i915_guc_submission.c 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/firmware.h>
#include <linux/circ_buf.h>
26 27
#include <linux/debugfs.h>
#include <linux/relay.h>
28 29 30
#include "i915_drv.h"
#include "intel_guc.h"

31
/**
A
Alex Dai 已提交
32
 * DOC: GuC-based command submission
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *
 * i915_guc_client:
 * We use the term client to avoid confusion with contexts. A i915_guc_client is
 * equivalent to GuC object guc_context_desc. This context descriptor is
 * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
 * and workqueue for it. Also the process descriptor (guc_process_desc), which
 * is mapped to client space. So the client can write Work Item then ring the
 * doorbell.
 *
 * To simplify the implementation, we allocate one gem object that contains all
 * pages for doorbell, process descriptor and workqueue.
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
 * See host2guc_action()
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
64
 * See guc_wq_item_append()
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 *
 */

/*
 * Read GuC command/status register (SOFT_SCRATCH_0)
 * Return true if it contains a response rather than a command
 */
static inline bool host2guc_action_response(struct drm_i915_private *dev_priv,
					    u32 *status)
{
	u32 val = I915_READ(SOFT_SCRATCH(0));
	*status = val;
	return GUC2HOST_IS_RESPONSE(val);
}

static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 status;
	int i;
	int ret;

	if (WARN_ON(len < 1 || len > 15))
		return -EINVAL;

90
	mutex_lock(&guc->action_lock);
91 92 93 94 95 96 97 98 99 100 101 102
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	dev_priv->guc.action_count += 1;
	dev_priv->guc.action_cmd = data[0];

	for (i = 0; i < len; i++)
		I915_WRITE(SOFT_SCRATCH(i), data[i]);

	POSTING_READ(SOFT_SCRATCH(i - 1));

	I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER);

103 104 105 106 107 108 109 110
	/*
	 * Fast commands should complete in less than 10us, so sample quickly
	 * up to that length of time, then switch to a slower sleep-wait loop.
	 * No HOST2GUC command should ever take longer than 10ms.
	 */
	ret = wait_for_us(host2guc_action_response(dev_priv, &status), 10);
	if (ret)
		ret = wait_for(host2guc_action_response(dev_priv, &status), 10);
111 112 113 114 115 116 117 118 119
	if (status != GUC2HOST_STATUS_SUCCESS) {
		/*
		 * Either the GuC explicitly returned an error (which
		 * we convert to -EIO here) or no response at all was
		 * received within the timeout limit (-ETIMEDOUT)
		 */
		if (ret != -ETIMEDOUT)
			ret = -EIO;

120 121
		DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n",
			 data[0], ret, status, I915_READ(SOFT_SCRATCH(15)));
122 123 124 125 126 127 128

		dev_priv->guc.action_fail += 1;
		dev_priv->guc.action_err = ret;
	}
	dev_priv->guc.action_status = status;

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
129
	mutex_unlock(&guc->action_lock);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	return ret;
}

/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

static int host2guc_allocate_doorbell(struct intel_guc *guc,
				      struct i915_guc_client *client)
{
	u32 data[2];

	data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL;
	data[1] = client->ctx_index;

	return host2guc_action(guc, data, 2);
}

static int host2guc_release_doorbell(struct intel_guc *guc,
				     struct i915_guc_client *client)
{
	u32 data[2];

	data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL;
	data[1] = client->ctx_index;

	return host2guc_action(guc, data, 2);
}

A
Alex Dai 已提交
160 161 162 163 164 165 166
static int host2guc_sample_forcewake(struct intel_guc *guc,
				     struct i915_guc_client *client)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 data[2];

	data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE;
167
	/* WaRsDisableCoarsePowerGating:skl,bxt */
168
	if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
169 170 171 172 173 174
		data[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

	return host2guc_action(guc, data, ARRAY_SIZE(data));
A
Alex Dai 已提交
175 176
}

177 178 179 180 181 182 183 184 185
static int host2guc_logbuffer_flush_complete(struct intel_guc *guc)
{
	u32 data[1];

	data[0] = HOST2GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE;

	return host2guc_action(guc, data, 1);
}

186 187 188 189 190 191 192 193 194 195
static int host2guc_force_logbuffer_flush(struct intel_guc *guc)
{
	u32 data[2];

	data[0] = HOST2GUC_ACTION_FORCE_LOG_BUFFER_FLUSH;
	data[1] = 0;

	return host2guc_action(guc, data, 2);
}

196 197 198 199 200 201 202 203 204 205
static int host2guc_logging_control(struct intel_guc *guc, u32 control_val)
{
	u32 data[2];

	data[0] = HOST2GUC_ACTION_UK_LOG_ENABLE_LOGGING;
	data[1] = control_val;

	return host2guc_action(guc, data, 2);
}

206 207 208 209 210 211 212
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

213 214 215
static int guc_update_doorbell_id(struct intel_guc *guc,
				  struct i915_guc_client *client,
				  u16 new_id)
216
{
217
	struct sg_table *sg = guc->ctx_pool_vma->pages;
218
	void *doorbell_bitmap = guc->doorbell_bitmap;
219
	struct guc_doorbell_info *doorbell;
220 221
	struct guc_context_desc desc;
	size_t len;
222

