i915_guc_submission.c 49.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/firmware.h>
#include <linux/circ_buf.h>
26 27
#include <linux/debugfs.h>
#include <linux/relay.h>
28
#include "i915_drv.h"
29
#include "intel_uc.h"
30

31
/**
A
Alex Dai 已提交
32
 * DOC: GuC-based command submission
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 *
 * i915_guc_client:
 * We use the term client to avoid confusion with contexts. A i915_guc_client is
 * equivalent to GuC object guc_context_desc. This context descriptor is
 * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell
 * and workqueue for it. Also the process descriptor (guc_process_desc), which
 * is mapped to client space. So the client can write Work Item then ring the
 * doorbell.
 *
 * To simplify the implementation, we allocate one gem object that contains all
 * pages for doorbell, process descriptor and workqueue.
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
52
 * See guc_send()
53 54 55 56 57 58 59 60 61 62 63
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
64
 * See guc_wq_item_append()
65 66 67 68 69 70 71
 *
 */

/*
 * Read GuC command/status register (SOFT_SCRATCH_0)
 * Return true if it contains a response rather than a command
 */
72
static inline bool guc_recv(struct drm_i915_private *dev_priv, u32 *status)
73 74 75
{
	u32 val = I915_READ(SOFT_SCRATCH(0));
	*status = val;
76
	return INTEL_GUC_RECV_IS_RESPONSE(val);
77 78
}

79
static int guc_send(struct intel_guc *guc, u32 *data, u32 len)
80 81 82 83 84 85 86 87 88
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 status;
	int i;
	int ret;

	if (WARN_ON(len < 1 || len > 15))
		return -EINVAL;

89
	mutex_lock(&guc->send_mutex);
90 91 92 93 94 95 96 97 98 99
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	dev_priv->guc.action_count += 1;
	dev_priv->guc.action_cmd = data[0];

	for (i = 0; i < len; i++)
		I915_WRITE(SOFT_SCRATCH(i), data[i]);

	POSTING_READ(SOFT_SCRATCH(i - 1));

100
	I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
101

102 103 104
	/*
	 * Fast commands should complete in less than 10us, so sample quickly
	 * up to that length of time, then switch to a slower sleep-wait loop.
105
	 * No INTEL_GUC_ACTION command should ever take longer than 10ms.
106
	 */
107
	ret = wait_for_us(guc_recv(dev_priv, &status), 10);
108
	if (ret)
109 110
		ret = wait_for(guc_recv(dev_priv, &status), 10);
	if (status != INTEL_GUC_STATUS_SUCCESS) {
111 112 113 114 115 116 117 118
		/*
		 * Either the GuC explicitly returned an error (which
		 * we convert to -EIO here) or no response at all was
		 * received within the timeout limit (-ETIMEDOUT)
		 */
		if (ret != -ETIMEDOUT)
			ret = -EIO;

119 120
		DRM_WARN("Action 0x%X failed; ret=%d status=0x%08X response=0x%08X\n",
			 data[0], ret, status, I915_READ(SOFT_SCRATCH(15)));
121 122 123 124 125 126 127

		dev_priv->guc.action_fail += 1;
		dev_priv->guc.action_err = ret;
	}
	dev_priv->guc.action_status = status;

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
128
	mutex_unlock(&guc->send_mutex);
129 130 131 132 133 134 135 136

	return ret;
}

/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

137 138
static int guc_allocate_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
139 140 141
{
	u32 data[2];

142
	data[0] = INTEL_GUC_ACTION_ALLOCATE_DOORBELL;
143 144
	data[1] = client->ctx_index;

145
	return guc_send(guc, data, 2);
146 147
}

148 149
static int guc_release_doorbell(struct intel_guc *guc,
				struct i915_guc_client *client)
150 151 152
{
	u32 data[2];

153
	data[0] = INTEL_GUC_ACTION_DEALLOCATE_DOORBELL;
154 155
	data[1] = client->ctx_index;

156
	return guc_send(guc, data, 2);
157 158
}

159 160
static int guc_sample_forcewake(struct intel_guc *guc,
				struct i915_guc_client *client)
A
Alex Dai 已提交
161 162 163 164
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	u32 data[2];

165
	data[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
166
	/* WaRsDisableCoarsePowerGating:skl,bxt */
167
	if (!intel_enable_rc6() || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
168 169 170 171 172
		data[1] = 0;
	else
		/* bit 0 and 1 are for Render and Media domain separately */
		data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;

173
	return guc_send(guc, data, ARRAY_SIZE(data));
A
Alex Dai 已提交
174 175
}

176
static int guc_logbuffer_flush_complete(struct intel_guc *guc)
177 178 179
{
	u32 data[1];

180
	data[0] = INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE;
181

182
	return guc_send(guc, data, 1);
183 184
}

185
static int guc_force_logbuffer_flush(struct intel_guc *guc)
186 187 188
{
	u32 data[2];

189
	data[0] = INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH;
190 191
	data[1] = 0;

192
	return guc_send(guc, data, 2);
193 194
}

195
static int guc_logging_control(struct intel_guc *guc, u32 control_val)
196 197 198
{
	u32 data[2];

199
	data[0] = INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING;
200 201
	data[1] = control_val;

202
	return guc_send(guc, data, 2);
203 204
}

205 206 207 208 209 210 211
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

212 213 214
static int guc_update_doorbell_id(struct intel_guc *guc,
				  struct i915_guc_client *client,
				  u16 new_id)
215
{
216
	struct sg_table *sg = guc->ctx_pool_vma->pages;
217
	void *doorbell_bitmap = guc->doorbell_bitmap;
218
	struct guc_doorbell_info *doorbell;
219 220
	struct guc_context_desc desc;
	size_t len;
221

