huge_memory.c 80.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36

37 38 39 40
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
41
/*
42 43 44 45
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 47
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
48
 */
49
unsigned long transparent_hugepage_flags __read_mostly =
50
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
51
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 53 54 55
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
56
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
59

60
static struct shrinker deferred_split_shrinker;
61

62
static atomic_t huge_zero_refcount;
63
struct page *huge_zero_page __read_mostly;
64

65
static struct page *get_huge_zero_page(void)
66 67 68 69
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70
		return READ_ONCE(huge_zero_page);
71 72

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73
			HPAGE_PMD_ORDER);
74 75
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76
		return NULL;
77 78
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
79
	preempt_disable();
80
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81
		preempt_enable();
82
		__free_pages(zero_page, compound_order(zero_page));
83 84 85 86 87 88
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
89
	return READ_ONCE(huge_zero_page);
90 91
}

92
static void put_huge_zero_page(void)
93
{
94 95 96 97 98
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

121 122
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
123
{
124 125 126
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
127

128 129 130
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
131
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 133
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
134
		__free_pages(zero_page, compound_order(zero_page));
135
		return HPAGE_PMD_NR;
136 137 138
	}

	return 0;
139 140
}

141
static struct shrinker huge_zero_page_shrinker = {
142 143
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
144 145 146
	.seeks = DEFAULT_SEEKS,
};

147 148 149 150
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
151 152 153 154 155 156
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
157
}
158

159 160 161 162
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
163
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
179 180

	if (ret > 0) {
181
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
182 183 184 185
		if (err)
			ret = err;
	}
	return ret;
186 187 188 189
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

190
ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 192 193
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
194 195
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
196
}
197

198
ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 200 201 202
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
203 204 205 206 207 208 209 210 211 212
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
213
		set_bit(flag, &transparent_hugepage_flags);
214
	else
215 216 217 218 219 220 221 222
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
223
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 227 228 229 230 231
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232
}
233

234 235 236 237
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
238 239 240 241 242 243 244 245 246 247 248 249
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 251 252 253 254 255
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
272 273 274 275
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

276 277 278
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
279
	return single_hugepage_flag_show(kobj, attr, buf,
280 281 282 283 284
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
285
	return single_hugepage_flag_store(kobj, attr, buf, count,
286 287 288 289
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 291 292 293 294 295 296 297 298

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

299 300 301 302
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
303
	return single_hugepage_flag_show(kobj, attr, buf,
304 305 306 307 308 309
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
310
	return single_hugepage_flag_store(kobj, attr, buf, count,
311 312 313 314 315 316 317 318 319
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
320
	&use_zero_page_attr.attr,
321
	&hpage_pmd_size_attr.attr,
322
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 324
	&shmem_enabled_attr.attr,
#endif
325 326 327 328 329 330
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

331
static const struct attribute_group hugepage_attr_group = {
332
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
333 334
};

S
Shaohua Li 已提交
335
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 337 338
{
	int err;

S
Shaohua Li 已提交
339 340
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
341
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
342
		return -ENOMEM;
A
Andrea Arcangeli 已提交
343 344
	}

S
Shaohua Li 已提交
345
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
346
	if (err) {
347
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
348
		goto delete_obj;
A
Andrea Arcangeli 已提交
349 350
	}

S
Shaohua Li 已提交
351
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
352
	if (err) {
353
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
354
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
355
	}
S
Shaohua Li 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

393 394 395 396 397 398 399 400 401 402
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
403 404
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
405
		goto err_sysfs;
A
Andrea Arcangeli 已提交
406

407
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
408
	if (err)
409
		goto err_slab;
A
Andrea Arcangeli 已提交
410

411 412 413
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
414 415 416
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
417

418 419 420 421 422
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
423
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424
		transparent_hugepage_flags = 0;
425 426
		return 0;
	}
427

428
	err = start_stop_khugepaged();
429 430
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
431

S
Shaohua Li 已提交
432
	return 0;
433
err_khugepaged:
434 435
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
436 437
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
438
	khugepaged_destroy();
439
err_slab:
S
Shaohua Li 已提交
440
	hugepage_exit_sysfs(hugepage_kobj);
441
err_sysfs:
A
Andrea Arcangeli 已提交
442
	return err;
443
}
444
subsys_initcall(hugepage_init);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
472
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 474 475 476
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

477
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478
{
479
	if (likely(vma->vm_flags & VM_WRITE))
480 481 482 483
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

J
Jan Kara 已提交
547
static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
K
Kirill A. Shutemov 已提交
548
		gfp_t gfp)
549
{
J
Jan Kara 已提交
550
	struct vm_area_struct *vma = vmf->vma;
551
	struct mem_cgroup *memcg;
552
	pgtable_t pgtable;
J
Jan Kara 已提交
553
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554
	int ret = 0;
555

