blk-mq.c 68.3 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33 34

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
35
#include "blk-stat.h"
J
Jens Axboe 已提交
36
#include "blk-wbt.h"
37
#include "blk-mq-sched.h"
38 39 40 41

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

42 43 44
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

45 46 47
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
48
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49
{
50 51 52
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
53 54
}

55 56 57 58 59 60
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
61 62
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 64 65 66 67
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
68
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 70
}

71
void blk_freeze_queue_start(struct request_queue *q)
72
{
73
	int freeze_depth;
74

75 76
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
77
		percpu_ref_kill(&q->q_usage_counter);
78
		blk_mq_run_hw_queues(q, false);
79
	}
80
}
81
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82

83
void blk_mq_freeze_queue_wait(struct request_queue *q)
84
{
85
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86
}
87
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88

89 90 91 92 93 94 95 96
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111
	blk_freeze_queue_start(q);
112 113
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

165 166 167 168 169 170 171 172
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
173 174 175 176 177 178 179

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
180 181
}

182 183 184 185 186 187
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

188 189
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
190
{
191 192 193
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
194
	rq->mq_ctx = ctx;
195
	rq->cmd_flags = op;
196 197
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
198 199 200 201 202 203
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
204
	rq->start_time = jiffies;
205 206
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
207
	set_start_time_ns(rq);
208 209 210 211 212 213 214 215 216 217 218 219
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
220 221
	rq->timeout = 0;

222 223 224 225
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

226
	ctx->rq_dispatched[op_is_sync(op)]++;
227
}
228
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229

230 231
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
232 233 234 235
{
	struct request *rq;
	unsigned int tag;

236
	tag = blk_mq_get_tag(data);
237
	if (tag != BLK_MQ_TAG_FAIL) {
238 239 240
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
241

242 243 244 245
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
246 247 248 249
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
250 251
			rq->tag = tag;
			rq->internal_tag = -1;
252
			data->hctx->tags->rqs[rq->tag] = rq;
253 254
		}

255
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256 257 258 259 260
		return rq;
	}

	return NULL;
}
261
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262

263 264
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
265
{
266
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
267
	struct request *rq;
268
	int ret;
269

270
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271 272
	if (ret)
		return ERR_PTR(ret);
273

274
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275

276 277 278 279
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
280
		return ERR_PTR(-EWOULDBLOCK);
281 282 283 284

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
285 286
	return rq;
}
287
EXPORT_SYMBOL(blk_mq_alloc_request);
288

M
Ming Lin 已提交
289 290 291
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
292
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
293
	struct request *rq;
294
	unsigned int cpu;
M
Ming Lin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

313 314 315 316
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
317 318 319 320
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
321
	}
322 323
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
324

325
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326

327
	blk_mq_put_ctx(alloc_data.ctx);
328
	blk_queue_exit(q);
329 330 331 332 333

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
334 335 336
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

337 338
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
339
{
340
	const int sched_tag = rq->internal_tag;
341 342
	struct request_queue *q = rq->q;

343
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
344
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
345 346

	wbt_done(q->rq_wb, &rq->issue_stat);
347
	rq->rq_flags = 0;
348

349
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351 352 353 354
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
355
	blk_mq_sched_restart_queues(hctx);
356
	blk_queue_exit(q);
357 358
}

359
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360
				     struct request *rq)
361 362 363 364
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
365 366 367 368 369 370
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 372 373 374
}

void blk_mq_free_request(struct request *rq)
{
375
	blk_mq_sched_put_request(rq);
376
}
J
Jens Axboe 已提交
377
EXPORT_SYMBOL_GPL(blk_mq_free_request);
378

379
inline void __blk_mq_end_request(struct request *rq, int error)
380
{
M
Ming Lei 已提交
381 382
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
383
	if (rq->end_io) {
J
Jens Axboe 已提交
384
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
385
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
386 387 388
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
389
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
390
	}
391
}
392
EXPORT_SYMBOL(__blk_mq_end_request);
393