222
	doorbell = client->vaddr + client->doorbell_offset;
223

224 225 226 227
	if (client->doorbell_id != GUC_INVALID_DOORBELL_ID &&
	    test_bit(client->doorbell_id, doorbell_bitmap)) {
		/* Deactivate the old doorbell */
		doorbell->db_status = GUC_DOORBELL_DISABLED;
228
		(void)guc_release_doorbell(guc, client);
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		__clear_bit(client->doorbell_id, doorbell_bitmap);
	}

	/* Update the GuC's idea of the doorbell ID */
	len = sg_pcopy_to_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;
	desc.db_id = new_id;
	len = sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
	if (len != sizeof(desc))
		return -EFAULT;

	client->doorbell_id = new_id;
	if (new_id == GUC_INVALID_DOORBELL_ID)
		return 0;

	/* Activate the new doorbell */
	__set_bit(new_id, doorbell_bitmap);
249
	doorbell->cookie = 0;
250
	doorbell->db_status = GUC_DOORBELL_ENABLED;
251
	return guc_allocate_doorbell(guc, client);
252 253 254 255 256 257 258
}

static int guc_init_doorbell(struct intel_guc *guc,
			      struct i915_guc_client *client,
			      uint16_t db_id)
{
	return guc_update_doorbell_id(guc, client, db_id);
259 260 261 262 263
}

static void guc_disable_doorbell(struct intel_guc *guc,
				 struct i915_guc_client *client)
{
264
	(void)guc_update_doorbell_id(guc, client, GUC_INVALID_DOORBELL_ID);
265 266 267 268 269

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static uint16_t
select_doorbell_register(struct intel_guc *guc, uint32_t priority)
{
	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 * Note that logically higher priorities are numerically less than
	 * normal ones, so the test below means "is it high-priority?"
	 */
	const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH);
	const uint16_t half = GUC_MAX_DOORBELLS / 2;
	const uint16_t start = hi_pri ? half : 0;
	const uint16_t end = start + half;
	uint16_t id;

	id = find_next_zero_bit(guc->doorbell_bitmap, end, start);
	if (id == end)
		id = GUC_INVALID_DOORBELL_ID;

	DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n",
			hi_pri ? "high" : "normal", id);

	return id;
}

296 297 298 299
/*
 * Select, assign and relase doorbell cachelines
 *
 * These functions track which doorbell cachelines are in use.
300
 * The data they manipulate is protected by the guc_send lock.
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 */

static uint32_t select_doorbell_cacheline(struct intel_guc *guc)
{
	const uint32_t cacheline_size = cache_line_size();
	uint32_t offset;

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
	guc->db_cacheline += cacheline_size;

	DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cacheline_size);

	return offset;
}

/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
323
static void guc_proc_desc_init(struct intel_guc *guc,
324 325 326 327
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

328
	desc = client->vaddr + client->proc_desc_offset;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

	memset(desc, 0, sizeof(*desc));

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

	desc->context_id = client->ctx_index;
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
 * Initialise/clear the context descriptor shared with the GuC firmware.
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */

355
static void guc_ctx_desc_init(struct intel_guc *guc,
356 357
			      struct i915_guc_client *client)
{
358
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
359
	struct intel_engine_cs *engine;
360
	struct i915_gem_context *ctx = client->owner;
361 362
	struct guc_context_desc desc;
	struct sg_table *sg;
363
	unsigned int tmp;
364
	u32 gfx_addr;
365 366 367 368 369 370 371 372

	memset(&desc, 0, sizeof(desc));

	desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL;
	desc.context_id = client->ctx_index;
	desc.priority = client->priority;
	desc.db_id = client->doorbell_id;

373
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
374
		struct intel_context *ce = &ctx->engine[engine->id];
375 376
		uint32_t guc_engine_id = engine->guc_id;
		struct guc_execlist_context *lrc = &desc.lrc[guc_engine_id];
377 378 379 380 381 382 383 384

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
385
		if (!ce->state)
386 387
			break;	/* XXX: continue? */

388
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
389 390

		/* The state page is after PPHWSP */
391
		lrc->ring_lcra =
392
			i915_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
393
		lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) |
394
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
395

396
		lrc->ring_begin = i915_ggtt_offset(ce->ring->vma);
397 398
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
399 400
		lrc->ring_current_tail_pointer_value = 0;

401
		desc.engines_used |= (1 << guc_engine_id);
402 403
	}

404 405
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
			client->engines, desc.engines_used);
406 407
	WARN_ON(desc.engines_used == 0);

408
	/*
409 410
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
411
	 */
412
	gfx_addr = i915_ggtt_offset(client->vma);
413
	desc.db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
414
				client->doorbell_offset;
415 416
	desc.db_trigger_cpu =
		(uintptr_t)client->vaddr + client->doorbell_offset;
417 418 419
	desc.db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc.process_desc = gfx_addr + client->proc_desc_offset;
	desc.wq_addr = gfx_addr + client->wq_offset;
420 421 422
	desc.wq_size = client->wq_size;

	/*
423
	 * XXX: Take LRCs from an existing context if this is not an
424 425 426 427 428
	 * IsKMDCreatedContext client
	 */
	desc.desc_private = (uintptr_t)client;

	/* Pool context is pinned already */
429
	sg = guc->ctx_pool_vma->pages;
430 431 432 433
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

434
static void guc_ctx_desc_fini(struct intel_guc *guc,
435 436 437 438 439 440 441
			      struct i915_guc_client *client)
{
	struct guc_context_desc desc;
	struct sg_table *sg;

	memset(&desc, 0, sizeof(desc));

442
	sg = guc->ctx_pool_vma->pages;
443 444 445 446
	sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc),
			     sizeof(desc) * client->ctx_index);
}

447
/**
448
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
449 450 451 452 453 454 455
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
456 457
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
458
 *
459
 * Reservation allows the caller to determine in advance that space
460 461 462
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
463
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
464
{
465
	const size_t wqi_size = sizeof(struct guc_wq_item);
466
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;
467
	struct guc_process_desc *desc = gc->vaddr + gc->proc_desc_offset;
468
	u32 freespace;
469
	int ret;
470

