hugetlb.c 60.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}

238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

251 252 253 254 255 256 257
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
258
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
259

260 261 262 263 264 265 266 267 268
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
269 270 271 272 273 274 275 276 277
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
278
 */
279 280 281 282 283 284 285 286 287 288 289
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

290 291 292 293 294
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

295
static struct resv_map *resv_map_alloc(void)
296 297 298 299 300 301 302 303 304 305 306
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

307
static void resv_map_release(struct kref *ref)
308 309 310 311 312 313 314 315 316
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
317 318 319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
320 321
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
322
	return NULL;
323 324
}

325
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
326 327 328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

330 331
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
332 333 334 335 336
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 338 339
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
340 341 342 343 344
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
345 346

	return (get_vma_private_data(vma) & flag) != 0;
347 348 349
}

/* Decrement the reserved pages in the hugepage pool by one */
350 351
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
352
{
353 354 355
	if (vma->vm_flags & VM_NORESERVE)
		return;

356 357
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
358
		h->resv_huge_pages--;
359
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
360 361 362 363
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
364
		h->resv_huge_pages--;
365 366 367
	}
}

368
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
369 370 371 372 373 374 375 376
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
377
static int vma_has_reserves(struct vm_area_struct *vma)
378 379
{
	if (vma->vm_flags & VM_SHARED)
380 381 382 383
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
398 399
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
400 401 402
{
	int i;

403 404 405
	if (unlikely(sz > MAX_ORDER_NR_PAGES))
		return clear_gigantic_page(page, addr, sz);

406
	might_sleep();
407
	for (i = 0; i < sz/PAGE_SIZE; i++) {
408
		cond_resched();
409
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
410 411 412
	}
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
430
static void copy_huge_page(struct page *dst, struct page *src,
431
			   unsigned long addr, struct vm_area_struct *vma)
432 433
{
	int i;
434
	struct hstate *h = hstate_vma(vma);
435

436 437 438
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
		return copy_gigantic_page(dst, src, addr, vma);

439
	might_sleep();
440
	for (i = 0; i < pages_per_huge_page(h); i++) {
441
		cond_resched();
442
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
443 444 445
	}
}

446
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
447 448
{
	int nid = page_to_nid(page);
449 450 451
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
452 453
}

454
static struct page *dequeue_huge_page(struct hstate *h)
455 456 457 458 459
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
460 461
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
462 463
					  struct page, lru);
			list_del(&page->lru);
464 465
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
466 467 468 469 470 471
			break;
		}
	}
	return page;
}

472 473
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
474
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
475
{
476
	int nid;
L
Linus Torvalds 已提交
477
	struct page *page = NULL;
478
	struct mempolicy *mpol;
479
	nodemask_t *nodemask;
480
	struct zonelist *zonelist = huge_zonelist(vma, address,
481
					htlb_alloc_mask, &mpol, &nodemask);
482 483
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
484

485 486 487 488 489
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
490
	if (!vma_has_reserves(vma) &&
491
			h->free_huge_pages - h->resv_huge_pages == 0)
492 493
		return NULL;

494
	/* If reserves cannot be used, ensure enough pages are in the pool */
495
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
496 497
		return NULL;

498 499
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
500 501
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
502 503
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
504 505
					  struct page, lru);
			list_del(&page->lru);
506 507
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
508 509

			if (!avoid_reserve)
510
				decrement_hugepage_resv_vma(h, vma);
511

K
Ken Chen 已提交
512
			break;
A
Andrew Morton 已提交
513
		}
L
Linus Torvalds 已提交
514
	}
515
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
516 517 518
	return page;
}

519
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
520 521
{
	int i;
522

523 524
	VM_BUG_ON(h->order >= MAX_ORDER);

525 526 527
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
528 529 530 531 532 533
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
534
	arch_release_hugepage(page);
535
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
536 537
}

538 539 540 541 542 543 544 545 546 547 548
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

549 550
static void free_huge_page(struct page *page)
{
551 552 553 554
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
555
	struct hstate *h = page_hstate(page);
556
	int nid = page_to_nid(page);
557
	struct address_space *mapping;
558