394
void blk_mq_end_request(struct request *rq, int error)
395 396 397
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
398
	__blk_mq_end_request(rq, error);
399
}
400
EXPORT_SYMBOL(blk_mq_end_request);
401

402
static void __blk_mq_complete_request_remote(void *data)
403
{
404
	struct request *rq = data;
405

406
	rq->q->softirq_done_fn(rq);
407 408
}

409
static void blk_mq_ipi_complete_request(struct request *rq)
410 411
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
412
	bool shared = false;
413 414
	int cpu;

C
Christoph Hellwig 已提交
415
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416 417 418
		rq->q->softirq_done_fn(rq);
		return;
	}
419 420

	cpu = get_cpu();
C
Christoph Hellwig 已提交
421 422 423 424
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425
		rq->csd.func = __blk_mq_complete_request_remote;
426 427
		rq->csd.info = rq;
		rq->csd.flags = 0;
428
		smp_call_function_single_async(ctx->cpu, &rq->csd);
429
	} else {
430
		rq->q->softirq_done_fn(rq);
431
	}
432 433
	put_cpu();
}
434

435 436 437
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
438 439
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
440 441 442
	}
}

443
static void __blk_mq_complete_request(struct request *rq)
444 445 446
{
	struct request_queue *q = rq->q;

447 448
	blk_mq_stat_add(rq);

449
	if (!q->softirq_done_fn)
450
		blk_mq_end_request(rq, rq->errors);
451 452 453 454
	else
		blk_mq_ipi_complete_request(rq);
}

455 456 457 458 459 460 461 462
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
463
void blk_mq_complete_request(struct request *rq, int error)
464
{
465 466 467
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
468
		return;
469 470
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
471
		__blk_mq_complete_request(rq);
472
	}
473 474
}
EXPORT_SYMBOL(blk_mq_complete_request);
475

476 477 478 479 480 481
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

482
void blk_mq_start_request(struct request *rq)
483 484 485
{
	struct request_queue *q = rq->q;

486 487
	blk_mq_sched_started_request(rq);

488 489
	trace_block_rq_issue(q, rq);

490
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
493
		wbt_issue(q->rq_wb, &rq->issue_stat);
494 495
	}

496
	blk_add_timer(rq);
497

498 499 500 501 502 503
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

504 505 506 507 508 509
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
510 511 512 513
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514 515 516 517 518 519 520 521 522

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
523
}
524
EXPORT_SYMBOL(blk_mq_start_request);
525

526 527
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528
 * flag isn't set yet, so there may be race with timeout handler,
529 530 531 532 533 534
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
535
static void __blk_mq_requeue_request(struct request *rq)
536 537 538 539
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
540
	wbt_requeue(q->rq_wb, &rq->issue_stat);
541
	blk_mq_sched_requeue_request(rq);
542

543 544 545 546
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
547 548
}

549
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550 551 552 553
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
554
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555 556 557
}
EXPORT_SYMBOL(blk_mq_requeue_request);

558 559 560
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
561
		container_of(work, struct request_queue, requeue_work.work);
562 563 564 565 566 567 568 569 570
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
572 573
			continue;

574
		rq->rq_flags &= ~RQF_SOFTBARRIER;
575
		list_del_init(&rq->queuelist);
576
		blk_mq_sched_insert_request(rq, true, false, false, true);
577 578 579 580 581
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
582
		blk_mq_sched_insert_request(rq, false, false, false, true);
583 584
	}

585
	blk_mq_run_hw_queues(q, false);
586 587
}

588 589
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
590 591 592 593 594 595 596 597
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
598
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599 600 601

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
602
		rq->rq_flags |= RQF_SOFTBARRIER;
603 604 605 606 607
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
608 609 610

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
611 612 613 614 615
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
616
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
617 618 619
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

620 621 622 623 624 625 626 627
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

648 649
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
650 651
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
652
		return tags->rqs[tag];
653
	}
654 655

	return NULL;
656 657 658
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

659
struct blk_mq_timeout_data {
660 661
	unsigned long next;
	unsigned int next_set;
662 663
};