471
	spin_lock(&gc->wq_lock);
472
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
473 474 475 476 477 478 479 480 481
	freespace -= gc->wq_rsvd;
	if (likely(freespace >= wqi_size)) {
		gc->wq_rsvd += wqi_size;
		ret = 0;
	} else {
		gc->no_wq_space++;
		ret = -EAGAIN;
	}
	spin_unlock(&gc->wq_lock);
482

483
	return ret;
484 485
}

486 487 488 489 490 491 492 493 494 495 496 497
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
	const size_t wqi_size = sizeof(struct guc_wq_item);
	struct i915_guc_client *gc = request->i915->guc.execbuf_client;

	GEM_BUG_ON(READ_ONCE(gc->wq_rsvd) < wqi_size);

	spin_lock(&gc->wq_lock);
	gc->wq_rsvd -= wqi_size;
	spin_unlock(&gc->wq_lock);
}

498 499 500
/* Construct a Work Item and append it to the GuC's Work Queue */
static void guc_wq_item_append(struct i915_guc_client *gc,
			       struct drm_i915_gem_request *rq)
501
{
502 503 504
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
505
	struct intel_engine_cs *engine = rq->engine;
506
	struct guc_process_desc *desc;
507
	struct guc_wq_item *wqi;
508
	u32 freespace, tail, wq_off;
509

510
	desc = gc->vaddr + gc->proc_desc_offset;
511

512
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
513 514 515 516 517 518 519 520
	freespace = CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size);
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
	tail = rq->tail;
	GEM_BUG_ON(tail & 7);
	tail >>= 3;
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
521 522 523 524 525 526 527 528

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
529
	BUILD_BUG_ON(wqi_size != 16);
530
	GEM_BUG_ON(gc->wq_rsvd < wqi_size);
531

532 533
	/* postincrement WQ tail for next time */
	wq_off = gc->wq_tail;
534
	GEM_BUG_ON(wq_off & (wqi_size - 1));
535 536
	gc->wq_tail += wqi_size;
	gc->wq_tail &= gc->wq_size - 1;
537
	gc->wq_rsvd -= wqi_size;
538 539

	/* WQ starts from the page after doorbell / process_desc */
540
	wqi = gc->vaddr + wq_off + GUC_DB_SIZE;
541

542
	/* Now fill in the 4-word work queue item */
543
	wqi->header = WQ_TYPE_INORDER |
544
			(wqi_len << WQ_LEN_SHIFT) |
545
			(engine->guc_id << WQ_TARGET_SHIFT) |
546 547 548
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
549
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
550 551

	wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT;
552
	wqi->fence_id = rq->global_seqno;
553 554
}

555 556 557 558 559 560 561
static int guc_ring_doorbell(struct i915_guc_client *gc)
{
	struct guc_process_desc *desc;
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

562
	desc = gc->vaddr + gc->proc_desc_offset;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

	/* Update the tail so it is visible to GuC */
	desc->tail = gc->wq_tail;

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
	db_cmp.cookie = gc->cookie;

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
	db_exc.cookie = gc->cookie + 1;
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
578
	db = gc->vaddr + gc->doorbell_offset;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
			gc->cookie = db_exc.cookie;
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

597 598
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
599 600 601 602 603 604 605 606 607 608 609

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

610 611
/**
 * i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
612
 * @rq:		request associated with the commands
613
 *
614 615 616
 * Return:	0 on success, otherwise an errno.
 * 		(Note: nonzero really shouldn't happen!)
 *
617 618 619
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
620 621
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
622 623
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
624 625 626
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
627
 */
628
static void i915_guc_submit(struct drm_i915_gem_request *rq)
629
{
630
	struct drm_i915_private *dev_priv = rq->i915;
631 632
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
633 634
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
635
	int b_ret;
636

637 638 639 640 641 642 643 644 645 646 647
	/* We keep the previous context alive until we retire the following
	 * request. This ensures that any the context object is still pinned
	 * for any residual writes the HW makes into it on the context switch
	 * into the next object following the breadcrumb. Otherwise, we may
	 * retire the context too early.
	 */
	rq->previous_context = engine->last_context;
	engine->last_context = rq->ctx;

	i915_gem_request_submit(rq);

648
	spin_lock(&client->wq_lock);
649
	guc_wq_item_append(client, rq);
650 651 652 653 654

	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

655
	b_ret = guc_ring_doorbell(client);
656

657
	client->submissions[engine_id] += 1;
658 659
	client->retcode = b_ret;
	if (b_ret)
660
		client->b_fail += 1;
661

662
	guc->submissions[engine_id] += 1;
663
	guc->last_seqno[engine_id] = rq->global_seqno;
664
	spin_unlock(&client->wq_lock);
665 666 667 668 669 670 671 672
}

/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

673
/**
674 675 676
 * guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
677
 *
678 679 680 681 682
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
683
 *
684
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
685
 */
686
static struct i915_vma *guc_allocate_vma(struct intel_guc *guc, u32 size)
687
{
688
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
689
	struct drm_i915_gem_object *obj;
690 691
	struct i915_vma *vma;
	int ret;
692

693
	obj = i915_gem_object_create(&dev_priv->drm, size);
694
	if (IS_ERR(obj))
695
		return ERR_CAST(obj);
696

697 698 699
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;
700

701 702 703 704 705
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
706 707 708 709 710
	}

	/* Invalidate GuC TLB to let GuC take the latest updates to GTT. */
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);

711 712 713 714 715
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
716 717
}

718 719 720
static void
guc_client_free(struct drm_i915_private *dev_priv,
		struct i915_guc_client *client)
721 722 723 724 725 726 727 728 729 730 731
{
	struct intel_guc *guc = &dev_priv->guc;

	if (!client)
		return;

	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

732
	if (client->vaddr) {
733
		/*
734 735
		 * If we got as far as setting up a doorbell, make sure we
		 * shut it down before unmapping & deallocating the memory.
736
		 */
737
		guc_disable_doorbell(guc, client);
738

