blk-mq.c 56.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161 162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
163
{
164 165 166
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

167 168 169
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
170
	rq->mq_ctx = ctx;
171
	rq->cmd_flags |= rw_flags;
172 173 174 175 176 177
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
178
	rq->start_time = jiffies;
179 180
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
181
	set_start_time_ns(rq);
182 183 184 185 186 187 188 189 190 191
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

192 193
	rq->cmd = rq->__cmd;

194 195 196 197 198 199
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
200 201
	rq->timeout = 0;

202 203 204 205
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

206 207 208
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

209
static struct request *
210
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 212 213 214
{
	struct request *rq;
	unsigned int tag;

215
	tag = blk_mq_get_tag(data);
216
	if (tag != BLK_MQ_TAG_FAIL) {
217
		rq = data->hctx->tags->rqs[tag];
218

219
		if (blk_mq_tag_busy(data->hctx)) {
220
			rq->cmd_flags = REQ_MQ_INFLIGHT;
221
			atomic_inc(&data->hctx->nr_active);
222 223 224
		}

		rq->tag = tag;
225
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 227 228 229 230 231
		return rq;
	}

	return NULL;
}

232 233
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
234
{
235 236
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
237
	struct request *rq;
238
	struct blk_mq_alloc_data alloc_data;
239
	int ret;
240

241
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 243
	if (ret)
		return ERR_PTR(ret);
244

245 246
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248

249
	rq = __blk_mq_alloc_request(&alloc_data, rw);
250
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 252 253 254 255
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 258
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
259 260
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
261
	if (!rq) {
262
		blk_queue_exit(q);
263
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
264
	}
265 266
	return rq;
}
267
EXPORT_SYMBOL(blk_mq_alloc_request);
268 269 270 271 272 273 274

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

275 276
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
277
	rq->cmd_flags = 0;
278

279
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281
	blk_queue_exit(q);
282 283
}

284
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 286 287 288 289
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
290 291 292 293 294 295 296 297 298 299 300

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
301
}
J
Jens Axboe 已提交
302
EXPORT_SYMBOL_GPL(blk_mq_free_request);
303

304
inline void __blk_mq_end_request(struct request *rq, int error)
305
{
M
Ming Lei 已提交
306 307
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
308
	if (rq->end_io) {
309
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
310 311 312
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
313
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
314
	}
315
}
316
EXPORT_SYMBOL(__blk_mq_end_request);
317

318
void blk_mq_end_request(struct request *rq, int error)
319 320 321
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
322
	__blk_mq_end_request(rq, error);
323
}
324
EXPORT_SYMBOL(blk_mq_end_request);
325

326
static void __blk_mq_complete_request_remote(void *data)
327
{
328
	struct request *rq = data;
329

330
	rq->q->softirq_done_fn(rq);
331 332
}

333
static void blk_mq_ipi_complete_request(struct request *rq)
334 335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
336
	bool shared = false;
337 338
	int cpu;

C
Christoph Hellwig 已提交
339
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 341 342
		rq->q->softirq_done_fn(rq);
		return;
	}
343 344

	cpu = get_cpu();
C
Christoph Hellwig 已提交
345 346 347 348
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349
		rq->csd.func = __blk_mq_complete_request_remote;
350 351
		rq->csd.info = rq;
		rq->csd.flags = 0;
352
		smp_call_function_single_async(ctx->cpu, &rq->csd);
353
	} else {
354
		rq->q->softirq_done_fn(rq);
355
	}
356 357
	put_cpu();
}
358

359
static void __blk_mq_complete_request(struct request *rq)
360 361 362 363
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
364
		blk_mq_end_request(rq, rq->errors);
365 366 367 368
	else
		blk_mq_ipi_complete_request(rq);
}

369 370 371 372 373 374 375 376
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
377
void blk_mq_complete_request(struct request *rq, int error)
378
{
379 380 381
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
382
		return;
383 384
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
385
		__blk_mq_complete_request(rq);
386
	}
387 388
}
EXPORT_SYMBOL(blk_mq_complete_request);
389