556
	VM_BUG_ON_PAGE(!PageCompound(page), page);
557

558
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 560 561 562
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
563

K
Kirill A. Shutemov 已提交
564
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
565
	if (unlikely(!pgtable)) {
566 567
		ret = VM_FAULT_OOM;
		goto release;
568
	}
569

570
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
571 572 573 574 575
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
576 577
	__SetPageUptodate(page);

J
Jan Kara 已提交
578 579
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
580
		goto unlock_release;
581 582
	} else {
		pmd_t entry;
583

584 585 586 587
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

588 589 590 591
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

J
Jan Kara 已提交
592
			spin_unlock(vmf->ptl);
593
			mem_cgroup_cancel_charge(page, memcg, true);
594
			put_page(page);
K
Kirill A. Shutemov 已提交
595
			pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
596
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 598 599 600
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

601
		entry = mk_huge_pmd(page, vma->vm_page_prot);
602
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603
		page_add_new_anon_rmap(page, vma, haddr, true);
604
		mem_cgroup_commit_charge(page, memcg, false, true);
605
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
606 607
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
608
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
610
		spin_unlock(vmf->ptl);
611
		count_vm_event(THP_FAULT_ALLOC);
612 613
	}

614
	return 0;
615 616 617 618 619 620 621 622 623
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

624 625
}

626
/*
627 628 629 630 631 632 633
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
634 635 636
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
637
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638

639
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 642 643 644 645 646 647 648
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
649
	return GFP_TRANSHUGE_LIGHT;
650 651
}

652
/* Caller must hold page table lock. */
653
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655
		struct page *zero_page)
656 657
{
	pmd_t entry;
A
Andrew Morton 已提交
658 659
	if (!pmd_none(*pmd))
		return false;
660
	entry = mk_pmd(zero_page, vma->vm_page_prot);
661
	entry = pmd_mkhuge(entry);
662 663
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
664
	set_pmd_at(mm, haddr, pmd, entry);
665
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
666
	return true;
667 668
}

J
Jan Kara 已提交
669
int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670
{
J
Jan Kara 已提交
671
	struct vm_area_struct *vma = vmf->vma;
672
	gfp_t gfp;
673
	struct page *page;
J
Jan Kara 已提交
674
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675

676
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677
		return VM_FAULT_FALLBACK;
678 679
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
680
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681
		return VM_FAULT_OOM;
J
Jan Kara 已提交
682
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
683
			!mm_forbids_zeropage(vma->vm_mm) &&
684 685 686 687
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
688
		int ret;
K
Kirill A. Shutemov 已提交
689
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
690
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
691
			return VM_FAULT_OOM;
692
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
693
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
694
			pte_free(vma->vm_mm, pgtable);
695
			count_vm_event(THP_FAULT_FALLBACK);
696
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
697
		}
J
Jan Kara 已提交
698
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 700
		ret = 0;
		set = false;
J
Jan Kara 已提交
701
		if (pmd_none(*vmf->pmd)) {
702 703 704 705
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
706 707
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 709
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
710
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
711 712
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
713 714 715
				set = true;
			}
		} else
J
Jan Kara 已提交
716
			spin_unlock(vmf->ptl);
717
		if (!set)
K
Kirill A. Shutemov 已提交
718
			pte_free(vma->vm_mm, pgtable);
719
		return ret;
720
	}
721
	gfp = alloc_hugepage_direct_gfpmask(vma);
722
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 724
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
725
		return VM_FAULT_FALLBACK;
726
	}
727
	prep_transhuge_page(page);
J
Jan Kara 已提交
728
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 730
}

731
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 733
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
734 735 736 737 738 739
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
740 741 742
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
743
	if (write) {
744 745
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
746
	}
747 748 749

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
750
		mm_inc_nr_ptes(mm);
751 752
	}

753 754
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
755 756 757 758
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
760 761
{
	pgprot_t pgprot = vma->vm_page_prot;
762
	pgtable_t pgtable = NULL;
M
Matthew Wilcox 已提交
763 764 765 766 767 768 769 770 771
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
773 774 775

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
776

777 778 779 780 781 782
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

783 784
	track_pfn_insert(vma, &pgprot, pfn);

785
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
787
}
788
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
789

790
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792
{
793
	if (likely(vma->vm_flags & VM_WRITE))
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
810 811
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
	spin_unlock(ptl);
}

int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
			pud_t *pud, pfn_t pfn, bool write)
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON(!pfn_t_devmap(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

844
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845
		pmd_t *pmd, int flags)
846 847 848
{
	pmd_t _pmd;

849 850 851
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
852
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
853
				pmd, _pmd, flags & FOLL_WRITE))
854 855 856 857 858 859 860 861 862 863 864 865 866
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