739
		i915_gem_object_unpin_map(client->vma->obj);
740 741
	}

742
	i915_vma_unpin_and_release(&client->vma);
743 744

	if (client->ctx_index != GUC_INVALID_CTX_ID) {
745
		guc_ctx_desc_fini(guc, client);
746 747 748 749 750 751
		ida_simple_remove(&guc->ctx_ids, client->ctx_index);
	}

	kfree(client);
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/* Check that a doorbell register is in the expected state */
static bool guc_doorbell_check(struct intel_guc *guc, uint16_t db_id)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	i915_reg_t drbreg = GEN8_DRBREGL(db_id);
	uint32_t value = I915_READ(drbreg);
	bool enabled = (value & GUC_DOORBELL_ENABLED) != 0;
	bool expected = test_bit(db_id, guc->doorbell_bitmap);

	if (enabled == expected)
		return true;

	DRM_DEBUG_DRIVER("Doorbell %d (reg 0x%x) 0x%x, should be %s\n",
			 db_id, drbreg.reg, value,
			 expected ? "active" : "inactive");

	return false;
}

771
/*
772
 * Borrow the first client to set up & tear down each unused doorbell
773 774 775 776 777
 * in turn, to ensure that all doorbell h/w is (re)initialised.
 */
static void guc_init_doorbell_hw(struct intel_guc *guc)
{
	struct i915_guc_client *client = guc->execbuf_client;
778 779
	uint16_t db_id;
	int i, err;
780

781
	/* Save client's original doorbell selection */
782 783 784
	db_id = client->doorbell_id;

	for (i = 0; i < GUC_MAX_DOORBELLS; ++i) {
785 786
		/* Skip if doorbell is OK */
		if (guc_doorbell_check(guc, i))
787 788
			continue;

789
		err = guc_update_doorbell_id(guc, client, i);
790 791 792
		if (err)
			DRM_DEBUG_DRIVER("Doorbell %d update failed, err %d\n",
					i, err);
793 794 795 796 797
	}

	/* Restore to original value */
	err = guc_update_doorbell_id(guc, client, db_id);
	if (err)
798 799
		DRM_WARN("Failed to restore doorbell to %d, err %d\n",
			 db_id, err);
800

801 802 803
	/* Read back & verify all doorbell registers */
	for (i = 0; i < GUC_MAX_DOORBELLS; ++i)
		(void)guc_doorbell_check(guc, i);
804 805
}

806 807
/**
 * guc_client_alloc() - Allocate an i915_guc_client
808
 * @dev_priv:	driver private data structure
809
 * @engines:	The set of engines to enable for this client
810 811 812 813
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
814 815
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
816
 *
817
 * Return:	An i915_guc_client object if success, else NULL.
818
 */
819 820
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
821
		 uint32_t engines,
822 823
		 uint32_t priority,
		 struct i915_gem_context *ctx)
824 825 826
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
827
	struct i915_vma *vma;
828
	void *vaddr;
829
	uint16_t db_id;
830 831 832 833 834

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
		return NULL;

835
	client->owner = ctx;
836
	client->guc = guc;
837 838 839
	client->engines = engines;
	client->priority = priority;
	client->doorbell_id = GUC_INVALID_DOORBELL_ID;
840 841 842 843 844 845 846 847 848

	client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0,
			GUC_MAX_GPU_CONTEXTS, GFP_KERNEL);
	if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) {
		client->ctx_index = GUC_INVALID_CTX_ID;
		goto err;
	}

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
849 850
	vma = guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
	if (IS_ERR(vma))
851 852
		goto err;

853
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
854
	client->vma = vma;
855 856 857 858 859 860

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(vaddr))
		goto err;

	client->vaddr = vaddr;
861 862

	spin_lock_init(&client->wq_lock);
863 864 865
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;

866 867 868 869 870
	db_id = select_doorbell_register(guc, client->priority);
	if (db_id == GUC_INVALID_DOORBELL_ID)
		/* XXX: evict a doorbell instead? */
		goto err;

871 872 873 874 875 876 877 878 879 880 881 882
	client->doorbell_offset = select_doorbell_cacheline(guc);

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

883 884
	guc_proc_desc_init(guc, client);
	guc_ctx_desc_init(guc, client);
885
	if (guc_init_doorbell(guc, client, db_id))
886 887
		goto err;

888 889
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: ctx_index %u\n",
		priority, client, client->engines, client->ctx_index);
890 891
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%x\n",
		client->doorbell_id, client->doorbell_offset);
892 893 894 895

	return client;

err:
896
	guc_client_free(dev_priv, client);
897 898 899
	return NULL;
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
/*
 * Sub buffer switch callback. Called whenever relay has to switch to a new
 * sub buffer, relay stays on the same sub buffer if 0 is returned.
 */
static int subbuf_start_callback(struct rchan_buf *buf,
				 void *subbuf,
				 void *prev_subbuf,
				 size_t prev_padding)
{
	/* Use no-overwrite mode by default, where relay will stop accepting
	 * new data if there are no empty sub buffers left.
	 * There is no strict synchronization enforced by relay between Consumer
	 * and Producer. In overwrite mode, there is a possibility of getting
	 * inconsistent/garbled data, the producer could be writing on to the
	 * same sub buffer from which Consumer is reading. This can't be avoided
	 * unless Consumer is fast enough and can always run in tandem with
	 * Producer.
	 */
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * file_create() callback. Creates relay file in debugfs.
 */
static struct dentry *create_buf_file_callback(const char *filename,
					       struct dentry *parent,
					       umode_t mode,
					       struct rchan_buf *buf,
					       int *is_global)
{
	struct dentry *buf_file;

	/* This to enable the use of a single buffer for the relay channel and
	 * correspondingly have a single file exposed to User, through which
	 * it can collect the logs in order without any post-processing.
938
	 * Need to set 'is_global' even if parent is NULL for early logging.
939 940 941
	 */
	*is_global = 1;

942 943 944
	if (!parent)
		return NULL;