223
	doorbell = client->client_base + client->doorbell_offset;
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
	    test_bit(client->doorbell_id, doorbell_bitmap)) {
		/* Deactivate the old doorbell */
		doorbell->db_status = GUC_DOORBELL_DISABLED;
		(void)host2guc_release_doorbell(guc, client);
		__clear_bit(client->doorbell_id, doorbell_bitmap);
	}

	/* Update the GuC's idea of the doorbell ID */
	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;
	desc.db_id = new_id;
	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;

	client->doorbell_id = new_id;
	if (new_id == GUC_INVALID_DOORBELL_ID)
		return 0;

	/* Activate the new doorbell */
	__set_bit(new_id, doorbell_bitmap);
250
	doorbell->cookie = 0;
251 252 253 254 255 256 257 258 259
	doorbell->db_status = GUC_DOORBELL_ENABLED;
	return host2guc_allocate_doorbell(guc, client);
}

static int guc_init_doorbell(struct intel_guc *guc,
			      struct i915_guc_client *client,
			      uint16_t db_id)
{
	return guc_update_doorbell_id(guc, client, db_id);
260 261 262 263 264
}

static void guc_disable_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
{
265
	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
266 267 268 269 270

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static uint16_t
select_doorbell_register(struct intel_guc *guc, uint32_t priority)
{
	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 * Note that logically higher priorities are numerically less than
	 * normal ones, so the test below means "is it high-priority?"
	 */
	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
	const uint16_t half = GUC_MAX_DOORBELLS / 2;
	const uint16_t start = hi_pri ? half : 0;
	const uint16_t end = start + half;
	uint16_t id;

	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
	if (id == end)
		id = GUC_INVALID_DOORBELL_ID;

	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
			hi_pri ? "high" : "normal", id);

	return id;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Select, assign and relase doorbell cachelines
 *
 * These functions track which doorbell cachelines are in use.
 * The data they manipulate is protected by the host2guc lock.
 */

static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
{
	const uint32_t cacheline_size = cache_line_size();
	uint32_t offset;

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
	guc->db_cacheline += cacheline_size;

	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cacheline_size);

	return offset;
}

/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
324
static void guc_proc_desc_init(struct intel_guc *guc,
325 326 327 328
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

329
	desc = client->client_base + client->proc_desc_offset;
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	memset(desc, 0, sizeof(*desc));

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

	desc->context_id = client->ctx_index;
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
 * Initialise/clear the context descriptor shared with the GuC firmware.
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */

356
static void guc_ctx_desc_init(struct intel_guc *guc,
357 358
			      struct i915_guc_client *client)
{
359
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
360
	struct intel_engine_cs *engine;
361
	struct i915_gem_context *ctx = client->owner;
362 363
	struct guc_context_desc desc;
	struct sg_table *sg;
364
	unsigned int tmp;
365
	u32 gfx_addr;
366 367 368 369 370 371 372 373

	memset(&desc, 0, sizeof(desc));

	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
	desc.context_id = client->ctx_index;
	desc.priority = client->priority;
	desc.db_id = client->doorbell_id;

374
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
375
		struct intel_context *ce = &ctx->engine[engine->id];
376 377
		uint32_t guc_engine_id = engine->guc_id;
		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
378 379 380 381 382 383 384 385

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
386
		if (!ce->state)
387 388
			break;	/* XXX: continue? */

389
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
390 391

		/* The state page is after PPHWSP */
392
		lrc->ring_lcra =
393
			i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
394
		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
395
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
396

397
		lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
398 399
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
400 401
		lrc->ring_current_tail_pointer_value = 0;

402
		desc.engines_used |= (1 << guc_engine_id);
403 404
	}

405 406
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
			client->engines, desc.engines_used);
407 408
	WARN_ON(desc.engines_used == 0);

409
	/*
410 411
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
412
	 */
413
	gfx_addr = i915_ggtt_offset(client->vma);
414
	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
415 416 417 418 419 420
				client->doorbell_offset;
	desc.db_trigger_cpu = (uintptr_t)client->client_base +
				client->doorbell_offset;
	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc.process_desc = gfx_addr + client->proc_desc_offset;
	desc.wq_addr = gfx_addr + client->wq_offset;
421 422 423
	desc.wq_size = client->wq_size;

	/*
424
	 * XXX: Take LRCs from an existing context if this is not an
425 426 427 428 429
	 * IsKMDCreatedContext client
	 */
	desc.desc_private = (uintptr_t)client;

	/* Pool context is pinned already */
430
	sg = guc->ctx_pool_vma->pages;
431 432 433 434
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

435
static void guc_ctx_desc_fini(struct intel_guc *guc,
436 437 438 439 440 441 442
			      struct i915_guc_client *client)
{
	struct guc_context_desc desc;
	struct sg_table *sg;

	memset(&desc, 0, sizeof(desc));

443
	sg = guc->ctx_pool_vma->pages;
444 445 446 447
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

448
/**
449
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
450 451 452 453 454 455 456
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
457 458
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
459
 *
460
 * Reservation allows the caller to determine in advance that space
461 462 463
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
464
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
465
{
466
	const size_t wqi_size = sizeof(struct guc_wq_item);
467
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
468
	struct guc_process_desc *desc = gc->client_base + gc->proc_desc_offset;
469
	u32 freespace;
470
	int ret;
471

472
	spin_lock(&gc->wq_lock);
473
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
474 475 476 477 478 479 480 481 482
	freespace -= gc->wq_rsvd;
	if (likely(freespace >= wqi_size)) {
		gc->wq_rsvd += wqi_size;
		ret = 0;
	} else {
		gc->no_wq_space++;
		ret = -EAGAIN;
	}
	spin_unlock(&gc->wq_lock);
483