664
void blk_mq_rq_timed_out(struct request *req, bool reserved)
665
{
J
Jens Axboe 已提交
666
	const struct blk_mq_ops *ops = req->q->mq_ops;
667
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668 669 670 671 672 673 674

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
675
	 * both flags will get cleared. So check here again, and ignore
676 677
	 * a timeout event with a request that isn't active.
	 */
678 679
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
680

681
	if (ops->timeout)
682
		ret = ops->timeout(req, reserved);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
698
}
699

700 701 702 703
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
704

705
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706
		return;
707

708 709 710 711 712 713 714 715 716 717 718 719 720
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
721 722
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
723
			blk_mq_rq_timed_out(rq, reserved);
724 725 726 727
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
728 729
}

730
static void blk_mq_timeout_work(struct work_struct *work)
731
{
732 733
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
734 735 736 737 738
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
739

740 741 742 743 744 745 746 747 748
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
749
	 * blk_freeze_queue_start, and the moment the last request is
750 751 752 753
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
754 755
		return;

756
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757

758 759 760
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
761
	} else {
762 763
		struct blk_mq_hw_ctx *hctx;

764 765 766 767 768
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
769
	}
770
	blk_queue_exit(q);
771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785
		bool merged = false;
786 787 788 789 790 791 792

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

793 794 795 796
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
797
			break;
798 799 800
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
801
			break;
802 803
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
804
			break;
805 806
		default:
			continue;
807
		}
808 809 810 811

		if (merged)
			ctx->rq_merged++;
		return merged;
812 813 814 815 816
	}

	return false;
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

835 836 837 838
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
839
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840
{
841 842 843 844
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
845

846
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847
}
848
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849

850 851 852 853
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
854

855
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 857
}

858 859
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
860 861 862 863 864 865 866 867 868 869 870 871 872 873
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

874 875 876
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

877 878
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
879 880 881 882
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
883 884 885 886 887 888 889
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

890 891
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
892 893 894 895 896 897 898 899 900 901
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

984
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
985 986 987
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
988 989
	LIST_HEAD(driver_list);
	struct list_head *dptr;
990
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
991

992 993 994 995 996 997
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

998 999 1000
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1001
	errors = queued = 0;
1002
	while (!list_empty(list)) {
1003
		struct blk_mq_queue_data bd;
1004

1005
		rq = list_first_entry(list, struct request, queuelist);
1006 1007 1008
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1009 1010

			/*
1011 1012
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1013
			 */
1014 1015 1016 1017 1018 1019 1020 1021 1022
			if (blk_mq_dispatch_wait_add(hctx)) {
				/*
				 * It's possible that a tag was freed in the
				 * window between the allocation failure and
				 * adding the hardware queue to the wait queue.
				 */
				if (!blk_mq_get_driver_tag(rq, &hctx, false))
					break;
			} else {
1023
				break;
1024
			}
1025
		}
1026

1027 1028
		list_del_init(&rq->queuelist);

1029 1030
		bd.rq = rq;
		bd.list = dptr;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1044 1045

		ret = q->mq_ops->queue_rq(hctx, &bd);
1046 1047 1048
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
1049
			break;
1050
		case BLK_MQ_RQ_QUEUE_BUSY:
1051
			blk_mq_put_driver_tag_hctx(hctx, rq);
1052
			list_add(&rq->queuelist, list);
1053
			__blk_mq_requeue_request(rq);
1054 1055 1056 1057
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
1058
			errors++;
1059
			rq->errors = -EIO;
1060
			blk_mq_end_request(rq, rq->errors);
1061 1062 1063 1064 1065
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
1066 1067 1068 1069 1070

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
1071
		if (!dptr && list->next != list->prev)
1072
			dptr = &driver_list;
1073 1074
	}

1075
	hctx->dispatched[queued_to_index(queued)]++;
1076 1077 1078 1079 1080

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1081
	if (!list_empty(list)) {
1082 1083 1084 1085 1086 1087 1088
		/*
		 * If we got a driver tag for the next request already,
		 * free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1089
		spin_lock(&hctx->lock);
1090
		list_splice_init(list, &hctx->dispatch);
1091
		spin_unlock(&hctx->lock);
1092