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	/* Not using the channel filename passed as an argument, since for each
	 * channel relay appends the corresponding CPU number to the filename
	 * passed in relay_open(). This should be fine as relay just needs a
	 * dentry of the file associated with the channel buffer and that file's
	 * name need not be same as the filename passed as an argument.
	 */
	buf_file = debugfs_create_file("guc_log", mode,
				       parent, buf, &relay_file_operations);
	return buf_file;
}

/*
 * file_remove() default callback. Removes relay file in debugfs.
 */
static int remove_buf_file_callback(struct dentry *dentry)
{
	debugfs_remove(dentry);
	return 0;
}

/* relay channel callbacks */
static struct rchan_callbacks relay_callbacks = {
	.subbuf_start = subbuf_start_callback,
	.create_buf_file = create_buf_file_callback,
	.remove_buf_file = remove_buf_file_callback,
};

static void guc_log_remove_relay_file(struct intel_guc *guc)
{
	relay_close(guc->log.relay_chan);
}

977
static int guc_log_create_relay_channel(struct intel_guc *guc)
978 979 980 981 982
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct rchan *guc_log_relay_chan;
	size_t n_subbufs, subbuf_size;

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	/* Keep the size of sub buffers same as shared log buffer */
	subbuf_size = guc->log.vma->obj->base.size;

	/* Store up to 8 snapshots, which is large enough to buffer sufficient
	 * boot time logs and provides enough leeway to User, in terms of
	 * latency, for consuming the logs from relay. Also doesn't take
	 * up too much memory.
	 */
	n_subbufs = 8;

	guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
					n_subbufs, &relay_callbacks, dev_priv);
	if (!guc_log_relay_chan) {
		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
		return -ENOMEM;
	}

	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
	guc->log.relay_chan = guc_log_relay_chan;
	return 0;
}

static int guc_log_create_relay_file(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	struct dentry *log_dir;
	int ret;

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
	log_dir = dev_priv->drm.primary->debugfs_root;

	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
	 * not mounted and so can't create the relay file.
	 * The relay API seems to fit well with debugfs only, for availing relay
	 * there are 3 requirements which can be met for debugfs file only in a
	 * straightforward/clean manner :-
	 * i)   Need the associated dentry pointer of the file, while opening the
	 *      relay channel.
	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
	 * iii) Set the 'i_private' field of file's inode to the pointer of
	 *	relay channel buffer.
	 */
	if (!log_dir) {
		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
		return -ENODEV;
	}

1030 1031 1032 1033
	ret = relay_late_setup_files(guc->log.relay_chan, "guc_log", log_dir);
	if (ret) {
		DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
		return ret;
1034 1035 1036 1037 1038
	}

	return 0;
}

1039 1040
static void guc_move_to_next_buf(struct intel_guc *guc)
{
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
	/* Make sure the updates made in the sub buffer are visible when
	 * Consumer sees the following update to offset inside the sub buffer.
	 */
	smp_wmb();

	/* All data has been written, so now move the offset of sub buffer. */
	relay_reserve(guc->log.relay_chan, guc->log.vma->obj->base.size);

	/* Switch to the next sub buffer */
	relay_flush(guc->log.relay_chan);
1051 1052 1053 1054
}

static void *guc_get_write_buffer(struct intel_guc *guc)
{
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	if (!guc->log.relay_chan)
		return NULL;

	/* Just get the base address of a new sub buffer and copy data into it
	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
	 * buffers are full. Could have used the relay_write() to indirectly
	 * copy the data, but that would have been bit convoluted, as we need to
	 * write to only certain locations inside a sub buffer which cannot be
	 * done without using relay_reserve() along with relay_write(). So its
	 * better to use relay_reserve() alone.
	 */
	return relay_reserve(guc->log.relay_chan, 0);
1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static bool
guc_check_log_buf_overflow(struct intel_guc *guc,
			   enum guc_log_buffer_type type, unsigned int full_cnt)
{
	unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
	bool overflow = false;

	if (full_cnt != prev_full_cnt) {
		overflow = true;

		guc->log.prev_overflow_count[type] = full_cnt;
		guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;

		if (full_cnt < prev_full_cnt) {
			/* buffer_full_cnt is a 4 bit counter */
			guc->log.total_overflow_count[type] += 16;
		}
		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
	}

	return overflow;
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
	case GUC_DPC_LOG_BUFFER:
		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
	case GUC_CRASH_DUMP_LOG_BUFFER:
		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
	default:
		MISSING_CASE(type);
	}

	return 0;
}

static void guc_read_update_log_buffer(struct intel_guc *guc)
{
1110
	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
1111 1112 1113 1114
	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
	struct guc_log_buffer_state log_buf_state_local;
	enum guc_log_buffer_type type;
	void *src_data, *dst_data;
1115
	bool new_overflow;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	if (WARN_ON(!guc->log.buf_addr))
		return;

	/* Get the pointer to shared GuC log buffer */
	log_buf_state = src_data = guc->log.buf_addr;

	/* Get the pointer to local buffer to store the logs */
	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);

	/* Actual logs are present from the 2nd page */
	src_data += PAGE_SIZE;
	dst_data += PAGE_SIZE;

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
		/* Make a copy of the state structure, inside GuC log buffer
		 * (which is uncached mapped), on the stack to avoid reading
		 * from it multiple times.
		 */
		memcpy(&log_buf_state_local, log_buf_state,
		       sizeof(struct guc_log_buffer_state));
		buffer_size = guc_get_log_buffer_size(type);
1138
		read_offset = log_buf_state_local.read_ptr;
1139
		write_offset = log_buf_state_local.sampled_write_ptr;
1140 1141 1142 1143
		full_cnt = log_buf_state_local.buffer_full_cnt;

		/* Bookkeeping stuff */
		guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
1144
		new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

		/* Update the state of shared log buffer */
		log_buf_state->read_ptr = write_offset;
		log_buf_state->flush_to_file = 0;
		log_buf_state++;

		if (unlikely(!log_buf_snapshot_state))
			continue;