559
	mapping = (struct address_space *) page_private(page);
560
	set_page_private(page, 0);
561
	BUG_ON(page_count(page));
562 563 564
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
565
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
566 567 568
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
569
	} else {
570
		enqueue_huge_page(h, page);
571
	}
572
	spin_unlock(&hugetlb_lock);
573
	if (mapping)
574
		hugetlb_put_quota(mapping, 1);
575 576
}

577 578 579 580 581
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
582
static int adjust_pool_surplus(struct hstate *h, int delta)
583 584 585 586 587 588 589 590 591 592 593 594
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
595
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
596 597
			continue;
		/* Surplus cannot exceed the total number of pages */
598 599
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
600 601
			continue;

602 603
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
604 605 606 607 608 609 610 611
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

612
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
613 614 615
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
616 617
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
618 619 620 621
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

622
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
623 624
{
	struct page *page;
625

626 627 628
	if (h->order >= MAX_ORDER)
		return NULL;

629
	page = alloc_pages_node(nid,
630 631
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
632
		huge_page_order(h));
L
Linus Torvalds 已提交
633
	if (page) {
634
		if (arch_prepare_hugepage(page)) {
635
			__free_pages(page, huge_page_order(h));
636
			return NULL;
637
		}
638
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
639
	}
640 641 642 643

	return page;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

665
static int alloc_fresh_huge_page(struct hstate *h)
666 667 668 669 670 671
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

672
	start_nid = h->hugetlb_next_nid;
673 674

	do {
675
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
676 677
		if (page)
			ret = 1;
678
		next_nid = hstate_next_node(h);
679
	} while (!page && h->hugetlb_next_nid != start_nid);
680

681 682 683 684 685
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

686
	return ret;
L
Linus Torvalds 已提交
687 688
}

689 690
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
691 692
{
	struct page *page;
693
	unsigned int nid;
694

695 696 697
	if (h->order >= MAX_ORDER)
		return NULL;

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
722
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
723 724 725
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
726 727
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
728 729 730
	}
	spin_unlock(&hugetlb_lock);

731 732
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
733
					huge_page_order(h));
734

735 736 737 738 739
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

740
	spin_lock(&hugetlb_lock);
741
	if (page) {
742 743 744 745 746 747
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
748
		nid = page_to_nid(page);
749
		set_compound_page_dtor(page, free_huge_page);
750 751 752
		/*
		 * We incremented the global counters already
		 */
753 754
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
755
		__count_vm_event(HTLB_BUDDY_PGALLOC);
756
	} else {
757 758
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
759
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
760
	}
761
	spin_unlock(&hugetlb_lock);
762 763 764 765

	return page;
}

766 767 768 769
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
770
static int gather_surplus_pages(struct hstate *h, int delta)
771 772 773 774 775 776
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

777
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
778
	if (needed <= 0) {
779
		h->resv_huge_pages += delta;
780
		return 0;
781
	}
782 783 784 785 786 787 788 789

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
790
		page = alloc_buddy_huge_page(h, NULL, 0);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
811 812
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
813 814 815 816 817 818 819
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
820 821 822
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
823 824
	 */
	needed += allocated;
825
	h->resv_huge_pages += delta;
826 827
	ret = 0;
free:
828
	/* Free the needed pages to the hugetlb pool */
829
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
830 831
		if ((--needed) < 0)
			break;
832
		list_del(&page->lru);
833
		enqueue_huge_page(h, page);
834 835 836 837 838 839 840
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
841
			/*
842 843 844
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
845 846 847
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
848
			free_huge_page(page);
849
		}
850
		spin_lock(&hugetlb_lock);
851 852 853 854 855 856 857 858 859 860
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
861 862
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
863 864 865 866 867
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

868 869 870 871 872 873 874 875
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

876
	/* Uncommit the reservation */
877
	h->resv_huge_pages -= unused_resv_pages;
878