1093 1094 1095 1096 1097 1098 1099 1100
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1101
		 *
1102 1103
		 * If RESTART or TAG_WAITING is set, then let completion restart
		 * the queue instead of potentially looping here.
1104
		 */
1105 1106
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1107
			blk_mq_run_hw_queue(hctx, true);
1108
	}
1109

1110
	return (queued + errors) != 0;
1111 1112
}

1113 1114 1115 1116 1117 1118 1119 1120 1121
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1122
		blk_mq_sched_dispatch_requests(hctx);
1123 1124 1125
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1126
		blk_mq_sched_dispatch_requests(hctx);
1127 1128 1129 1130
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1131 1132 1133 1134 1135 1136 1137 1138
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1139 1140
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1141 1142

	if (--hctx->next_cpu_batch <= 0) {
1143
		int next_cpu;
1144 1145 1146 1147 1148 1149 1150 1151 1152

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1153
	return hctx->next_cpu;
1154 1155
}

1156 1157
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1158 1159
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1160 1161
		return;

1162
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1163 1164
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1165
			__blk_mq_run_hw_queue(hctx);
1166
			put_cpu();
1167 1168
			return;
		}
1169

1170
		put_cpu();
1171
	}
1172

1173
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1174 1175
}

1176
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1177 1178 1179 1180 1181
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1182
		if (!blk_mq_hctx_has_pending(hctx) ||
1183
		    blk_mq_hctx_stopped(hctx))
1184 1185
			continue;

1186
		blk_mq_run_hw_queue(hctx, async);
1187 1188
	}
}
1189
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1211 1212
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1213
	cancel_work(&hctx->run_work);
1214
	cancel_delayed_work(&hctx->delay_work);
1215 1216 1217 1218
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1229 1230 1231
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1232

1233
	blk_mq_run_hw_queue(hctx, false);
1234 1235 1236
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1257
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1258 1259 1260 1261
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1262 1263
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1264 1265 1266
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1267
static void blk_mq_run_work_fn(struct work_struct *work)
1268 1269 1270
{
	struct blk_mq_hw_ctx *hctx;

1271
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1272

1273 1274 1275
	__blk_mq_run_hw_queue(hctx);
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1288 1289
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1290

1291
	blk_mq_stop_hw_queue(hctx);
1292 1293
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1294 1295 1296
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1297 1298 1299
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1300
{
J
Jens Axboe 已提交
1301 1302
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1303 1304
	trace_block_rq_insert(hctx->queue, rq);

1305 1306 1307 1308
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1309
}
1310

1311 1312
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1313 1314 1315
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1316
	__blk_mq_insert_req_list(hctx, rq, at_head);
1317 1318 1319
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1320 1321
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1333
		BUG_ON(rq->mq_ctx != ctx);
1334
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1335
		__blk_mq_insert_req_list(hctx, rq, false);
1336
	}
1337
	blk_mq_hctx_mark_pending(hctx, ctx);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1374 1375 1376 1377
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1394 1395 1396
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1397 1398 1399 1400 1401 1402
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1403

1404
	blk_account_io_start(rq, true);
1405 1406
}

1407 1408 1409 1410 1411 1412
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1413 1414 1415
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1416
{
1417
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1418 1419 1420 1421 1422 1423 1424
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1425 1426
		struct request_queue *q = hctx->queue;

1427 1428 1429 1430 1431
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1432

1433
		spin_unlock(&ctx->lock);
1434
		__blk_mq_finish_request(hctx, ctx, rq);
1435
		return true;
1436
	}
1437
}
1438

1439 1440
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1441 1442 1443 1444
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1445 1446
}

1447
static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1448
				      bool may_sleep)
1449 1450 1451 1452 1453 1454 1455
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1456 1457 1458
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1459

1460
	if (q->elevator)
1461 1462
		goto insert;

