		buffer_size = guc_get_log_buffer_size(type);
1026
		read_offset = log_buf_state_local.read_ptr;
1027
		write_offset = log_buf_state_local.sampled_write_ptr;
1028 1029 1030 1031
		full_cnt = log_buf_state_local.buffer_full_cnt;

		/* Bookkeeping stuff */
		guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
1032
		new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

		/* Update the state of shared log buffer */
		log_buf_state->read_ptr = write_offset;
		log_buf_state->flush_to_file = 0;
		log_buf_state++;

		if (unlikely(!log_buf_snapshot_state))
			continue;

		/* First copy the state structure in snapshot buffer */
		memcpy(log_buf_snapshot_state, &log_buf_state_local,
		       sizeof(struct guc_log_buffer_state));

		/* The write pointer could have been updated by GuC firmware,
		 * after sending the flush interrupt to Host, for consistency
		 * set write pointer value to same value of sampled_write_ptr
		 * in the snapshot buffer.
		 */
		log_buf_snapshot_state->write_ptr = write_offset;
		log_buf_snapshot_state++;

		/* Now copy the actual logs. */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		if (unlikely(new_overflow)) {
			/* copy the whole buffer in case of overflow */
			read_offset = 0;
			write_offset = buffer_size;
		} else if (unlikely((read_offset > buffer_size) ||
				    (write_offset > buffer_size))) {
			DRM_ERROR("invalid log buffer state\n");
			/* copy whole buffer as offsets are unreliable */
			read_offset = 0;
			write_offset = buffer_size;
		}

		/* Just copy the newly written data */
		if (read_offset > write_offset) {
1069
			i915_memcpy_from_wc(dst_data, src_data, write_offset);
1070 1071 1072 1073
			bytes_to_copy = buffer_size - read_offset;
		} else {
			bytes_to_copy = write_offset - read_offset;
		}
1074 1075
		i915_memcpy_from_wc(dst_data + read_offset,
				    src_data + read_offset, bytes_to_copy);
1076 1077 1078 1079 1080 1081 1082

		src_data += buffer_size;
		dst_data += buffer_size;
	}

	if (log_buf_snapshot_state)
		guc_move_to_next_buf(guc);
1083 1084 1085 1086 1087
	else {
		/* Used rate limited to avoid deluge of messages, logs might be
		 * getting consumed by User at a slow rate.
		 */
		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
1088
		guc->log.capture_miss_count++;
1089
	}
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
}

static void guc_capture_logs_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private, guc.log.flush_work);

	i915_guc_capture_logs(dev_priv);
}

static void guc_log_cleanup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* First disable the flush interrupt */
	gen9_disable_guc_interrupts(dev_priv);

	if (guc->log.flush_wq)
		destroy_workqueue(guc->log.flush_wq);

	guc->log.flush_wq = NULL;

1114 1115 1116 1117 1118
	if (guc->log.relay_chan)
		guc_log_remove_relay_file(guc);

	guc->log.relay_chan = NULL;

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (guc->log.buf_addr)
		i915_gem_object_unpin_map(guc->log.vma->obj);

	guc->log.buf_addr = NULL;
}

static int guc_log_create_extras(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	void *vaddr;
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* Nothing to do */
	if (i915.guc_log_level < 0)
		return 0;

	if (!guc->log.buf_addr) {
1138 1139 1140 1141 1142
		/* Create a WC (Uncached for read) vmalloc mapping of log
		 * buffer pages, so that we can directly get the data
		 * (up-to-date) from memory.
		 */
		vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
1143 1144 1145 1146 1147 1148 1149 1150 1151
		if (IS_ERR(vaddr)) {
			ret = PTR_ERR(vaddr);
			DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
			return ret;
		}

		guc->log.buf_addr = vaddr;
	}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	if (!guc->log.relay_chan) {
		/* Create a relay channel, so that we have buffers for storing
		 * the GuC firmware logs, the channel will be linked with a file
		 * later on when debugfs is registered.
		 */
		ret = guc_log_create_relay_channel(guc);
		if (ret)
			return ret;
	}

1162 1163 1164
	if (!guc->log.flush_wq) {
		INIT_WORK(&guc->log.flush_work, guc_capture_logs_work);