390 391 392 393 394 395
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

396
void blk_mq_start_request(struct request *rq)
397 398 399 400 401
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
402
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
403 404
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
405

406
	blk_add_timer(rq);
407

408 409 410 411 412 413
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

414 415 416 417 418 419
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
420 421 422 423
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 425 426 427 428 429 430 431 432

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
433
}
434
EXPORT_SYMBOL(blk_mq_start_request);
435

436
static void __blk_mq_requeue_request(struct request *rq)
437 438 439 440
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
441

442 443 444 445
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
446 447
}

448 449 450 451 452
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
453
	blk_mq_add_to_requeue_list(rq, true);
454 455 456
}
EXPORT_SYMBOL(blk_mq_requeue_request);

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

484 485 486 487 488
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

513 514 515 516 517 518
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

519 520 521 522 523 524
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

545 546
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
547 548 549 550
	if (tag < tags->nr_tags)
		return tags->rqs[tag];

	return NULL;
551 552 553
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

554
struct blk_mq_timeout_data {
555 556
	unsigned long next;
	unsigned int next_set;
557 558
};

559
void blk_mq_rq_timed_out(struct request *req, bool reserved)
560
{
561 562
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
563 564 565 566 567 568 569 570 571 572

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
573 574
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
575

576
	if (ops->timeout)
577
		ret = ops->timeout(req, reserved);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
593
}
594

595 596 597 598
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
599

600 601 602 603 604
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
605 606
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
607
		return;
608
	}
609

610 611
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
612
			blk_mq_rq_timed_out(rq, reserved);
613 614 615 616
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
617 618
}

619
static void blk_mq_timeout_work(struct work_struct *work)
620
{
621 622
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
623 624 625 626 627
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
628

629 630 631
	if (blk_queue_enter(q, true))
		return;

632
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
633

634 635 636
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
637
	} else {
638 639
		struct blk_mq_hw_ctx *hctx;

640 641 642 643 644
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
645
	}
646
	blk_queue_exit(q);
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

688 689 690 691 692 693 694 695 696
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

697
	for (i = 0; i < hctx->ctx_map.size; i++) {
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

722 723 724 725 726 727 728 729 730 731 732
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
733 734
	LIST_HEAD(driver_list);
	struct list_head *dptr;
735
	int queued;
736

737
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
738

739
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
740 741 742 743 744 745 746
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
747
	flush_busy_ctxs(hctx, &rq_list);
748 749 750 751 752 753 754 755 756 757 758 759

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

760 761 762 763 764 765
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

766 767 768
	/*
	 * Now process all the entries, sending them to the driver.
	 */
769
	queued = 0;
770
	while (!list_empty(&rq_list)) {
771
		struct blk_mq_queue_data bd;
772 773 774 775 776
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

777 778 779 780 781
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
782 783 784 785 786 787
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
788
			__blk_mq_requeue_request(rq);
789 790 791 792
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
793
			rq->errors = -EIO;
794
			blk_mq_end_request(rq, rq->errors);
795 796 797 798 799
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
800 801 802 803 804 805 806

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
822 823 824 825 826 827 828 829 830 831
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
832 833 834
	}
}

835 836 837 838 839 840 841 842
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
843 844
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
845 846

	if (--hctx->next_cpu_batch <= 0) {
847
		int cpu = hctx->next_cpu, next_cpu;
848 849 850 851 852 853 854

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
855 856

		return cpu;
857 858
	}

859
	return hctx->next_cpu;
860 861
}

862 863
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
864 865
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
866 867
		return;

868
	if (!async) {
869 870
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
871
			__blk_mq_run_hw_queue(hctx);
872
			put_cpu();
873 874
			return;
		}
875

876
		put_cpu();
877
	}
878

879 880
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
881 882
}

883
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
884 885 886 887 888 889 890
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
891
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
892 893
			continue;