1463 1464 1465 1466 1467
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1468 1469 1470 1471 1472 1473
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1474 1475
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1476
		return;
1477
	}
1478

1479 1480 1481 1482
	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1483
		return;
1484
	}
1485

1486
	__blk_mq_requeue_request(rq);
1487
insert:
1488
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
		unsigned int srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1505
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1506
{
1507
	const int is_sync = op_is_sync(bio->bi_opf);
1508
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1509
	struct blk_mq_alloc_data data = { .flags = 0 };
1510
	struct request *rq;
1511
	unsigned int request_count = 0;
1512
	struct blk_plug *plug;
1513
	struct request *same_queue_rq = NULL;
1514
	blk_qc_t cookie;
J
Jens Axboe 已提交
1515
	unsigned int wb_acct;
1516 1517 1518 1519

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1520
		bio_io_error(bio);
1521
		return BLK_QC_T_NONE;
1522 1523
	}

1524 1525
	blk_queue_split(q, &bio, q->bio_split);

1526 1527 1528
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1529

1530 1531 1532
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1533 1534
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1535 1536 1537
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1538 1539
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1540
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1541 1542 1543
	}

	wbt_track(&rq->issue_stat, wb_acct);
1544

1545
	cookie = request_to_qc_t(data.hctx, rq);
1546

1547
	plug = current->plug;
1548 1549
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1550 1551 1552 1553 1554 1555 1556 1557
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
1583
	} else if (plug && !blk_queue_nomerges(q)) {
1584 1585 1586
		blk_mq_bio_to_request(rq, bio);

		/*
1587
		 * We do limited plugging. If the bio can be merged, do that.
1588 1589
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1590 1591
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1592
		 */
1593 1594 1595 1596 1597 1598 1599 1600 1601
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1602
	} else if (q->nr_hw_queues > 1 && is_sync) {
1603 1604
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1605
	} else if (q->elevator) {
1606
		blk_mq_bio_to_request(rq, bio);
1607 1608 1609
		blk_mq_sched_insert_request(rq, false, true, true, true);
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_run_hw_queue(data.hctx, true);
1610
	}
1611

1612
	blk_mq_put_ctx(data.ctx);
1613
	return cookie;
1614 1615
}

1616 1617
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1618
{
1619
	struct page *page;
1620

1621
	if (tags->rqs && set->ops->exit_request) {
1622
		int i;
1623

1624
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1625 1626 1627
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1628
				continue;
J
Jens Axboe 已提交
1629
			set->ops->exit_request(set->driver_data, rq,
1630
						hctx_idx, i);
J
Jens Axboe 已提交
1631
			tags->static_rqs[i] = NULL;
1632
		}
1633 1634
	}

1635 1636
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1637
		list_del_init(&page->lru);
1638 1639 1640 1641 1642
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1643 1644
		__free_pages(page, page->private);
	}
1645
}
1646

1647 1648
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1649
	kfree(tags->rqs);
1650
	tags->rqs = NULL;
J
Jens Axboe 已提交
1651 1652
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1653

1654
	blk_mq_free_tags(tags);
1655 1656
}

1657 1658 1659 1660
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1661
{
1662
	struct blk_mq_tags *tags;
1663
	int node;
1664

1665 1666 1667 1668 1669
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1670
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1671 1672
	if (!tags)
		return NULL;
1673

1674
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1675
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1676
				 node);
1677 1678 1679 1680
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1681

J
Jens Axboe 已提交
1682 1683
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1684
				 node);
J
Jens Axboe 已提交
1685 1686 1687 1688 1689 1690
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1704 1705 1706 1707 1708
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1709 1710 1711

	INIT_LIST_HEAD(&tags->page_list);

1712 1713 1714 1715
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1716
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1717
				cache_line_size());
1718
	left = rq_size * depth;
1719