879 880 881 882
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

883
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
884

885
	while (remaining_iterations-- && nr_pages) {
886 887 888 889
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

890
		if (!h->surplus_huge_pages_node[nid])
891 892
			continue;

893 894
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
895 896
					  struct page, lru);
			list_del(&page->lru);
897 898 899 900 901
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
902
			nr_pages--;
903
			remaining_iterations = num_online_nodes();
904 905 906 907
		}
	}
}

908 909 910 911 912 913 914 915 916
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
917 918
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
919 920 921 922 923
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
924
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
925 926 927
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

928 929
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
930

931 932
	} else  {
		int err;
933
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
934 935 936 937 938 939 940
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
941
}
942 943
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
944 945 946 947 948
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
949
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
950
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
951 952

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
953
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
954 955 956 957
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
958 959 960
	}
}

961
static struct page *alloc_huge_page(struct vm_area_struct *vma,
962
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
963
{
964
	struct hstate *h = hstate_vma(vma);
965
	struct page *page;
966 967
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
968
	unsigned int chg;
969 970 971 972 973

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
974 975
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
976
	 */
977
	chg = vma_needs_reservation(h, vma, addr);
978 979 980
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
981 982
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
983 984

	spin_lock(&hugetlb_lock);
985
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
986
	spin_unlock(&hugetlb_lock);
987

K
Ken Chen 已提交
988
	if (!page) {
989
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
990
		if (!page) {
991
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
992 993 994
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
995

996 997
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
998

999
	vma_commit_reservation(h, vma, addr);
1000

1001
	return page;
1002 1003
}

1004
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1039 1040 1041 1042 1043 1044 1045 1046
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1057
		prep_compound_huge_page(page, h->order);
1058 1059 1060 1061
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1062
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1063 1064
{
	unsigned long i;
1065

1066
	for (i = 0; i < h->max_huge_pages; ++i) {
1067 1068 1069 1070
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1071 1072
			break;
	}
1073
	h->max_huge_pages = i;
1074 1075 1076 1077 1078 1079 1080
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1081 1082 1083
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1084 1085 1086
	}
}

A
Andi Kleen 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1098 1099 1100 1101 1102
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1103 1104 1105 1106 1107
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1108 1109 1110
	}
}

L
Linus Torvalds 已提交
1111
#ifdef CONFIG_HIGHMEM
1112
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1113
{
1114 1115
	int i;

1116 1117 1118
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1119 1120
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1121 1122 1123
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1124
				return;
L
Linus Torvalds 已提交
1125 1126 1127
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1128
			update_and_free_page(h, page);
1129 1130
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1131 1132 1133 1134
		}
	}
}
#else
1135
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1136 1137 1138 1139
{
}
#endif

1140
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1141
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1142
{
1143
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1144

1145 1146 1147
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1148 1149 1150 1151
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1152 1153 1154 1155 1156 1157
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1158
	 */
L
Linus Torvalds 已提交
1159
	spin_lock(&hugetlb_lock);
1160 1161
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1162 1163 1164
			break;
	}

1165
	while (count > persistent_huge_pages(h)) {
1166 1167 1168 1169 1170 1171
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1172
		ret = alloc_fresh_huge_page(h);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1185 1186 1187 1188 1189 1190 1191 1192
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1193
	 */
1194
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1195
	min_count = max(count, min_count);
1196 1197 1198
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1199 1200
		if (!page)
			break;
1201
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1202
	}
1203 1204
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1205 1206 1207
			break;
	}
out:
1208
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1209
	spin_unlock(&hugetlb_lock);
1210
	return ret;
L
Linus Torvalds 已提交
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1366 1367 1368 1369 1370 1371
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1372

1373 1374 1375 1376
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1377
	}
1378 1379 1380
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1381 1382 1383

	hugetlb_init_hstates();

1384 1385
	gather_bootmem_prealloc();

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1398 1399
	unsigned long i;

1400 1401 1402 1403 1404 1405 1406 1407 1408
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1409 1410 1411 1412 1413
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1414 1415
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1416