		/* First copy the state structure in snapshot buffer */
		memcpy(log_buf_snapshot_state, &log_buf_state_local,
		       sizeof(struct guc_log_buffer_state));

		/* The write pointer could have been updated by GuC firmware,
		 * after sending the flush interrupt to Host, for consistency
		 * set write pointer value to same value of sampled_write_ptr
		 * in the snapshot buffer.
		 */
		log_buf_snapshot_state->write_ptr = write_offset;
		log_buf_snapshot_state++;

		/* Now copy the actual logs. */
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		if (unlikely(new_overflow)) {
			/* copy the whole buffer in case of overflow */
			read_offset = 0;
			write_offset = buffer_size;
		} else if (unlikely((read_offset > buffer_size) ||
				    (write_offset > buffer_size))) {
			DRM_ERROR("invalid log buffer state\n");
			/* copy whole buffer as offsets are unreliable */
			read_offset = 0;
			write_offset = buffer_size;
		}

		/* Just copy the newly written data */
		if (read_offset > write_offset) {
1181
			i915_memcpy_from_wc(dst_data, src_data, write_offset);
1182 1183 1184 1185
			bytes_to_copy = buffer_size - read_offset;
		} else {
			bytes_to_copy = write_offset - read_offset;
		}
1186 1187
		i915_memcpy_from_wc(dst_data + read_offset,
				    src_data + read_offset, bytes_to_copy);
1188 1189 1190 1191 1192 1193 1194

		src_data += buffer_size;
		dst_data += buffer_size;
	}

	if (log_buf_snapshot_state)
		guc_move_to_next_buf(guc);
1195 1196 1197 1198 1199
	else {
		/* Used rate limited to avoid deluge of messages, logs might be
		 * getting consumed by User at a slow rate.
		 */
		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
1200
		guc->log.capture_miss_count++;
1201
	}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
}

static void guc_capture_logs_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private, guc.log.flush_work);

	i915_guc_capture_logs(dev_priv);
}

static void guc_log_cleanup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* First disable the flush interrupt */
	gen9_disable_guc_interrupts(dev_priv);

	if (guc->log.flush_wq)
		destroy_workqueue(guc->log.flush_wq);

	guc->log.flush_wq = NULL;

1226 1227 1228 1229 1230
	if (guc->log.relay_chan)
		guc_log_remove_relay_file(guc);

	guc->log.relay_chan = NULL;

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	if (guc->log.buf_addr)
		i915_gem_object_unpin_map(guc->log.vma->obj);

	guc->log.buf_addr = NULL;
}

static int guc_log_create_extras(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	void *vaddr;
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* Nothing to do */
	if (i915.guc_log_level < 0)
		return 0;

	if (!guc->log.buf_addr) {
1250 1251 1252 1253 1254
		/* Create a WC (Uncached for read) vmalloc mapping of log
		 * buffer pages, so that we can directly get the data
		 * (up-to-date) from memory.
		 */
		vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
1255 1256 1257 1258 1259 1260 1261 1262 1263
		if (IS_ERR(vaddr)) {
			ret = PTR_ERR(vaddr);
			DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
			return ret;
		}

		guc->log.buf_addr = vaddr;
	}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	if (!guc->log.relay_chan) {
		/* Create a relay channel, so that we have buffers for storing
		 * the GuC firmware logs, the channel will be linked with a file
		 * later on when debugfs is registered.
		 */
		ret = guc_log_create_relay_channel(guc);
		if (ret)
			return ret;
	}

1274 1275 1276
	if (!guc->log.flush_wq) {
		INIT_WORK(&guc->log.flush_work, guc_capture_logs_work);

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		 /*
		 * GuC log buffer flush work item has to do register access to
		 * send the ack to GuC and this work item, if not synced before
		 * suspend, can potentially get executed after the GFX device is
		 * suspended.
		 * By marking the WQ as freezable, we don't have to bother about
		 * flushing of this work item from the suspend hooks, the pending
		 * work item if any will be either executed before the suspend
		 * or scheduled later on resume. This way the handling of work
		 * item can be kept same between system suspend & rpm suspend.
1287
		 */
1288 1289
		guc->log.flush_wq = alloc_ordered_workqueue("i915-guc_log",
							    WQ_HIGHPRI | WQ_FREEZABLE);
1290 1291 1292 1293 1294 1295 1296 1297 1298
		if (guc->log.flush_wq == NULL) {
			DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
			return -ENOMEM;
		}
	}

	return 0;
}

1299
static void guc_log_create(struct intel_guc *guc)
A
Alex Dai 已提交
1300
{
1301
	struct i915_vma *vma;
A
Alex Dai 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	unsigned long offset;
	uint32_t size, flags;

	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;

	/* The first page is to save log buffer state. Allocate one
	 * extra page for others in case for overlap */
	size = (1 + GUC_LOG_DPC_PAGES + 1 +
		GUC_LOG_ISR_PAGES + 1 +
		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;

1314
	vma = guc->log.vma;
1315
	if (!vma) {
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		/* We require SSE 4.1 for fast reads from the GuC log buffer and
		 * it should be present on the chipsets supporting GuC based
		 * submisssions.
		 */
		if (WARN_ON(!i915_memcpy_from_wc(NULL, NULL, 0))) {
			/* logging will not be enabled */
			i915.guc_log_level = -1;
			return;
		}

1326 1327
		vma = guc_allocate_vma(guc, size);
		if (IS_ERR(vma)) {
A
Alex Dai 已提交
1328 1329 1330 1331 1332
			/* logging will be off */
			i915.guc_log_level = -1;
			return;
		}

1333
		guc->log.vma = vma;
1334 1335 1336 1337 1338 1339 1340

		if (guc_log_create_extras(guc)) {
			guc_log_cleanup(guc);
			i915_vma_unpin_and_release(&guc->log.vma);
			i915.guc_log_level = -1;
			return;
		}
A
Alex Dai 已提交
1341 1342 1343 1344 1345 1346 1347 1348
	}