1720
	for (i = 0; i < depth; ) {
1721 1722 1723 1724 1725
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1726
		while (this_order && left < order_to_size(this_order - 1))
1727 1728 1729
			this_order--;

		do {
1730
			page = alloc_pages_node(node,
1731
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1732
				this_order);
1733 1734 1735 1736 1737 1738 1739 1740 1741
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1742
			goto fail;
1743 1744

		page->private = this_order;
1745
		list_add_tail(&page->lru, &tags->page_list);
1746 1747

		p = page_address(page);
1748 1749 1750 1751
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1752
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1753
		entries_per_page = order_to_size(this_order) / rq_size;
1754
		to_do = min(entries_per_page, depth - i);
1755 1756
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1757 1758 1759
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1760 1761
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1762
						rq, hctx_idx, i,
1763
						node)) {
J
Jens Axboe 已提交
1764
					tags->static_rqs[i] = NULL;
1765
					goto fail;
1766
				}
1767 1768
			}

1769 1770 1771 1772
			p += rq_size;
			i++;
		}
	}
1773
	return 0;
1774

1775
fail:
1776 1777
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1778 1779
}

J
Jens Axboe 已提交
1780 1781 1782 1783 1784
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1785
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1786
{
1787
	struct blk_mq_hw_ctx *hctx;
1788 1789 1790
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1791
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1792
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1793 1794 1795 1796 1797 1798 1799 1800 1801

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1802
		return 0;
1803

J
Jens Axboe 已提交
1804 1805 1806
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1807 1808

	blk_mq_run_hw_queue(hctx, true);
1809
	return 0;
1810 1811
}

1812
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1813
{
1814 1815
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1816 1817
}

1818
/* hctx->ctxs will be freed in queue's release handler */
1819 1820 1821 1822
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1823 1824
	unsigned flush_start_tag = set->queue_depth;

1825 1826
	blk_mq_tag_idle(hctx);

1827 1828 1829 1830 1831
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1832 1833 1834
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1835 1836 1837
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1838
	blk_mq_remove_cpuhp(hctx);
1839
	blk_free_flush_queue(hctx->fq);
1840
	sbitmap_free(&hctx->ctx_map);
1841 1842
}

M
Ming Lei 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1852
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1853 1854 1855
	}
}

1856 1857 1858
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1859
{
1860
	int node;
1861
	unsigned flush_start_tag = set->queue_depth;
1862 1863 1864 1865 1866

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1867
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1868 1869 1870 1871 1872
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1873
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1874

1875
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1876 1877

	hctx->tags = set->tags[hctx_idx];
1878 1879

	/*
1880 1881
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1882
	 */
1883 1884 1885 1886
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1887

1888 1889
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1890
		goto free_ctxs;
1891

1892
	hctx->nr_ctx = 0;
1893

1894 1895 1896
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1897

1898 1899 1900
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1901

1902 1903 1904 1905 1906
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1907

1908 1909 1910
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1911
	return 0;
1912

1913 1914 1915 1916 1917
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1918
 free_bitmap:
1919
	sbitmap_free(&hctx->ctx_map);
1920 1921 1922
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1923
	blk_mq_remove_cpuhp(hctx);
1924 1925
	return -1;
}
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1945
		hctx = blk_mq_map_queue(q, i);
1946

1947 1948 1949 1950 1951
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1952
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1953 1954 1955
	}
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1978 1979 1980 1981 1982
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1983 1984
}

1985 1986
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1987
{
1988
	unsigned int i, hctx_idx;
1989 1990
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1991
	struct blk_mq_tag_set *set = q->tag_set;
1992

1993 1994 1995 1996 1997
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1998
	queue_for_each_hw_ctx(q, hctx, i) {
1999
		cpumask_clear(hctx->cpumask);
2000 2001 2002 2003 2004 2005
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2006
	for_each_possible_cpu(i) {
2007
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2008
		if (!cpumask_test_cpu(i, online_mask))
2009 2010
			continue;

2011 2012
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2013 2014
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2015 2016 2017 2018 2019 2020
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2021
			q->mq_map[i] = 0;
2022 2023
		}

2024
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2025
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2026

2027
		cpumask_set_cpu(i, hctx->cpumask);
2028 2029 2030
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2031

2032 2033
	mutex_unlock(&q->sysfs_lock);