894
		blk_mq_run_hw_queue(hctx, async);
895 896
	}
}
897
EXPORT_SYMBOL(blk_mq_run_hw_queues);
898 899 900

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
901 902
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
903 904 905 906
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

907 908 909 910 911 912 913 914 915 916
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

917 918 919
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
920

921
	blk_mq_run_hw_queue(hctx, false);
922 923 924
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

925 926 927 928 929 930 931 932 933 934
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

935
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
936 937 938 939 940 941 942 943 944
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
945
		blk_mq_run_hw_queue(hctx, async);
946 947 948 949
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

950
static void blk_mq_run_work_fn(struct work_struct *work)
951 952 953
{
	struct blk_mq_hw_ctx *hctx;

954
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
955

956 957 958
	__blk_mq_run_hw_queue(hctx);
}

959 960 961 962 963 964 965 966 967 968 969 970
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
971 972
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
973

974 975
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
976 977 978
}
EXPORT_SYMBOL(blk_mq_delay_queue);

979 980 981 982
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
983
{
984 985
	trace_block_rq_insert(hctx->queue, rq);

986 987 988 989
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
990
}
991

992 993 994 995 996 997
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
998 999 1000
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1001 1002
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1003
{
1004
	struct request_queue *q = rq->q;
1005
	struct blk_mq_hw_ctx *hctx;
1006 1007 1008 1009 1010
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1011 1012 1013

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1014 1015 1016
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1017 1018 1019

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1020 1021

	blk_mq_put_ctx(current_ctx);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1053
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1054
	}
1055
	blk_mq_hctx_mark_pending(hctx, ctx);
1056 1057 1058
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1059
	blk_mq_put_ctx(current_ctx);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1122

1123
	if (blk_do_io_stat(rq))
1124
		blk_account_io_start(rq, 1);
1125 1126
}

1127 1128 1129 1130 1131 1132
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1133 1134 1135
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1136
{
1137
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1138 1139 1140 1141 1142 1143 1144
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1145 1146
		struct request_queue *q = hctx->queue;

1147 1148 1149 1150 1151
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1152

1153 1154 1155
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1156
	}
1157
}
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1172
	struct blk_mq_alloc_data alloc_data;
1173

1174
	blk_queue_enter_live(q);
1175 1176 1177
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1178
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1179
		rw |= REQ_SYNC;
1180

1181
	trace_block_getrq(q, bio, rw);
1182
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1183
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1184
	if (unlikely(!rq)) {
1185
		__blk_mq_run_hw_queue(hctx);
1186 1187
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1188 1189

		ctx = blk_mq_get_ctx(q);
1190
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1191
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1192 1193 1194
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1195 1196 1197
	}

	hctx->queued++;
1198 1199 1200 1201 1202
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1203
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1214
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1215 1216 1217 1218 1219 1220 1221

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1222 1223
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1224
		return 0;
1225
	}
1226

1227 1228 1229 1230 1231 1232 1233
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1234
	}
1235 1236

	return -1;
1237 1238
}

1239 1240 1241 1242 1243
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1244
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1245 1246 1247 1248 1249
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1250 1251
	unsigned int request_count = 0;
	struct blk_plug *plug;
1252
	struct request *same_queue_rq = NULL;
1253
	blk_qc_t cookie;
1254 1255 1256 1257

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1258
		bio_io_error(bio);
1259
		return BLK_QC_T_NONE;
1260 1261
	}

1262 1263
	blk_queue_split(q, &bio, q->bio_split);

1264 1265 1266
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1267
			return BLK_QC_T_NONE;
1268 1269
	} else
		request_count = blk_plug_queued_count(q);
1270

1271 1272
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1273
		return BLK_QC_T_NONE;
1274

1275
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1276 1277 1278 1279 1280 1281 1282

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1283
	plug = current->plug;
1284 1285 1286 1287 1288
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1289 1290 1291
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1292 1293 1294 1295

		blk_mq_bio_to_request(rq, bio);