	/* each allocated unit is a page */
	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);

1349
	offset = i915_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
1350
	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
A
Alex Dai 已提交
1351 1352
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static int guc_log_late_setup(struct intel_guc *guc)
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (i915.guc_log_level < 0)
		return -EINVAL;

	/* If log_level was set as -1 at boot time, then setup needed to
	 * handle log buffer flush interrupts would not have been done yet,
	 * so do that now.
	 */
	ret = guc_log_create_extras(guc);
	if (ret)
		goto err;

	ret = guc_log_create_relay_file(guc);
	if (ret)
		goto err;

	return 0;
err:
	guc_log_cleanup(guc);
	/* logging will remain off */
	i915.guc_log_level = -1;
	return ret;
}

1383
static void guc_policies_init(struct guc_policies *policies)
1384 1385 1386 1387 1388 1389 1390 1391
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

	for (p = 0; p < GUC_CTX_PRIORITY_NUM; p++) {
1392
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1405
static void guc_addon_create(struct intel_guc *guc)
1406 1407
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1408
	struct i915_vma *vma;
1409
	struct guc_ads *ads;
1410
	struct guc_policies *policies;
1411
	struct guc_mmio_reg_state *reg_state;
1412
	struct intel_engine_cs *engine;
1413
	enum intel_engine_id id;
1414
	struct page *page;
1415
	u32 size;
1416 1417

	/* The ads obj includes the struct itself and buffers passed to GuC */
1418 1419 1420
	size = sizeof(struct guc_ads) + sizeof(struct guc_policies) +
			sizeof(struct guc_mmio_reg_state) +
			GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE;
1421

1422 1423 1424 1425
	vma = guc->ads_vma;
	if (!vma) {
		vma = guc_allocate_vma(guc, PAGE_ALIGN(size));
		if (IS_ERR(vma))
1426 1427
			return;

1428
		guc->ads_vma = vma;
1429 1430
	}

1431
	page = i915_vma_first_page(vma);
1432 1433 1434 1435 1436 1437 1438 1439 1440
	ads = kmap(page);

	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
1441
	engine = dev_priv->engine[RCS];
1442
	ads->golden_context_lrca = engine->status_page.ggtt_offset;
1443

1444
	for_each_engine(engine, dev_priv, id)
1445
		ads->eng_state_size[engine->guc_id] = intel_lr_context_size(engine);
1446

1447 1448
	/* GuC scheduling policies */
	policies = (void *)ads + sizeof(struct guc_ads);
1449
	guc_policies_init(policies);
1450

1451 1452
	ads->scheduler_policies =
		i915_ggtt_offset(vma) + sizeof(struct guc_ads);
1453

1454 1455 1456
	/* MMIO reg state */
	reg_state = (void *)policies + sizeof(struct guc_policies);

1457
	for_each_engine(engine, dev_priv, id) {
1458 1459
		reg_state->mmio_white_list[engine->guc_id].mmio_start =
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1460 1461

		/* Nothing to be saved or restored for now. */
1462
		reg_state->mmio_white_list[engine->guc_id].count = 0;
1463 1464 1465 1466 1467 1468 1469 1470
	}

	ads->reg_state_addr = ads->scheduler_policies +
			sizeof(struct guc_policies);

	ads->reg_state_buffer = ads->reg_state_addr +
			sizeof(struct guc_mmio_reg_state);

1471 1472 1473
	kunmap(page);
}

1474 1475 1476 1477
/*
 * Set up the memory resources to be shared with the GuC.  At this point,
 * we require just one object that can be mapped through the GGTT.
 */
1478
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1479
{
1480 1481 1482
	const size_t ctxsize = sizeof(struct guc_context_desc);
	const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize;
	const size_t gemsize = round_up(poolsize, PAGE_SIZE);
1483
	struct intel_guc *guc = &dev_priv->guc;
1484
	struct i915_vma *vma;
1485

1486 1487
	/* Wipe bitmap & delete client in case of reinitialisation */
	bitmap_clear(guc->doorbell_bitmap, 0, GUC_MAX_DOORBELLS);
1488
	i915_guc_submission_disable(dev_priv);
1489

1490 1491 1492
	if (!i915.enable_guc_submission)
		return 0; /* not enabled  */

1493
	if (guc->ctx_pool_vma)
1494 1495
		return 0; /* already allocated */

1496
	vma = guc_allocate_vma(guc, gemsize);
1497 1498
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1499

1500
	guc->ctx_pool_vma = vma;
1501
	ida_init(&guc->ctx_ids);
1502
	mutex_init(&guc->send_mutex);
1503 1504
	guc_log_create(guc);
	guc_addon_create(guc);
1505

1506 1507 1508
	return 0;
}

1509
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1510 1511
{
	struct intel_guc *guc = &dev_priv->guc;
1512
	struct drm_i915_gem_request *request;
1513
	struct i915_guc_client *client;
1514
	struct intel_engine_cs *engine;
1515
	enum intel_engine_id id;
1516 1517

	/* client for execbuf submission */
1518
	client = guc_client_alloc(dev_priv,
1519
				  INTEL_INFO(dev_priv)->ring_mask,
1520 1521
				  GUC_CTX_PRIORITY_KMD_NORMAL,
				  dev_priv->kernel_context);
1522
	if (!client) {
1523
		DRM_ERROR("Failed to create normal GuC client!\n");
1524 1525 1526 1527
		return -ENOMEM;
	}

	guc->execbuf_client = client;
1528
	guc_sample_forcewake(guc, client);
1529
	guc_init_doorbell_hw(guc);
A
Alex Dai 已提交
1530

1531
	/* Take over from manual control of ELSP (execlists) */
1532
	for_each_engine(engine, dev_priv, id) {
1533
		engine->submit_request = i915_guc_submit;
1534
		engine->schedule = NULL;
1535