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		 /*
		 * GuC log buffer flush work item has to do register access to
		 * send the ack to GuC and this work item, if not synced before
		 * suspend, can potentially get executed after the GFX device is
		 * suspended.
		 * By marking the WQ as freezable, we don't have to bother about
		 * flushing of this work item from the suspend hooks, the pending
		 * work item if any will be either executed before the suspend
		 * or scheduled later on resume. This way the handling of work
		 * item can be kept same between system suspend & rpm suspend.
1175
		 */
1176 1177
		guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log",
							    WQ_HIGHPRI | WQ_FREEZABLE);
1178 1179 1180 1181 1182 1183 1184 1185 1186
		if (guc->log.flush_wq == NULL) {
			DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
			return -ENOMEM;
		}
	}

	return 0;
}

1187
static void guc_log_create(struct intel_guc *guc)
A
Alex Dai 已提交
1188
{
1189
	struct i915_vma *vma;
A
Alex Dai 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	unsigned long offset;
	uint32_t size, flags;

	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;

	/* The first page is to save log buffer state. Allocate one
	 * extra page for others in case for overlap */
	size = (1 + GUC_LOG_DPC_PAGES + 1 +
		GUC_LOG_ISR_PAGES + 1 +
		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;

1202
	vma = guc->log.vma;
1203
	if (!vma) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		/* We require SSE 4.1 for fast reads from the GuC log buffer and
		 * it should be present on the chipsets supporting GuC based
		 * submisssions.
		 */
		if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) {
			/* logging will not be enabled */
			i915.guc_log_level = -1;
			return;
		}

1214 1215
		vma = guc_allocate_vma(guc, size);
		if (IS_ERR(vma)) {
A
Alex Dai 已提交
1216 1217 1218 1219 1220
			/* logging will be off */
			i915.guc_log_level = -1;
			return;
		}

1221
		guc->log.vma = vma;
1222 1223 1224 1225 1226 1227 1228

		if (guc_log_create_extras(guc)) {
			guc_log_cleanup(guc);
			i915_vma_unpin_and_release(&guc->log.vma);
			i915.guc_log_level = -1;
			return;
		}
A
Alex Dai 已提交
1229 1230 1231 1232 1233 1234 1235 1236
	}

	/* each allocated unit is a page */
	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);

1237
	offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
1238
	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
A
Alex Dai 已提交
1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static int guc_log_late_setup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (i915.guc_log_level < 0)
		return -EINVAL;

	/* If log_level was set as -1 at boot time, then setup needed to
	 * handle log buffer flush interrupts would not have been done yet,
	 * so do that now.
	 */
	ret = guc_log_create_extras(guc);
	if (ret)
		goto err;

	ret = guc_log_create_relay_file(guc);
	if (ret)
		goto err;

	return 0;
err:
	guc_log_cleanup(guc);
	/* logging will remain off */
	i915.guc_log_level = -1;
	return ret;
}

1271
static void guc_policies_init(struct guc_policies *policies)
1272 1273 1274 1275 1276 1277 1278 1279
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1280
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1293
static void guc_addon_create(struct intel_guc *guc)
1294 1295
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1296
	struct i915_vma *vma;
1297
	struct guc_ads *ads;
1298
	struct guc_policies *policies;
1299
	struct guc_mmio_reg_state *reg_state;
1300
	struct intel_engine_cs *engine;
1301
	enum intel_engine_id id;
1302
	struct page *page;
1303
	u32 size;
1304 1305

	/* The ads obj includes the struct itself and buffers passed to GuC */
1306 1307 1308
	size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
			sizeof(struct guc_mmio_reg_state) +
			GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
1309

1310 1311 1312 1313
	vma = guc->ads_vma;
	if (!vma) {
		vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
		if (IS_ERR(vma))
1314 1315
			return;

1316
		guc->ads_vma = vma;
1317 1318
	}

1319
	page = i915_vma_first_page(vma);
1320 1321 1322 1323 1324 1325 1326 1327 1328
	ads = kmap(page);

	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
1329
	engine = dev_priv->engine[RCS];
1330
	ads->golden_context_lrca = engine->status_page.ggtt_offset;
1331

1332
	for_each_engine(engine, dev_priv, id)
1333
		ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
1334