2034
	queue_for_each_hw_ctx(q, hctx, i) {
2035
		/*
2036 2037
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2038 2039
		 */
		if (!hctx->nr_ctx) {
2040 2041 2042 2043
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2044 2045 2046
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2047
			hctx->tags = NULL;
2048 2049 2050
			continue;
		}

M
Ming Lei 已提交
2051 2052 2053
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2054 2055 2056 2057 2058
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2059
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2060

2061 2062 2063
		/*
		 * Initialize batch roundrobin counts
		 */
2064 2065 2066
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2067 2068
}

2069
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2070 2071 2072 2073
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2085 2086 2087

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2088
		queue_set_hctx_shared(q, shared);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2099 2100 2101 2102 2103 2104
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2105 2106 2107 2108 2109 2110 2111 2112 2113
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2114 2115 2116 2117 2118 2119 2120 2121 2122

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2123
	list_add_tail(&q->tag_set_list, &set->tag_list);
2124

2125 2126 2127
	mutex_unlock(&set->tag_list_lock);
}

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2139 2140
	blk_mq_sched_teardown(q);

2141
	/* hctx kobj stays in hctx */
2142 2143 2144
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2145
		kobject_put(&hctx->kobj);
2146
	}
2147

2148 2149
	q->mq_map = NULL;

2150 2151
	kfree(q->queue_hw_ctx);

2152 2153 2154 2155 2156 2157
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2158 2159 2160
	free_percpu(q->queue_ctx);
}

2161
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2177 2178
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2179
{
K
Keith Busch 已提交
2180 2181
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2182

K
Keith Busch 已提交
2183
	blk_mq_sysfs_unregister(q);
2184
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2185
		int node;
2186

K
Keith Busch 已提交
2187 2188 2189 2190
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2191 2192
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2193
		if (!hctxs[i])
K
Keith Busch 已提交
2194
			break;
2195

2196
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2197 2198 2199 2200 2201
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2202

2203
		atomic_set(&hctxs[i]->nr_active, 0);
2204
		hctxs[i]->numa_node = node;
2205
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2206 2207 2208 2209 2210 2211 2212 2213

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2214
	}
K
Keith Busch 已提交
2215 2216 2217 2218
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2219 2220
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2234 2235 2236
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2237 2238 2239 2240 2241
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_stat_rq_ddir, 2, q);
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2242 2243
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2244
		goto err_exit;
K
Keith Busch 已提交
2245

2246 2247 2248
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2249 2250 2251 2252 2253
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2254
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2255 2256 2257 2258

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2259

2260
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2261
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2262 2263 2264

	q->nr_queues = nr_cpu_ids;

2265
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2266

2267 2268 2269
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2270 2271
	q->sg_reserved_size = INT_MAX;

2272
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2273 2274 2275
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2276
	blk_queue_make_request(q, blk_mq_make_request);
2277

2278 2279 2280 2281 2282
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2283 2284 2285 2286 2287
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2288 2289
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2290

2291
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2292

2293
	get_online_cpus();
2294 2295
	mutex_lock(&all_q_mutex);

2296
	list_add_tail(&q->all_q_node, &all_q_list);
2297
	blk_mq_add_queue_tag_set(set, q);
2298
	blk_mq_map_swqueue(q, cpu_online_mask);
2299

2300
	mutex_unlock(&all_q_mutex);
2301
	put_online_cpus();
2302

2303 2304 2305 2306 2307 2308 2309 2310
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2311
	return q;
2312

2313
err_hctxs:
K
Keith Busch 已提交
2314
	kfree(q->queue_hw_ctx);
2315
err_percpu:
K
Keith Busch 已提交
2316
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2317 2318
err_exit:
	q->mq_ops = NULL;
2319 2320
	return ERR_PTR(-ENOMEM);
}
2321
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2322 2323 2324

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2325
	struct blk_mq_tag_set	*set = q->tag_set;
2326

2327 2328 2329 2330
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2331 2332
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2333
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2334 2335 2336
}