1536
		/* Replay the current set of previously submitted requests */
1537 1538
		list_for_each_entry(request,
				    &engine->timeline->requests, link) {
1539
			client->wq_rsvd += sizeof(struct guc_wq_item);
1540 1541
			if (i915_sw_fence_done(&request->submit))
				i915_guc_submit(request);
1542
		}
1543 1544
	}

1545 1546 1547
	return 0;
}

1548
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1549 1550 1551
{
	struct intel_guc *guc = &dev_priv->guc;

1552 1553 1554 1555 1556
	if (!guc->execbuf_client)
		return;

	/* Revert back to manual ELSP submission */
	intel_execlists_enable_submission(dev_priv);
1557 1558 1559

	guc_client_free(dev_priv, guc->execbuf_client);
	guc->execbuf_client = NULL;
1560 1561
}

1562
void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1563 1564 1565
{
	struct intel_guc *guc = &dev_priv->guc;

1566
	i915_vma_unpin_and_release(&guc->ads_vma);
1567
	i915_vma_unpin_and_release(&guc->log.vma);
A
Alex Dai 已提交
1568

1569
	if (guc->ctx_pool_vma)
1570
		ida_destroy(&guc->ctx_ids);
1571
	i915_vma_unpin_and_release(&guc->ctx_pool_vma);
1572
}
1573 1574 1575 1576 1577 1578 1579

/**
 * intel_guc_suspend() - notify GuC entering suspend state
 * @dev:	drm device
 */
int intel_guc_suspend(struct drm_device *dev)
{
1580
	struct drm_i915_private *dev_priv = to_i915(dev);
1581
	struct intel_guc *guc = &dev_priv->guc;
1582
	struct i915_gem_context *ctx;
1583 1584
	u32 data[3];

1585
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1586 1587
		return 0;

1588 1589
	gen9_disable_guc_interrupts(dev_priv);

1590
	ctx = dev_priv->kernel_context;
1591

1592
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1593 1594 1595
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1596
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1597

1598
	return guc_send(guc, data, ARRAY_SIZE(data));
1599 1600 1601 1602 1603 1604 1605 1606 1607
}


/**
 * intel_guc_resume() - notify GuC resuming from suspend state
 * @dev:	drm device
 */
int intel_guc_resume(struct drm_device *dev)
{
1608
	struct drm_i915_private *dev_priv = to_i915(dev);
1609
	struct intel_guc *guc = &dev_priv->guc;
1610
	struct i915_gem_context *ctx;
1611 1612
	u32 data[3];

1613
	if (guc->guc_fw.guc_fw_load_status != GUC_FIRMWARE_SUCCESS)
1614 1615
		return 0;

1616 1617 1618
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1619
	ctx = dev_priv->kernel_context;
1620

1621
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1622 1623
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1624
	data[2] = i915_ggtt_offset(ctx->engine[RCS].state);
1625

1626
	return guc_send(guc, data, ARRAY_SIZE(data));
1627
}
1628 1629 1630 1631 1632 1633 1634 1635 1636

void i915_guc_capture_logs(struct drm_i915_private *dev_priv)
{
	guc_read_update_log_buffer(&dev_priv->guc);

	/* Generally device is expected to be active only at this
	 * time, so get/put should be really quick.
	 */
	intel_runtime_pm_get(dev_priv);
1637
	guc_logbuffer_flush_complete(&dev_priv->guc);
1638 1639
	intel_runtime_pm_put(dev_priv);
}
1640

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
void i915_guc_flush_logs(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission || (i915.guc_log_level < 0))
		return;

	/* First disable the interrupts, will be renabled afterwards */
	gen9_disable_guc_interrupts(dev_priv);

	/* Before initiating the forceful flush, wait for any pending/ongoing
	 * flush to complete otherwise forceful flush may not actually happen.
	 */
	flush_work(&dev_priv->guc.log.flush_work);

	/* Ask GuC to update the log buffer state */
1655
	guc_force_logbuffer_flush(&dev_priv->guc);
1656 1657 1658 1659 1660

	/* GuC would have updated log buffer by now, so capture it */
	i915_guc_capture_logs(dev_priv);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
void i915_guc_unregister(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_cleanup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}

void i915_guc_register(struct drm_i915_private *dev_priv)
{
	if (!i915.enable_guc_submission)
		return;

	mutex_lock(&dev_priv->drm.struct_mutex);
	guc_log_late_setup(&dev_priv->guc);
	mutex_unlock(&dev_priv->drm.struct_mutex);
}
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
{
	union guc_log_control log_param;
	int ret;

	log_param.value = control_val;

	if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
	    log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
		return -EINVAL;

	/* This combination doesn't make sense & won't have any effect */
	if (!log_param.logging_enabled && (i915.guc_log_level < 0))
		return 0;

1696
	ret = guc_logging_control(&dev_priv->guc, log_param.value);
1697
	if (ret < 0) {
1698
		DRM_DEBUG_DRIVER("guc_logging_control action failed %d\n", ret);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
		return ret;
	}

	i915.guc_log_level = log_param.verbosity;

	/* If log_level was set as -1 at boot time, then the relay channel file
	 * wouldn't have been created by now and interrupts also would not have
	 * been enabled.
	 */
	if (!dev_priv->guc.log.relay_chan) {
		ret = guc_log_late_setup(&dev_priv->guc);
		if (!ret)
			gen9_enable_guc_interrupts(dev_priv);
	} else if (!log_param.logging_enabled) {
		/* Once logging is disabled, GuC won't generate logs & send an
		 * interrupt. But there could be some data in the log buffer
		 * which is yet to be captured. So request GuC to update the log
		 * buffer state and then collect the left over logs.
		 */
		i915_guc_flush_logs(dev_priv);

		/* As logging is disabled, update log level to reflect that */
		i915.guc_log_level = -1;
	} else {
		/* In case interrupts were disabled, enable them now */
		gen9_enable_guc_interrupts(dev_priv);
	}

	return ret;
}