1335 1336
	/* GuC scheduling policies */
	policies = (void *)ads + sizeof(struct guc_ads);
1337
	guc_policies_init(policies);
1338

1339 1340
	ads->scheduler_policies =
		i915_ggtt_offset(vma) + sizeof(struct guc_ads);
1341

1342 1343 1344
	/* MMIO reg state */
	reg_state = (void *)policies + sizeof(struct guc_policies);

1345
	for_each_engine(engine, dev_priv, id) {
1346 1347
		reg_state->mmio_white_list[engine->guc_id].mmio_start =
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1348 1349

		/* Nothing to be saved or restored for now. */
1350
		reg_state->mmio_white_list[engine->guc_id].count = 0;
1351 1352 1353 1354 1355 1356 1357 1358
	}

	ads->reg_state_addr = ads->scheduler_policies +
			sizeof(struct guc_policies);

	ads->reg_state_buffer = ads->reg_state_addr +
			sizeof(struct guc_mmio_reg_state);

1359 1360 1361
	kunmap(page);
}

1362 1363 1364 1365
/*
 * Set up the memory resources to be shared with the GuC.  At this point,
 * we require just one object that can be mapped through the GGTT.
 */
1366
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1367
{
1368 1369 1370
	const size_t ctxsize = sizeof(struct guc_context_desc);
	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1371
	struct intel_guc *guc = &dev_priv->guc;
1372
	struct i915_vma *vma;
1373

1374 1375
	/* Wipe bitmap & delete client in case of reinitialisation */
	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
1376
	i915_guc_submission_disable(dev_priv);
1377

1378 1379 1380
	if (!i915.enable_guc_submission)
		return 0; /* not enabled  */

1381
	if (guc->ctx_pool_vma)
1382 1383
		return 0; /* already allocated */

1384
	vma = guc_allocate_vma(guc, gemsize);
1385 1386
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1387

1388
	guc->ctx_pool_vma = vma;
1389
	ida_init(&guc->ctx_ids);
1390 1391
	guc_log_create(guc);
	guc_addon_create(guc);
1392

1393 1394 1395
	return 0;
}

1396
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1397 1398
{
	struct intel_guc *guc = &dev_priv->guc;
1399
	struct drm_i915_gem_request *request;
1400
	struct i915_guc_client *client;
1401
	struct intel_engine_cs *engine;
1402
	enum intel_engine_id id;
1403 1404

	/* client for execbuf submission */
1405
	client = guc_client_alloc(dev_priv,
1406
				  INTEL_INFO(dev_priv)->ring_mask,
1407 1408
				  GUC_CTX_PRIORITY_KMD_NORMAL,
				  dev_priv->kernel_context);
1409
	if (!client) {
1410
		DRM_ERROR("Failed to create normal GuC client!\n");
1411 1412 1413 1414
		return -ENOMEM;
	}

	guc->execbuf_client = client;
1415
	intel_guc_sample_forcewake(guc);
1416
	guc_init_doorbell_hw(guc);
A
Alex Dai 已提交
1417

1418
	/* Take over from manual control of ELSP (execlists) */
1419
	for_each_engine(engine, dev_priv, id) {
1420
		engine->submit_request = i915_guc_submit;
1421
		engine->schedule = NULL;
1422

1423
		/* Replay the current set of previously submitted requests */
1424 1425
		list_for_each_entry(request,
				    &engine->timeline->requests, link) {
1426
			client->wq_rsvd += sizeof(struct guc_wq_item);
1427 1428
			if (i915_sw_fence_done(&request->submit))
				i915_guc_submit(request);
1429
		}
1430 1431
	}

1432 1433 1434
	return 0;
}

1435
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1436 1437 1438
{
	struct intel_guc *guc = &dev_priv->guc;

1439 1440 1441 1442 1443
	if (!guc->execbuf_client)
		return;

	/* Revert back to manual ELSP submission */
	intel_execlists_enable_submission(dev_priv);
1444 1445 1446

	guc_client_free(dev_priv, guc->execbuf_client);
	guc->execbuf_client = NULL;
1447 1448
}

1449
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1450 1451 1452
{
	struct intel_guc *guc = &dev_priv->guc;

1453
	i915_vma_unpin_and_release(&guc->ads_vma);
1454
	i915_vma_unpin_and_release(&guc->log.vma);
A
Alex Dai 已提交
1455