		/*
1296
		 * We do limited pluging. If the bio can be merged, do that.
1297 1298
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1299
		 */
1300
		if (plug) {
1301 1302
			/*
			 * The plug list might get flushed before this. If that
1303 1304 1305
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1306 1307
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1308
				list_del_init(&old_rq->queuelist);
1309
			}
1310 1311 1312 1313 1314
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1315 1316 1317
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1318
		blk_mq_insert_request(old_rq, false, true, true);
1319
		goto done;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1333 1334
done:
	return cookie;
1335 1336 1337 1338 1339 1340
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1341
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1342 1343 1344
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1345 1346
	struct blk_plug *plug;
	unsigned int request_count = 0;
1347 1348
	struct blk_map_ctx data;
	struct request *rq;
1349
	blk_qc_t cookie;
1350 1351 1352 1353

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1354
		bio_io_error(bio);
1355
		return BLK_QC_T_NONE;
1356 1357
	}

1358 1359
	blk_queue_split(q, &bio, q->bio_split);

1360
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1361
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1362
		return BLK_QC_T_NONE;
1363 1364

	rq = blk_mq_map_request(q, bio, &data);
1365
	if (unlikely(!rq))
1366
		return BLK_QC_T_NONE;
1367

1368
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1381 1382 1383
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1384
		if (!request_count)
1385
			trace_block_plug(q);
1386 1387 1388 1389

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1390 1391
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1392
		}
1393

1394
		list_add_tail(&rq->queuelist, &plug->mq_list);
1395
		return cookie;
1396 1397
	}

1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1407 1408
	}

1409
	blk_mq_put_ctx(data.ctx);
1410
	return cookie;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1422 1423
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1424
{
1425
	struct page *page;
1426

1427
	if (tags->rqs && set->ops->exit_request) {
1428
		int i;
1429

1430 1431
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1432
				continue;
1433 1434
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1435
			tags->rqs[i] = NULL;
1436
		}
1437 1438
	}

1439 1440
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1441
		list_del_init(&page->lru);
1442 1443 1444 1445 1446
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1447 1448 1449
		__free_pages(page, page->private);
	}

1450
	kfree(tags->rqs);
1451

1452
	blk_mq_free_tags(tags);
1453 1454 1455 1456
}

static size_t order_to_size(unsigned int order)
{
1457
	return (size_t)PAGE_SIZE << order;
1458 1459
}

1460 1461
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1462
{
1463
	struct blk_mq_tags *tags;
1464 1465 1466
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1467
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1468 1469
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1470 1471
	if (!tags)
		return NULL;
1472

1473 1474
	INIT_LIST_HEAD(&tags->page_list);

1475 1476 1477
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1478 1479 1480 1481
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1482 1483 1484 1485 1486

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1487
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1488
				cache_line_size());
1489
	left = rq_size * set->queue_depth;
1490

1491
	for (i = 0; i < set->queue_depth; ) {
1492 1493 1494 1495 1496 1497 1498 1499 1500
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1501
			page = alloc_pages_node(set->numa_node,
1502
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1503
				this_order);
1504 1505 1506 1507 1508 1509 1510 1511 1512
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1513
			goto fail;
1514 1515

		page->private = this_order;
1516
		list_add_tail(&page->lru, &tags->page_list);
1517 1518

		p = page_address(page);
1519 1520 1521 1522 1523
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1524
		entries_per_page = order_to_size(this_order) / rq_size;
1525
		to_do = min(entries_per_page, set->queue_depth - i);
1526 1527
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1528 1529 1530 1531
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1532 1533
						set->numa_node)) {
					tags->rqs[i] = NULL;
1534
					goto fail;
1535
				}
1536 1537
			}

1538 1539 1540 1541
			p += rq_size;
			i++;
		}
	}
1542
	return tags;
1543

1544 1545 1546
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1624 1625 1626 1627 1628

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1629 1630 1631 1632

	return NOTIFY_OK;
}

1633
/* hctx->ctxs will be freed in queue's release handler */
1634 1635 1636 1637
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1638 1639
	unsigned flush_start_tag = set->queue_depth;