484
	return ret;
485 486
}

487 488 489 490 491 492 493 494 495 496 497 498
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
	const size_t wqi_size = sizeof(struct guc_wq_item);
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;

	GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);

	spin_lock(&gc->wq_lock);
	gc->wq_rsvd -= wqi_size;
	spin_unlock(&gc->wq_lock);
}

499 500 501
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct i915_guc_client *gc,
			       struct drm_i915_gem_request *rq)
502
{
503 504 505
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
506
	struct intel_engine_cs *engine = rq->engine;
507
	struct guc_process_desc *desc;
508 509
	struct guc_wq_item *wqi;
	void *base;
510
	u32 freespace, tail, wq_off, wq_page;
511

512
	desc = gc->client_base + gc->proc_desc_offset;
513

514
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
515 516 517 518 519 520 521 522
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
	GEM_BUG_ON(tail & 7);
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
523 524 525 526 527 528 529 530

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
531
	BUILD_BUG_ON(wqi_size != 16);
532
	GEM_BUG_ON(gc->wq_rsvd < wqi_size);
533

534 535
	/* postincrement WQ tail for next time */
	wq_off = gc->wq_tail;
536
	GEM_BUG_ON(wq_off & (wqi_size - 1));
537 538
	gc->wq_tail += wqi_size;
	gc->wq_tail &= gc->wq_size - 1;
539
	gc->wq_rsvd -= wqi_size;
540 541 542

	/* WQ starts from the page after doorbell / process_desc */
	wq_page = (wq_off + GUC_DB_SIZE) >> PAGE_SHIFT;
543
	wq_off &= PAGE_SIZE - 1;
544
	base = kmap_atomic(i915_gem_object_get_page(gc->vma->obj, wq_page));
545 546
	wqi = (struct guc_wq_item *)((char *)base + wq_off);

547
	/* Now fill in the 4-word work queue item */
548
	wqi->header = WQ_TYPE_INORDER |
549
			(wqi_len << WQ_LEN_SHIFT) |
550
			(engine->guc_id << WQ_TARGET_SHIFT) |
551 552 553
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
554
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
555 556

	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
557
	wqi->fence_id = rq->fence.seqno;
558 559 560 561

	kunmap_atomic(base);
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
static int guc_ring_doorbell(struct i915_guc_client *gc)
{
	struct guc_process_desc *desc;
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

	desc = gc->client_base + gc->proc_desc_offset;

	/* Update the tail so it is visible to GuC */
	desc->tail = gc->wq_tail;

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
	db_cmp.cookie = gc->cookie;

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
	db_exc.cookie = gc->cookie + 1;
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
	db = gc->client_base + gc->doorbell_offset;

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
			gc->cookie = db_exc.cookie;
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

604 605
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
606 607 608 609 610 611 612 613 614 615 616

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

617 618
/**
 * i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
619
 * @rq:		request associated with the commands
620
 *
621 622 623
 * Return:	0 on success, otherwise an errno.
 * 		(Note: nonzero really shouldn't happen!)
 *
624 625 626
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
627 628
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
629 630
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
631 632 633
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
634
 */
635
static void i915_guc_submit(struct drm_i915_gem_request *rq)
636
{
637
	struct drm_i915_private *dev_priv = rq->i915;
638
	unsigned int engine_id = rq->engine->id;
639 640
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
641
	int b_ret;
642

643
	spin_lock(&client->wq_lock);
644
	guc_wq_item_append(client, rq);
645 646 647 648 649

	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

650
	b_ret = guc_ring_doorbell(client);
651

652
	client->submissions[engine_id] += 1;
653 654
	client->retcode = b_ret;
	if (b_ret)
655
		client->b_fail += 1;
656

657
	guc->submissions[engine_id] += 1;
658
	guc->last_seqno[engine_id] = rq->fence.seqno;
659
	spin_unlock(&client->wq_lock);
660 661 662 663 664 665 666 667
}

/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

668
/**
669 670 671
 * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
672
 *
673 674 675 676 677
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
678
 *
679
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
680
 */
681
static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
682
{
683
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
684
	struct drm_i915_gem_object *obj;
685 686
	struct i915_vma *vma;
	int ret;
687

688
	obj = i915_gem_object_create(&dev_priv->drm, size);
689
	if (IS_ERR(obj))
690
		return ERR_CAST(obj);
691

692 693 694
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;
695

696 697 698 699 700
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
701 702 703 704 705
	}

	/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);

706 707 708 709 710
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
711 712
}

713 714 715
static void
guc_client_free(struct drm_i915_private *dev_priv,
		struct i915_guc_client *client)
716 717 718 719 720 721 722 723 724 725 726
{
	struct intel_guc *guc = &dev_priv->guc;

	if (!client)
		return;

	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

727 728
	if (client->client_base) {
		/*
729 730
		 * If we got as far as setting up a doorbell, make sure we
		 * shut it down before unmapping & deallocating the memory.
731
		 */
732
		guc_disable_doorbell(guc, client);
733 734 735 736

		kunmap(kmap_to_page(client->client_base));
	}

737
	i915_vma_unpin_and_release(&client->vma);
738 739

	if (client->ctx_index != GUC_INVALID_CTX_ID) {
740
		guc_ctx_desc_fini(guc, client);
741 742 743 744 745 746
		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
	}

	kfree(client);
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/* Check that a doorbell register is in the expected state */
static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
	uint32_t value = I915_READ(drbreg);
	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
	bool expected = test_bit(db_id, guc->doorbell_bitmap);

	if (enabled == expected)
		return true;