1417 1418 1419
	parsed_hstate = h;
}

1420
static int __init hugetlb_nrpages_setup(char *s)
1421 1422
{
	unsigned long *mhp;
1423
	static unsigned long *last_mhp;
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1434 1435 1436 1437 1438 1439
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1440 1441 1442
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1453 1454
	return 1;
}
1455 1456 1457 1458 1459 1460 1461 1462
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1476 1477 1478 1479
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1480 1481 1482 1483 1484 1485 1486 1487
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1488
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1489 1490 1491 1492

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1493 1494
	return 0;
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1508 1509 1510 1511
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1512
	struct hstate *h = &default_hstate;
1513 1514 1515 1516 1517 1518 1519
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1520
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1521 1522 1523 1524 1525 1526 1527

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1528 1529 1530
	return 0;
}

L
Linus Torvalds 已提交
1531 1532
#endif /* CONFIG_SYSCTL */

1533
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1534
{
1535
	struct hstate *h = &default_hstate;
1536
	seq_printf(m,
1537 1538 1539 1540 1541
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1542 1543 1544 1545 1546
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1547 1548 1549 1550
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1551
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1552 1553
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1554 1555
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1556 1557 1558
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1564 1565
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1566 1567
}

1568
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1591
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1592 1593
			goto out;

1594 1595
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1596 1597 1598 1599 1600 1601
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1602
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1603 1604 1605 1606 1607 1608

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1625 1626
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1627
	struct hstate *h = hstate_vma(vma);
1628 1629 1630 1631 1632 1633
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1634 1635
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1636 1637 1638 1639 1640 1641

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1642
		if (reserve) {
1643
			hugetlb_acct_memory(h, -reserve);
1644 1645
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1646
	}
1647 1648
}

L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1655
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1656 1657
{
	BUG();
N
Nick Piggin 已提交
1658
	return 0;
L
Linus Torvalds 已提交
1659 1660 1661
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1662
	.fault = hugetlb_vm_op_fault,
1663
	.open = hugetlb_vm_op_open,
1664
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1665 1666
};

1667 1668
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1669 1670 1671
{
	pte_t entry;

1672
	if (writable) {
D
David Gibson 已提交
1673 1674 1675
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1676
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1677 1678 1679 1680 1681 1682 1683
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1684 1685 1686 1687 1688
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1689 1690
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1691 1692
		update_mmu_cache(vma, address, entry);
	}
1693 1694 1695
}


D
David Gibson 已提交
1696 1697 1698 1699 1700
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1701
	unsigned long addr;
1702
	int cow;
1703 1704
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1705 1706

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1707

1708
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1709 1710 1711
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1712
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1713 1714
		if (!dst_pte)
			goto nomem;
1715 1716 1717 1718 1719

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1720
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1721
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1722
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1723
			if (cow)
1724 1725
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1726 1727 1728 1729 1730
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1731
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1732 1733 1734 1735 1736 1737 1738
	}
	return 0;

nomem:
	return -ENOMEM;
}

1739
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1740
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1741 1742 1743
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1744
	pte_t *ptep;
D
David Gibson 已提交
1745 1746
	pte_t pte;
	struct page *page;
1747
	struct page *tmp;
1748 1749 1750
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1751 1752 1753 1754 1755
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1756
	LIST_HEAD(page_list);
D
David Gibson 已提交
1757 1758

	WARN_ON(!is_vm_hugetlb_page(vma));
1759 1760
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1761

A
Andrea Arcangeli 已提交
1762
	mmu_notifier_invalidate_range_start(mm, start, end);
1763
	spin_lock(&mm->page_table_lock);
1764
	for (address = start; address < end; address += sz) {
1765
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1766
		if (!ptep)
1767 1768
			continue;

1769 1770 1771
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1793
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1794
		if (huge_pte_none(pte))
D
David Gibson 已提交
1795
			continue;
1796