1640 1641
	blk_mq_tag_idle(hctx);

1642 1643 1644 1645 1646
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1647 1648 1649 1650
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1651
	blk_free_flush_queue(hctx->fq);
1652 1653 1654
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1664
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1674
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1675 1676 1677
		free_cpumask_var(hctx->cpumask);
}

1678 1679 1680
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1681
{
1682
	int node;
1683
	unsigned flush_start_tag = set->queue_depth;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1695
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1696 1697 1698 1699 1700 1701

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1702 1703

	/*
1704 1705
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1706
	 */
1707 1708 1709 1710
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1711

1712 1713
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1714

1715
	hctx->nr_ctx = 0;
1716

1717 1718 1719
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1720

1721 1722 1723
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1724

1725 1726 1727 1728 1729
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1730

1731
	return 0;
1732

1733 1734 1735 1736 1737
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1738 1739 1740 1741 1742 1743
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1744

1745 1746
	return -1;
}
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1767 1768
		hctx = q->mq_ops->map_queue(q, i);

1769 1770 1771 1772 1773
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1774
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1775 1776 1777
	}
}

1778 1779
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1780 1781 1782 1783
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1784
	struct blk_mq_tag_set *set = q->tag_set;
1785

1786 1787 1788 1789 1790
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1791
	queue_for_each_hw_ctx(q, hctx, i) {
1792
		cpumask_clear(hctx->cpumask);
1793 1794 1795 1796 1797 1798 1799 1800
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1801
		if (!cpumask_test_cpu(i, online_mask))
1802 1803
			continue;

1804
		hctx = q->mq_ops->map_queue(q, i);
K
Keith Busch 已提交
1805

1806
		cpumask_set_cpu(i, hctx->cpumask);
1807 1808 1809
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1810

1811 1812
	mutex_unlock(&q->sysfs_lock);

1813
	queue_for_each_hw_ctx(q, hctx, i) {
1814 1815
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1816
		/*
1817 1818
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1819 1820 1821 1822 1823 1824
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1825
			hctx->tags = NULL;
1826 1827 1828
			continue;
		}

M
Ming Lei 已提交
1829 1830 1831 1832 1833 1834
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1835
		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1836 1837 1838 1839 1840
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1841
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1842

1843 1844 1845
		/*
		 * Initialize batch roundrobin counts
		 */
1846 1847 1848
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1849 1850
}

1851
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1852 1853 1854 1855
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1867 1868 1869

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1870
		queue_set_hctx_shared(q, shared);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1881 1882 1883 1884 1885 1886
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1887 1888 1889 1890 1891 1892 1893 1894 1895
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1896 1897 1898 1899 1900 1901 1902 1903 1904

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1905
	list_add_tail(&q->tag_set_list, &set->tag_list);
1906

1907 1908 1909
	mutex_unlock(&set->tag_list_lock);
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1922 1923 1924 1925
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1926
		kfree(hctx);
1927
	}
1928

1929 1930 1931
	kfree(q->mq_map);
	q->mq_map = NULL;

1932 1933 1934 1935 1936 1937
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1938
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
1954 1955
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
1956
{
K
Keith Busch 已提交
1957 1958
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1959

K
Keith Busch 已提交
1960
	blk_mq_sysfs_unregister(q);
1961
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
1962
		int node;
1963

K
Keith Busch 已提交
1964 1965 1966 1967
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1968 1969
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1970
		if (!hctxs[i])
K
Keith Busch 已提交
1971
			break;
1972

1973
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
1974 1975 1976 1977 1978
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
1979

1980
		atomic_set(&hctxs[i]->nr_active, 0);
1981
		hctxs[i]->numa_node = node;
1982
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
1983 1984 1985 1986 1987 1988 1989 1990

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
1991
	}
K
Keith Busch 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags) {
				blk_mq_free_rq_map(set, hctx->tags, j);
				set->tags[j] = NULL;
			}
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2016 2017 2018
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
		return ERR_PTR(-ENOMEM);