	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
			 db_id, drbreg.reg, value,
			 expected ? "active" : "inactive");

	return false;
}

766
/*
767
 * Borrow the first client to set up & tear down each unused doorbell
768 769 770 771 772
 * in turn, to ensure that all doorbell h/w is (re)initialised.
 */
static void guc_init_doorbell_hw(struct intel_guc *guc)
{
	struct i915_guc_client *client = guc->execbuf_client;
773 774
	uint16_t db_id;
	int i, err;
775

776
	/* Save client's original doorbell selection */
777 778 779
	db_id = client->doorbell_id;

	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
780 781
		/* Skip if doorbell is OK */
		if (guc_doorbell_check(guc, i))
782 783
			continue;

784
		err = guc_update_doorbell_id(guc, client, i);
785 786 787
		if (err)
			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
					i, err);
788 789 790 791 792
	}

	/* Restore to original value */
	err = guc_update_doorbell_id(guc, client, db_id);
	if (err)
793 794
		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
			 db_id, err);
795

796 797 798
	/* Read back & verify all doorbell registers */
	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
		(void)guc_doorbell_check(guc, i);
799 800
}

801 802
/**
 * guc_client_alloc() - Allocate an i915_guc_client
803
 * @dev_priv:	driver private data structure
804
 * @engines:	The set of engines to enable for this client
805 806 807 808
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
809 810
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
811
 *
812
 * Return:	An i915_guc_client object if success, else NULL.
813
 */
814 815
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
816
		 uint32_t engines,
817 818
		 uint32_t priority,
		 struct i915_gem_context *ctx)
819 820 821
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
822
	struct i915_vma *vma;
823
	uint16_t db_id;
824 825 826 827 828

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
		return NULL;

829
	client->owner = ctx;
830
	client->guc = guc;
831 832 833
	client->engines = engines;
	client->priority = priority;
	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
834 835 836 837 838 839 840 841 842

	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
		client->ctx_index = GUC_INVALID_CTX_ID;
		goto err;
	}

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
843 844
	vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
	if (IS_ERR(vma))
845 846
		goto err;

847
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
848 849
	client->vma = vma;
	client->client_base = kmap(i915_vma_first_page(vma));
850 851

	spin_lock_init(&client->wq_lock);
852 853 854
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;

855 856 857 858 859
	db_id = select_doorbell_register(guc, client->priority);
	if (db_id == GUC_INVALID_DOORBELL_ID)
		/* XXX: evict a doorbell instead? */
		goto err;

860 861 862 863 864 865 866 867 868 869 870 871
	client->doorbell_offset = select_doorbell_cacheline(guc);

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

872 873
	guc_proc_desc_init(guc, client);
	guc_ctx_desc_init(guc, client);
874
	if (guc_init_doorbell(guc, client, db_id))
875 876
		goto err;

877 878
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
		priority, client, client->engines, client->ctx_index);
879 880
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
		client->doorbell_id, client->doorbell_offset);
881 882 883 884

	return client;

err:
885
	guc_client_free(dev_priv, client);
886 887 888
	return NULL;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * Sub buffer switch callback. Called whenever relay has to switch to a new
 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 */
static int subbuf_start_callback(struct rchan_buf *buf,
				 void *subbuf,
				 void *prev_subbuf,
				 size_t prev_padding)
{
	/* Use no-overwrite mode by default, where relay will stop accepting
	 * new data if there are no empty sub buffers left.
	 * There is no strict synchronization enforced by relay between Consumer
	 * and Producer. In overwrite mode, there is a possibility of getting
	 * inconsistent/garbled data, the producer could be writing on to the
	 * same sub buffer from which Consumer is reading. This can't be avoided
	 * unless Consumer is fast enough and can always run in tandem with
	 * Producer.
	 */
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * file_create() callback. Creates relay file in debugfs.
 */
static struct dentry *create_buf_file_callback(const char *filename,
					       struct dentry *parent,
					       umode_t mode,
					       struct rchan_buf *buf,
					       int *is_global)
{
	struct dentry *buf_file;

	/* This to enable the use of a single buffer for the relay channel and
	 * correspondingly have a single file exposed to User, through which
	 * it can collect the logs in order without any post-processing.
927
	 * Need to set 'is_global' even if parent is NULL for early logging.
928 929 930
	 */
	*is_global = 1;

931 932 933
	if (!parent)
		return NULL;

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/* Not using the channel filename passed as an argument, since for each
	 * channel relay appends the corresponding CPU number to the filename
	 * passed in relay_open(). This should be fine as relay just needs a
	 * dentry of the file associated with the channel buffer and that file's
	 * name need not be same as the filename passed as an argument.
	 */
	buf_file = debugfs_create_file("guc_log", mode,
				       parent, buf, &relay_file_operations);
	return buf_file;
}

/*
 * file_remove() default callback. Removes relay file in debugfs.
 */
static int remove_buf_file_callback(struct dentry *dentry)
{
	debugfs_remove(dentry);
	return 0;
}