D
David Gibson 已提交
1797
		page = pte_page(pte);
1798 1799
		if (pte_dirty(pte))
			set_page_dirty(page);
1800
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1801
	}
L
Linus Torvalds 已提交
1802
	spin_unlock(&mm->page_table_lock);
1803
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1804
	mmu_notifier_invalidate_range_end(mm, start, end);
1805 1806 1807 1808
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1809
}
D
David Gibson 已提交
1810

1811
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1812
			  unsigned long end, struct page *ref_page)
1813
{
1814 1815 1816
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1817 1818
}

1819 1820 1821 1822 1823 1824
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1825 1826
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1827
{
1828
	struct hstate *h = hstate_vma(vma);
1829 1830 1831 1832 1833 1834 1835 1836 1837
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1838
	address = address & huge_page_mask(h);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1857
				address, address + huge_page_size(h),
1858 1859 1860 1861 1862 1863
				page);
	}

	return 1;
}

1864
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1865 1866
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1867
{
1868
	struct hstate *h = hstate_vma(vma);
1869
	struct page *old_page, *new_page;
1870
	int avoidcopy;
1871
	int outside_reserve = 0;
1872 1873 1874

	old_page = pte_page(pte);

1875
retry_avoidcopy:
1876 1877 1878 1879 1880
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1881
		return 0;
1882 1883
	}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1898
	page_cache_get(old_page);
1899
	new_page = alloc_huge_page(vma, address, outside_reserve);
1900

1901
	if (IS_ERR(new_page)) {
1902
		page_cache_release(old_page);
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1921
		return -PTR_ERR(new_page);
1922 1923 1924
	}

	spin_unlock(&mm->page_table_lock);
1925
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1926
	__SetPageUptodate(new_page);
1927 1928
	spin_lock(&mm->page_table_lock);

1929
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1930
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1931
		/* Break COW */
1932
		huge_ptep_clear_flush(vma, address, ptep);
1933 1934 1935 1936 1937 1938 1939
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1940
	return 0;
1941 1942
}

1943
/* Return the pagecache page at a given address within a VMA */
1944 1945
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1946 1947
{
	struct address_space *mapping;
1948
	pgoff_t idx;
1949 1950

	mapping = vma->vm_file->f_mapping;
1951
	idx = vma_hugecache_offset(h, vma, address);
1952 1953 1954 1955

	return find_lock_page(mapping, idx);
}

1956
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1957
			unsigned long address, pte_t *ptep, int write_access)
1958
{
1959
	struct hstate *h = hstate_vma(vma);
1960
	int ret = VM_FAULT_SIGBUS;
1961
	pgoff_t idx;
A
Adam Litke 已提交
1962 1963 1964
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1965
	pte_t new_pte;
A
Adam Litke 已提交
1966

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1979
	mapping = vma->vm_file->f_mapping;
1980
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1981 1982 1983 1984 1985

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1986 1987 1988
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1989
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1990 1991
		if (idx >= size)
			goto out;
1992
		page = alloc_huge_page(vma, address, 0);
1993 1994
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1995 1996
			goto out;
		}
1997
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1998
		__SetPageUptodate(page);
1999

2000 2001
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
2002
			struct inode *inode = mapping->host;
2003 2004 2005 2006 2007 2008 2009 2010

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2011 2012

			spin_lock(&inode->i_lock);
2013
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2014
			spin_unlock(&inode->i_lock);
2015 2016 2017
		} else
			lock_page(page);
	}
2018

2019 2020 2021 2022 2023 2024 2025
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED))
2026 2027 2028 2029
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2030

2031
	spin_lock(&mm->page_table_lock);
2032
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2033 2034 2035
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2036
	ret = 0;
2037
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2038 2039
		goto backout;

2040 2041 2042 2043 2044 2045
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
2046
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2047 2048
	}

2049
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2050 2051
	unlock_page(page);
out:
2052
	return ret;
A
Adam Litke 已提交
2053 2054 2055

backout:
	spin_unlock(&mm->page_table_lock);
2056
backout_unlocked:
A
Adam Litke 已提交
2057 2058 2059
	unlock_page(page);
	put_page(page);
	goto out;
2060 2061
}