/* Basically redo blk_mq_init_queue with queue frozen */
2337 2338
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2339
{
2340
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2341

2342 2343
	blk_mq_sysfs_unregister(q);

2344 2345 2346 2347 2348 2349
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2350
	blk_mq_map_swqueue(q, online_mask);
2351

2352
	blk_mq_sysfs_register(q);
2353 2354
}

2355 2356 2357 2358 2359 2360 2361 2362
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2363 2364 2365 2366
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2367 2368 2369 2370 2371 2372 2373 2374
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
2375
		blk_freeze_queue_start(q);
2376
	list_for_each_entry(q, &all_q_list, all_q_node)
2377 2378
		blk_mq_freeze_queue_wait(q);

2379
	list_for_each_entry(q, &all_q_list, all_q_node)
2380
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2381 2382 2383 2384

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2385
	mutex_unlock(&all_q_mutex);
2386 2387 2388 2389
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2390
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2406 2407 2408 2409
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2410 2411 2412 2413 2414 2415 2416
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2417 2418
}

2419 2420 2421 2422
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2423 2424
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2425 2426 2427 2428 2429 2430
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2431
		blk_mq_free_rq_map(set->tags[i]);
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2471 2472 2473 2474 2475 2476
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2477 2478
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2479 2480
	int ret;

B
Bart Van Assche 已提交
2481 2482
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2483 2484
	if (!set->nr_hw_queues)
		return -EINVAL;
2485
	if (!set->queue_depth)
2486 2487 2488 2489
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2490
	if (!set->ops->queue_rq)
2491 2492
		return -EINVAL;

2493 2494 2495 2496 2497
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2508 2509 2510 2511 2512
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2513

K
Keith Busch 已提交
2514
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2515 2516
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2517
		return -ENOMEM;
2518

2519 2520 2521
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2522 2523 2524
	if (!set->mq_map)
		goto out_free_tags;

2525 2526 2527 2528 2529 2530 2531 2532 2533
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2534
		goto out_free_mq_map;
2535

2536 2537 2538
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2539
	return 0;
2540 2541 2542 2543 2544

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2545 2546
	kfree(set->tags);
	set->tags = NULL;
2547
	return ret;
2548 2549 2550 2551 2552 2553 2554
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2555 2556
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2557

2558 2559 2560
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2561
	kfree(set->tags);
2562
	set->tags = NULL;
2563 2564 2565
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2566 2567 2568 2569 2570 2571
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2572
	if (!set)
2573 2574
		return -EINVAL;

2575 2576 2577
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2578 2579
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2580 2581
		if (!hctx->tags)
			continue;
2582 2583 2584 2585
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2586 2587 2588 2589 2590 2591 2592 2593
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2594 2595 2596 2597 2598 2599 2600
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2601 2602 2603
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2604 2605 2606
	return ret;
}

K
Keith Busch 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;

	if (cb->stat[READ].nr_samples)
		q->poll_stat[READ] = cb->stat[READ];
	if (cb->stat[WRITE].nr_samples)
		q->poll_stat[WRITE] = cb->stat[WRITE];
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2673
	if (!blk_poll_stats_enable(q))
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
2684 2685 2686 2687
	if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
		ret = (q->poll_stat[READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
		ret = (q->poll_stat[WRITE].mean + 1) / 2;
2688 2689 2690 2691

	return ret;
}

2692
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2693
				     struct blk_mq_hw_ctx *hctx,
2694 2695 2696 2697
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2698
	unsigned int nsecs;
2699 2700
	ktime_t kt;

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2719 2720 2721 2722 2723 2724 2725 2726
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2727
	kt = nsecs;
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2750 2751 2752 2753 2754
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2755 2756 2757 2758 2759 2760 2761
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2762
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2763 2764
		return true;

J
Jens Axboe 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2808 2809 2810 2811
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2812 2813 2814 2815 2816

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2827 2828
static int __init blk_mq_init(void)
{
2829 2830
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2831

2832 2833 2834
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2835 2836 2837
	return 0;
}
subsys_initcall(blk_mq_init);