/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
	.subbuf_start = subbuf_start_callback,
	.create_buf_file = create_buf_file_callback,
	.remove_buf_file = remove_buf_file_callback,
};

static void guc_log_remove_relay_file(struct intel_guc *guc)
{
	relay_close(guc->log.relay_chan);
}

966
static int guc_log_create_relay_channel(struct intel_guc *guc)
967 968 969 970 971
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct rchan *guc_log_relay_chan;
	size_t n_subbufs, subbuf_size;

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	/* Keep the size of sub buffers same as shared log buffer */
	subbuf_size = guc->log.vma->obj->base.size;

	/* Store up to 8 snapshots, which is large enough to buffer sufficient
	 * boot time logs and provides enough leeway to User, in terms of
	 * latency, for consuming the logs from relay. Also doesn't take
	 * up too much memory.
	 */
	n_subbufs = 8;

	guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
					n_subbufs, &relay_callbacks, dev_priv);
	if (!guc_log_relay_chan) {
		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
		return -ENOMEM;
	}

	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
	guc->log.relay_chan = guc_log_relay_chan;
	return 0;
}

static int guc_log_create_relay_file(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct dentry *log_dir;
	int ret;

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
	log_dir = dev_priv->drm.primary->debugfs_root;

	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
	 * not mounted and so can't create the relay file.
	 * The relay API seems to fit well with debugfs only, for availing relay
	 * there are 3 requirements which can be met for debugfs file only in a
	 * straightforward/clean manner :-
	 * i)   Need the associated dentry pointer of the file, while opening the
	 *      relay channel.
	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
	 * iii) Set the 'i_private' field of file's inode to the pointer of
	 *	relay channel buffer.
	 */
	if (!log_dir) {
		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
		return -ENODEV;
	}

1019 1020 1021 1022
	ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir);
	if (ret) {
		DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
		return ret;
1023 1024 1025 1026 1027
	}

	return 0;
}

1028 1029
static void guc_move_to_next_buf(struct intel_guc *guc)
{
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	/* Make sure the updates made in the sub buffer are visible when
	 * Consumer sees the following update to offset inside the sub buffer.
	 */
	smp_wmb();

	/* All data has been written, so now move the offset of sub buffer. */
	relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size);

	/* Switch to the next sub buffer */
	relay_flush(guc->log.relay_chan);
1040 1041 1042 1043
}

static void *guc_get_write_buffer(struct intel_guc *guc)
{
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (!guc->log.relay_chan)
		return NULL;

	/* Just get the base address of a new sub buffer and copy data into it
	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
	 * buffers are full. Could have used the relay_write() to indirectly
	 * copy the data, but that would have been bit convoluted, as we need to
	 * write to only certain locations inside a sub buffer which cannot be
	 * done without using relay_reserve() along with relay_write(). So its
	 * better to use relay_reserve() alone.
	 */
	return relay_reserve(guc->log.relay_chan, 0);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static bool
guc_check_log_buf_overflow(struct intel_guc *guc,
			   enum guc_log_buffer_type type, unsigned int full_cnt)
{
	unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
	bool overflow = false;

	if (full_cnt != prev_full_cnt) {
		overflow = true;

		guc->log.prev_overflow_count[type] = full_cnt;
		guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;

		if (full_cnt < prev_full_cnt) {
			/* buffer_full_cnt is a 4 bit counter */
			guc->log.total_overflow_count[type] += 16;
		}
		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
	}

	return overflow;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
	case GUC_DPC_LOG_BUFFER:
		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
	case GUC_CRASH_DUMP_LOG_BUFFER:
		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
	default:
		MISSING_CASE(type);
	}

	return 0;
}

static void guc_read_update_log_buffer(struct intel_guc *guc)
{
1099
	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
1100 1101 1102 1103
	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
	struct guc_log_buffer_state log_buf_state_local;
	enum guc_log_buffer_type type;
	void *src_data, *dst_data;
1104
	bool new_overflow;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

	if (WARN_ON(!guc->log.buf_addr))
		return;

	/* Get the pointer to shared GuC log buffer */
	log_buf_state = src_data = guc->log.buf_addr;

	/* Get the pointer to local buffer to store the logs */
	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);

	/* Actual logs are present from the 2nd page */
	src_data += PAGE_SIZE;
	dst_data += PAGE_SIZE;

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
		/* Make a copy of the state structure, inside GuC log buffer
		 * (which is uncached mapped), on the stack to avoid reading
		 * from it multiple times.
		 */
		memcpy(&log_buf_state_local, log_buf_state,
		       sizeof(struct guc_log_buffer_state));
		buffer_size = guc_get_log_buffer_size(type);
1127
		read_offset = log_buf_state_local.read_ptr;
1128
		write_offset = log_buf_state_local.sampled_write_ptr;
1129 1130 1131 1132
		full_cnt = log_buf_state_local.buffer_full_cnt;

		/* Bookkeeping stuff */
		guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
1133
		new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

		/* Update the state of shared log buffer */
		log_buf_state->read_ptr = write_offset;
		log_buf_state->flush_to_file = 0;
		log_buf_state++;

		if (unlikely(!log_buf_snapshot_state))
			continue;

		/* First copy the state structure in snapshot buffer */
		memcpy(log_buf_snapshot_state, &log_buf_state_local,
		       sizeof(struct guc_log_buffer_state));