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = blk_mq_make_queue_map(set);
	if (!q->mq_map)
		goto err_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2035

2036
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2037
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2038 2039 2040

	q->nr_queues = nr_cpu_ids;

2041
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2042

2043 2044 2045
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2046 2047
	q->sg_reserved_size = INT_MAX;

2048 2049 2050 2051
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2052 2053 2054 2055 2056
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2057 2058 2059 2060 2061
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2062 2063
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2064

2065
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2066

2067
	get_online_cpus();
2068 2069
	mutex_lock(&all_q_mutex);

2070
	list_add_tail(&q->all_q_node, &all_q_list);
2071
	blk_mq_add_queue_tag_set(set, q);
2072
	blk_mq_map_swqueue(q, cpu_online_mask);
2073

2074
	mutex_unlock(&all_q_mutex);
2075
	put_online_cpus();
2076

2077
	return q;
2078

2079
err_hctxs:
K
Keith Busch 已提交
2080
	kfree(q->mq_map);
2081
err_map:
K
Keith Busch 已提交
2082
	kfree(q->queue_hw_ctx);
2083
err_percpu:
K
Keith Busch 已提交
2084
	free_percpu(q->queue_ctx);
2085 2086
	return ERR_PTR(-ENOMEM);
}
2087
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2088 2089 2090

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2091
	struct blk_mq_tag_set	*set = q->tag_set;
2092

2093 2094 2095 2096
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2097 2098
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2099 2100
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2101 2102 2103
}

/* Basically redo blk_mq_init_queue with queue frozen */
2104 2105
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2106
{
2107
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2108

2109 2110
	blk_mq_sysfs_unregister(q);

2111
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2112 2113 2114 2115 2116 2117 2118

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2119
	blk_mq_map_swqueue(q, online_mask);
2120

2121
	blk_mq_sysfs_register(q);
2122 2123
}

2124 2125
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2126 2127
{
	struct request_queue *q;
2128 2129 2130 2131 2132 2133 2134
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2135 2136

	/*
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2152
	 */
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2163
		return NOTIFY_OK;
2164
	}
2165 2166

	mutex_lock(&all_q_mutex);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2177
	list_for_each_entry(q, &all_q_list, all_q_node) {
2178 2179
		blk_mq_freeze_queue_wait(q);

2180 2181 2182 2183 2184 2185 2186
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2187
	list_for_each_entry(q, &all_q_list, all_q_node)
2188
		blk_mq_queue_reinit(q, &online_new);
2189 2190 2191 2192

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2193 2194 2195 2196
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2251 2252 2253 2254 2255 2256
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2257 2258 2259 2260 2261 2262
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2263 2264
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2265 2266
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2267 2268
	if (!set->nr_hw_queues)
		return -EINVAL;
2269
	if (!set->queue_depth)
2270 2271 2272 2273
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2274
	if (!set->ops->queue_rq || !set->ops->map_queue)
2275 2276
		return -EINVAL;

2277 2278 2279 2280 2281
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2282

2283 2284 2285 2286 2287 2288 2289 2290 2291
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2292 2293 2294 2295 2296
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2297

K
Keith Busch 已提交
2298
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2299 2300
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2301
		return -ENOMEM;
2302

2303 2304
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2305

2306 2307 2308
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2309
	return 0;
2310
enomem:
2311 2312
	kfree(set->tags);
	set->tags = NULL;
2313 2314 2315 2316 2317 2318 2319 2320
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

K
Keith Busch 已提交
2321
	for (i = 0; i < nr_cpu_ids; i++) {
2322
		if (set->tags[i])
2323 2324 2325
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2326
	kfree(set->tags);
2327
	set->tags = NULL;
2328 2329 2330
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2342 2343
		if (!hctx->tags)
			continue;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

K
Keith Busch 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2394 2395 2396 2397
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2398
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2399 2400 2401 2402

	return 0;
}
subsys_initcall(blk_mq_init);