2062 2063 2064 2065 2066
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
2067
	int ret;
2068
	struct page *pagecache_page = NULL;
2069
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2070
	struct hstate *h = hstate_vma(vma);
2071

2072
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2073 2074 2075
	if (!ptep)
		return VM_FAULT_OOM;

2076 2077 2078 2079 2080 2081
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2082 2083
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2084
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2085
		goto out_mutex;
2086
	}
2087

N
Nick Piggin 已提交
2088
	ret = 0;
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if (write_access && !pte_write(entry)) {
2099 2100
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2101
			goto out_mutex;
2102
		}
2103 2104 2105 2106 2107 2108

		if (!(vma->vm_flags & VM_SHARED))
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2109 2110
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2111 2112 2113 2114 2115 2116
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


	if (write_access) {
		if (!pte_write(entry)) {
2117 2118
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2119 2120 2121 2122 2123 2124 2125 2126 2127
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2128
	spin_unlock(&mm->page_table_lock);
2129 2130 2131 2132 2133 2134

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2135
out_mutex:
2136
	mutex_unlock(&hugetlb_instantiation_mutex);
2137 2138

	return ret;
2139 2140
}

A
Andi Kleen 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2150 2151 2152 2153 2154 2155 2156 2157
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2158 2159
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2160 2161
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2162
{
2163 2164
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2165
	int remainder = *length;
2166
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2167 2168
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2169

2170
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2171
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2172 2173
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2174

A
Adam Litke 已提交
2175 2176 2177 2178 2179
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2180
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2181 2182
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2183

K
KOSAKI Motohiro 已提交
2184 2185
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2186
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2187
			int ret;
D
David Gibson 已提交
2188

A
Adam Litke 已提交
2189
			spin_unlock(&mm->page_table_lock);
2190
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2191
			spin_lock(&mm->page_table_lock);
2192
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2193
				continue;
D
David Gibson 已提交
2194

A
Adam Litke 已提交
2195 2196 2197 2198 2199 2200
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2201
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2202
		page = pte_page(huge_ptep_get(pte));
2203
same_page:
2204
		if (pages) {
K
KOSAKI Motohiro 已提交
2205 2206 2207
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2208
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2209
			get_page(pages[i]);
2210
		}
D
David Gibson 已提交
2211 2212 2213 2214 2215

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2216
		++pfn_offset;
D
David Gibson 已提交
2217 2218
		--remainder;
		++i;
2219
		if (vaddr < vma->vm_end && remainder &&
2220
				pfn_offset < pages_per_huge_page(h)) {
2221 2222 2223 2224 2225 2226
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2227
	}
2228
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2229 2230 2231 2232 2233
	*length = remainder;
	*position = vaddr;

	return i;
}
2234 2235 2236 2237 2238 2239 2240 2241

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2242
	struct hstate *h = hstate_vma(vma);
2243 2244 2245 2246

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2247
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2248
	spin_lock(&mm->page_table_lock);
2249
	for (; address < end; address += huge_page_size(h)) {
2250 2251 2252
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2253 2254
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2255
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2256 2257 2258 2259 2260 2261
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2262
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2263 2264 2265 2266

	flush_tlb_range(vma, start, end);
}

2267 2268 2269
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
2270 2271
{
	long ret, chg;
2272
	struct hstate *h = hstate_inode(inode);
2273

2274 2275 2276
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

2277 2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2286 2287 2288 2289
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2290
		chg = to - from;
2291 2292

		set_vma_resv_map(vma, resv_map);
2293
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2294 2295
	}

2296 2297
	if (chg < 0)
		return chg;
2298

2299 2300
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2301
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2302 2303
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2304
		return ret;
K
Ken Chen 已提交
2305
	}
2306 2307
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2308 2309 2310 2311 2312
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2313
	struct hstate *h = hstate_inode(inode);
2314
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2315 2316

	spin_lock(&inode->i_lock);
2317
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2318 2319
	spin_unlock(&inode->i_lock);

2320
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2321
	hugetlb_acct_memory(h, -(chg - freed));
2322
}