		/* The write pointer could have been updated by GuC firmware,
		 * after sending the flush interrupt to Host, for consistency
		 * set write pointer value to same value of sampled_write_ptr
		 * in the snapshot buffer.
		 */
		log_buf_snapshot_state->write_ptr = write_offset;
		log_buf_snapshot_state++;

		/* Now copy the actual logs. */
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		if (unlikely(new_overflow)) {
			/* copy the whole buffer in case of overflow */
			read_offset = 0;
			write_offset = buffer_size;
		} else if (unlikely((read_offset > buffer_size) ||
				    (write_offset > buffer_size))) {
			DRM_ERROR("invalid log buffer state\n");
			/* copy whole buffer as offsets are unreliable */
			read_offset = 0;
			write_offset = buffer_size;
		}

		/* Just copy the newly written data */
		if (read_offset > write_offset) {
1170
			i915_memcpy_from_wc(dst_data, src_data, write_offset);
1171 1172 1173 1174
			bytes_to_copy = buffer_size - read_offset;
		} else {
			bytes_to_copy = write_offset - read_offset;
		}
1175 1176
		i915_memcpy_from_wc(dst_data + read_offset,
				    src_data + read_offset, bytes_to_copy);
1177 1178 1179 1180 1181 1182 1183

		src_data += buffer_size;
		dst_data += buffer_size;
	}

	if (log_buf_snapshot_state)
		guc_move_to_next_buf(guc);
1184 1185 1186 1187 1188
	else {
		/* Used rate limited to avoid deluge of messages, logs might be
		 * getting consumed by User at a slow rate.
		 */
		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
1189
		guc->log.capture_miss_count++;
1190
	}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
}

static void guc_capture_logs_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private, guc.log.flush_work);

	i915_guc_capture_logs(dev_priv);
}

static void guc_log_cleanup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* First disable the flush interrupt */
	gen9_disable_guc_interrupts(dev_priv);

	if (guc->log.flush_wq)
		destroy_workqueue(guc->log.flush_wq);

	guc->log.flush_wq = NULL;

1215 1216 1217 1218 1219
	if (guc->log.relay_chan)
		guc_log_remove_relay_file(guc);

	guc->log.relay_chan = NULL;

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	if (guc->log.buf_addr)
		i915_gem_object_unpin_map(guc->log.vma->obj);

	guc->log.buf_addr = NULL;
}

static int guc_log_create_extras(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	void *vaddr;
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* Nothing to do */
	if (i915.guc_log_level < 0)
		return 0;

	if (!guc->log.buf_addr) {
1239 1240 1241 1242 1243
		/* Create a WC (Uncached for read) vmalloc mapping of log
		 * buffer pages, so that we can directly get the data
		 * (up-to-date) from memory.
		 */
		vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
1244 1245 1246 1247 1248 1249 1250 1251 1252
		if (IS_ERR(vaddr)) {
			ret = PTR_ERR(vaddr);
			DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
			return ret;
		}

		guc->log.buf_addr = vaddr;
	}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	if (!guc->log.relay_chan) {
		/* Create a relay channel, so that we have buffers for storing
		 * the GuC firmware logs, the channel will be linked with a file
		 * later on when debugfs is registered.
		 */
		ret = guc_log_create_relay_channel(guc);
		if (ret)
			return ret;
	}

1263 1264 1265
	if (!guc->log.flush_wq) {
		INIT_WORK(&guc->log.flush_work, guc_capture_logs_work);

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
		 /*
		 * GuC log buffer flush work item has to do register access to
		 * send the ack to GuC and this work item, if not synced before
		 * suspend, can potentially get executed after the GFX device is
		 * suspended.
		 * By marking the WQ as freezable, we don't have to bother about
		 * flushing of this work item from the suspend hooks, the pending
		 * work item if any will be either executed before the suspend
		 * or scheduled later on resume. This way the handling of work
		 * item can be kept same between system suspend & rpm suspend.
1276
		 */
1277 1278
		guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log",
							    WQ_HIGHPRI | WQ_FREEZABLE);
1279 1280 1281 1282 1283 1284 1285 1286 1287
		if (guc->log.flush_wq == NULL) {
			DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
			return -ENOMEM;
		}
	}

	return 0;
}

1288
static void guc_log_create(struct intel_guc *guc)
A
Alex Dai 已提交
1289
{
1290
	struct i915_vma *vma;
A
Alex Dai 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	unsigned long offset;
	uint32_t size, flags;

	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;

	/* The first page is to save log buffer state. Allocate one
	 * extra page for others in case for overlap */
	size = (1 + GUC_LOG_DPC_PAGES + 1 +
		GUC_LOG_ISR_PAGES + 1 +
		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;

1303
	vma = guc->log.vma;
1304
	if (!vma) {
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		/* We require SSE 4.1 for fast reads from the GuC log buffer and
		 * it should be present on the chipsets supporting GuC based
		 * submisssions.
		 */
		if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) {
			/* logging will not be enabled */
			i915.guc_log_level = -1;
			return;
		}

1315 1316
		vma = guc_allocate_vma(guc, size);
		if (IS_ERR(vma)) {
A
Alex Dai 已提交
1317 1318 1319 1320 1321
			/* logging will be off */
			i915.guc_log_level = -1;
			return;
		}

1322
		guc->log.vma = vma;
1323 1324 1325 1326 1327 1328 1329

		if (guc_log_create_extras(guc)) {
			guc_log_cleanup(guc);
			i915_vma_unpin_and_release(&guc->log.vma);
			i915.guc_log_level = -1;
			return;
		}
A
Alex Dai 已提交
1330 1331 1332 1333 1334 1335 1336 1337
	}