1456
	if (guc->ctx_pool_vma)
1457
		ida_destroy(&guc->ctx_ids);
1458
	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1459
}
1460 1461 1462 1463 1464 1465 1466

/**
 * intel_guc_suspend() - notify GuC entering suspend state
 * @dev:	drm device
 */
int intel_guc_suspend(struct drm_device *dev)
{
1467
	struct drm_i915_private *dev_priv = to_i915(dev);
1468
	struct intel_guc *guc = &dev_priv->guc;
1469
	struct i915_gem_context *ctx;
1470 1471
	u32 data[3];

1472
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1473 1474
		return 0;

1475 1476
	gen9_disable_guc_interrupts(dev_priv);

1477
	ctx = dev_priv->kernel_context;
1478

1479
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1480 1481 1482
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1483
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1484

1485
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1486 1487 1488 1489 1490 1491 1492 1493 1494
}


/**
 * intel_guc_resume() - notify GuC resuming from suspend state
 * @dev:	drm device
 */
int intel_guc_resume(struct drm_device *dev)
{
1495
	struct drm_i915_private *dev_priv = to_i915(dev);
1496
	struct intel_guc *guc = &dev_priv->guc;
1497
	struct i915_gem_context *ctx;
1498 1499
	u32 data[3];

1500
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1501 1502
		return 0;

1503 1504 1505
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1506
	ctx = dev_priv->kernel_context;
1507

1508
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1509 1510
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1511
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1512

1513
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1514
}
1515 1516 1517 1518 1519 1520 1521 1522 1523

void i915_guc_capture_logs(struct drm_i915_private *dev_priv)
{
	guc_read_update_log_buffer(&dev_priv->guc);

	/* Generally device is expected to be active only at this
	 * time, so get/put should be really quick.
	 */
	intel_runtime_pm_get(dev_priv);
1524
	intel_guc_log_flush_complete(&dev_priv->guc);
1525 1526
	intel_runtime_pm_put(dev_priv);
}
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
void i915_guc_flush_logs(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission || (i915.guc_log_level < 0))
		return;

	/* First disable the interrupts, will be renabled afterwards */
	gen9_disable_guc_interrupts(dev_priv);

	/* Before initiating the forceful flush, wait for any pending/ongoing
	 * flush to complete otherwise forceful flush may not actually happen.
	 */
	flush_work(&dev_priv->guc.log.flush_work);

	/* Ask GuC to update the log buffer state */
1542
	intel_guc_log_flush(&dev_priv->guc);
1543 1544 1545 1546 1547

	/* GuC would have updated log buffer by now, so capture it */
	i915_guc_capture_logs(dev_priv);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
void i915_guc_unregister(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_cleanup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}

void i915_guc_register(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_late_setup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
{
	union guc_log_control log_param;
	int ret;

	log_param.value = control_val;

	if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
	    log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
		return -EINVAL;

	/* This combination doesn't make sense & won't have any effect */
	if (!log_param.logging_enabled && (i915.guc_log_level < 0))
		return 0;

1583
	ret = intel_guc_log_control(&dev_priv->guc, log_param.value);
1584
	if (ret < 0) {
1585
		DRM_DEBUG_DRIVER("guc_logging_control action failed %d\n", ret);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		return ret;
	}

	i915.guc_log_level = log_param.verbosity;

	/* If log_level was set as -1 at boot time, then the relay channel file
	 * wouldn't have been created by now and interrupts also would not have
	 * been enabled.
	 */
	if (!dev_priv->guc.log.relay_chan) {
		ret = guc_log_late_setup(&dev_priv->guc);
		if (!ret)
			gen9_enable_guc_interrupts(dev_priv);
	} else if (!log_param.logging_enabled) {
		/* Once logging is disabled, GuC won't generate logs & send an
		 * interrupt. But there could be some data in the log buffer
		 * which is yet to be captured. So request GuC to update the log
		 * buffer state and then collect the left over logs.
		 */
		i915_guc_flush_logs(dev_priv);

		/* As logging is disabled, update log level to reflect that */
		i915.guc_log_level = -1;
	} else {
		/* In case interrupts were disabled, enable them now */
		gen9_enable_guc_interrupts(dev_priv);
	}

	return ret;
}