	/* each allocated unit is a page */
	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);

1338
	offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
1339
	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
A
Alex Dai 已提交
1340 1341
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
static int guc_log_late_setup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (i915.guc_log_level < 0)
		return -EINVAL;

	/* If log_level was set as -1 at boot time, then setup needed to
	 * handle log buffer flush interrupts would not have been done yet,
	 * so do that now.
	 */
	ret = guc_log_create_extras(guc);
	if (ret)
		goto err;

	ret = guc_log_create_relay_file(guc);
	if (ret)
		goto err;

	return 0;
err:
	guc_log_cleanup(guc);
	/* logging will remain off */
	i915.guc_log_level = -1;
	return ret;
}

1372
static void guc_policies_init(struct guc_policies *policies)
1373 1374 1375 1376 1377 1378 1379 1380
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1381
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1394
static void guc_addon_create(struct intel_guc *guc)
1395 1396
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1397
	struct i915_vma *vma;
1398
	struct guc_ads *ads;
1399
	struct guc_policies *policies;
1400
	struct guc_mmio_reg_state *reg_state;
1401
	struct intel_engine_cs *engine;
1402
	enum intel_engine_id id;
1403
	struct page *page;
1404
	u32 size;
1405 1406

	/* The ads obj includes the struct itself and buffers passed to GuC */
1407 1408 1409
	size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
			sizeof(struct guc_mmio_reg_state) +
			GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
1410

1411 1412 1413 1414
	vma = guc->ads_vma;
	if (!vma) {
		vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
		if (IS_ERR(vma))
1415 1416
			return;

1417
		guc->ads_vma = vma;
1418 1419
	}

1420
	page = i915_vma_first_page(vma);
1421 1422 1423 1424 1425 1426 1427 1428 1429
	ads = kmap(page);

	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
1430
	engine = dev_priv->engine[RCS];
1431
	ads->golden_context_lrca = engine->status_page.ggtt_offset;
1432

1433
	for_each_engine(engine, dev_priv, id)
1434
		ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
1435

1436 1437
	/* GuC scheduling policies */
	policies = (void *)ads + sizeof(struct guc_ads);
1438
	guc_policies_init(policies);
1439

1440 1441
	ads->scheduler_policies =
		i915_ggtt_offset(vma) + sizeof(struct guc_ads);
1442

1443 1444 1445
	/* MMIO reg state */
	reg_state = (void *)policies + sizeof(struct guc_policies);

1446
	for_each_engine(engine, dev_priv, id) {
1447 1448
		reg_state->mmio_white_list[engine->guc_id].mmio_start =
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1449 1450

		/* Nothing to be saved or restored for now. */
1451
		reg_state->mmio_white_list[engine->guc_id].count = 0;
1452 1453 1454 1455 1456 1457 1458 1459
	}

	ads->reg_state_addr = ads->scheduler_policies +
			sizeof(struct guc_policies);

	ads->reg_state_buffer = ads->reg_state_addr +
			sizeof(struct guc_mmio_reg_state);

1460 1461 1462
	kunmap(page);
}

1463 1464 1465 1466
/*
 * Set up the memory resources to be shared with the GuC.  At this point,
 * we require just one object that can be mapped through the GGTT.
 */
1467
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1468
{
1469 1470 1471
	const size_t ctxsize = sizeof(struct guc_context_desc);
	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1472
	struct intel_guc *guc = &dev_priv->guc;
1473
	struct i915_vma *vma;
1474

1475 1476
	/* Wipe bitmap & delete client in case of reinitialisation */
	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
1477
	i915_guc_submission_disable(dev_priv);
1478

1479 1480 1481
	if (!i915.enable_guc_submission)
		return 0; /* not enabled  */

1482
	if (guc->ctx_pool_vma)
1483 1484
		return 0; /* already allocated */

1485
	vma = guc_allocate_vma(guc, gemsize);
1486 1487
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1488

1489
	guc->ctx_pool_vma = vma;
1490
	ida_init(&guc->ctx_ids);
1491
	mutex_init(&guc->action_lock);
1492 1493
	guc_log_create(guc);
	guc_addon_create(guc);
1494

1495 1496 1497
	return 0;
}

1498
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1499 1500
{
	struct intel_guc *guc = &dev_priv->guc;
1501
	struct drm_i915_gem_request *request;
1502
	struct i915_guc_client *client;
1503
	struct intel_engine_cs *engine;
1504
	enum intel_engine_id id;
1505 1506

	/* client for execbuf submission */
1507
	client = guc_client_alloc(dev_priv,
1508
				  INTEL_INFO(dev_priv)->ring_mask,
1509 1510
				  GUC_CTX_PRIORITY_KMD_NORMAL,
				  dev_priv->kernel_context);
1511
	if (!client) {
1512
		DRM_ERROR("Failed to create normal GuC client!\n");
1513 1514 1515 1516
		return -ENOMEM;
	}

	guc->execbuf_client = client;
A
Alex Dai 已提交
1517
	host2guc_sample_forcewake(guc, client);
1518
	guc_init_doorbell_hw(guc);
A
Alex Dai 已提交
1519

1520
	/* Take over from manual control of ELSP (execlists) */
1521
	for_each_engine(engine, dev_priv, id) {
1522 1523
		engine->submit_request = i915_guc_submit;

1524
		/* Replay the current set of previously submitted requests */
1525 1526
		list_for_each_entry(request,
				    &engine->timeline->requests, link) {
1527
			client->wq_rsvd += sizeof(struct guc_wq_item);
1528 1529
			if (i915_sw_fence_done(&request->submit))
				i915_guc_submit(request);
1530
		}
1531 1532
	}

1533 1534 1535
	return 0;
}

1536
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1537 1538 1539
{
	struct intel_guc *guc = &dev_priv->guc;

1540 1541 1542 1543 1544
	if (!guc->execbuf_client)
		return;

	/* Revert back to manual ELSP submission */
	intel_execlists_enable_submission(dev_priv);
1545 1546 1547

	guc_client_free(dev_priv, guc->execbuf_client);
	guc->execbuf_client = NULL;
1548 1549
}

1550
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1551 1552 1553
{
	struct intel_guc *guc = &dev_priv->guc;

1554
	i915_vma_unpin_and_release(&guc->ads_vma);
1555
	i915_vma_unpin_and_release(&guc->log.vma);
A
Alex Dai 已提交
1556

1557
	if (guc->ctx_pool_vma)
1558
		ida_destroy(&guc->ctx_ids);
1559
	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1560
}
1561 1562 1563 1564 1565 1566 1567

/**
 * intel_guc_suspend() - notify GuC entering suspend state
 * @dev:	drm device
 */
int intel_guc_suspend(struct drm_device *dev)
{
1568
	struct drm_i915_private *dev_priv = to_i915(dev);
1569
	struct intel_guc *guc = &dev_priv->guc;
1570
	struct i915_gem_context *ctx;
1571 1572
	u32 data[3];

1573
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1574 1575
		return 0;

1576 1577
	gen9_disable_guc_interrupts(dev_priv);

1578
	ctx = dev_priv->kernel_context;
1579 1580 1581 1582 1583

	data[0] = HOST2GUC_ACTION_ENTER_S_STATE;
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1584
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

	return host2guc_action(guc, data, ARRAY_SIZE(data));
}


/**
 * intel_guc_resume() - notify GuC resuming from suspend state
 * @dev:	drm device
 */
int intel_guc_resume(struct drm_device *dev)
{
1596
	struct drm_i915_private *dev_priv = to_i915(dev);
1597
	struct intel_guc *guc = &dev_priv->guc;
1598
	struct i915_gem_context *ctx;
1599 1600
	u32 data[3];

1601
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1602 1603
		return 0;

1604 1605 1606
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1607
	ctx = dev_priv->kernel_context;
1608 1609 1610 1611

	data[0] = HOST2GUC_ACTION_EXIT_S_STATE;
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1612
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1613 1614 1615

	return host2guc_action(guc, data, ARRAY_SIZE(data));
}
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

void i915_guc_capture_logs(struct drm_i915_private *dev_priv)
{
	guc_read_update_log_buffer(&dev_priv->guc);

	/* Generally device is expected to be active only at this
	 * time, so get/put should be really quick.
	 */
	intel_runtime_pm_get(dev_priv);
	host2guc_logbuffer_flush_complete(&dev_priv->guc);
	intel_runtime_pm_put(dev_priv);
}
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
void i915_guc_flush_logs(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission || (i915.guc_log_level < 0))
		return;

	/* First disable the interrupts, will be renabled afterwards */
	gen9_disable_guc_interrupts(dev_priv);

	/* Before initiating the forceful flush, wait for any pending/ongoing
	 * flush to complete otherwise forceful flush may not actually happen.
	 */
	flush_work(&dev_priv->guc.log.flush_work);

	/* Ask GuC to update the log buffer state */
	host2guc_force_logbuffer_flush(&dev_priv->guc);

	/* GuC would have updated log buffer by now, so capture it */
	i915_guc_capture_logs(dev_priv);
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
void i915_guc_unregister(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_cleanup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}

void i915_guc_register(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_late_setup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
{
	union guc_log_control log_param;
	int ret;

	log_param.value = control_val;

	if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
	    log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
		return -EINVAL;

	/* This combination doesn't make sense & won't have any effect */
	if (!log_param.logging_enabled && (i915.guc_log_level < 0))
		return 0;

	ret = host2guc_logging_control(&dev_priv->guc, log_param.value);
	if (ret < 0) {
		DRM_DEBUG_DRIVER("host2guc action failed %d\n", ret);
		return ret;
	}

	i915.guc_log_level = log_param.verbosity;

	/* If log_level was set as -1 at boot time, then the relay channel file
	 * wouldn't have been created by now and interrupts also would not have
	 * been enabled.
	 */
	if (!dev_priv->guc.log.relay_chan) {
		ret = guc_log_late_setup(&dev_priv->guc);
		if (!ret)
			gen9_enable_guc_interrupts(dev_priv);
	} else if (!log_param.logging_enabled) {
		/* Once logging is disabled, GuC won't generate logs & send an
		 * interrupt. But there could be some data in the log buffer
		 * which is yet to be captured. So request GuC to update the log
		 * buffer state and then collect the left over logs.
		 */
		i915_guc_flush_logs(dev_priv);

		/* As logging is disabled, update log level to reflect that */
		i915.guc_log_level = -1;
	} else {
		/* In case interrupts were disabled, enable them now */
		gen9_enable_guc_interrupts(dev_priv);
	}

	return ret;
}