867 868 869 870 871 872
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

873
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
874 875 876 877 878 879 880 881
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
882
		touch_pmd(vma, addr, pmd, flags);
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

902 903 904 905
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
906
	spinlock_t *dst_ptl, *src_ptl;
907 908
	struct page *src_page;
	pmd_t pmd;
909
	pgtable_t pgtable = NULL;
910
	int ret = -ENOMEM;
911

912 913 914 915 916 917 918
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
919

920 921 922
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923 924 925

	ret = -EAGAIN;
	pmd = *src_pmd;
926 927 928 929 930 931 932 933 934

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
935 936
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
937 938
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
939
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
940
		mm_inc_nr_ptes(dst_mm);
941
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
942 943 944 945 946 947
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

948
	if (unlikely(!pmd_trans_huge(pmd))) {
949 950 951
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
952
	/*
953
	 * When page table lock is held, the huge zero pmd should not be
954 955 956 957
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
958
		struct page *zero_page;
959 960 961 962 963
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
964
		zero_page = mm_get_huge_zero_page(dst_mm);
965
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
966
				zero_page);
967 968 969
		ret = 0;
		goto out_unlock;
	}
970

971 972 973 974 975
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
976
	mm_inc_nr_ptes(dst_mm);
977
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
978 979 980 981 982 983 984

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
985 986
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
987 988 989 990
out:
	return ret;
}

991 992
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
993
		pud_t *pud, int flags)
994 995 996
{
	pud_t _pud;

997 998 999
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1000
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001
				pud, _pud, flags & FOLL_WRITE))
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1015
	if (flags & FOLL_WRITE && !pud_write(*pud))
1016 1017 1018 1019 1020 1021 1022 1023
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1024
		touch_pud(vma, addr, pud, flags);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1103
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104 1105 1106
{
	pmd_t entry;
	unsigned long haddr;
1107
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108

J
Jan Kara 已提交
1109 1110
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111 1112 1113
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1114 1115
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1116
	haddr = vmf->address & HPAGE_PMD_MASK;
1117
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1118
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119 1120

unlock:
J
Jan Kara 已提交
1121
	spin_unlock(vmf->ptl);
1122 1123
}

J
Jan Kara 已提交
1124
static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
K
Kirill A. Shutemov 已提交
1125
		struct page *page)
1126
{
J
Jan Kara 已提交
1127 1128
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129
	struct mem_cgroup *memcg;
1130 1131 1132 1133
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
1134 1135
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1136 1137 1138 1139 1140 1141 1142 1143 1144

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1145
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1146
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1147
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
1148 1149
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1150
			if (pages[i])
1151
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1152
			while (--i >= 0) {
1153 1154
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1155 1156
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1157 1158
				put_page(pages[i]);
			}
1159 1160 1161 1162
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1163
		set_page_private(pages[i], (unsigned long)memcg);
1164 1165 1166 1167
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1168
				   haddr + PAGE_SIZE * i, vma);
1169 1170 1171 1172
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1173 1174
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1175
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176

J
Jan Kara 已提交
1177 1178
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179
		goto out_free_pages;
1180
	VM_BUG_ON_PAGE(!PageHead(page), page);
1181

1182 1183 1184 1185 1186 1187 1188 1189
	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
	 * See Documentation/vm/mmu_notifier.txt
	 */
J
Jan Kara 已提交
1190
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191

J
Jan Kara 已提交
1192
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1193
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194 1195

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1196
		pte_t entry;
1197 1198
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199 1200
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1201
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1204 1205 1206 1207
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1208 1209 1210 1211
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1212
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1214
	spin_unlock(vmf->ptl);
1215

1216 1217 1218 1219 1220 1221
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);
1222

1223 1224 1225 1226 1227 1228 1229
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1230
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1231
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1232
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233 1234
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1235
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1237
	}
1238 1239 1240 1241
	kfree(pages);
	goto out;
}

J
Jan Kara 已提交
1242
int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1243
{
J
Jan Kara 已提交
1244
	struct vm_area_struct *vma = vmf->vma;
1245
	struct page *page = NULL, *new_page;
1246
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1247
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248 1249
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1250
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1251
	int ret = 0;
1252

J
Jan Kara 已提交
1253
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255 1256
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1257 1258
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259 1260 1261
		goto out_unlock;

	page = pmd_page(orig_pmd);
1262
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263 1264
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1265
	 * part.
1266
	 */
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
1280 1281
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1282
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1283 1284
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285
		ret |= VM_FAULT_WRITE;
1286
		unlock_page(page);
1287 1288
		goto out_unlock;
	}
1289
	unlock_page(page);
1290
	get_page(page);
J
Jan Kara 已提交
1291
	spin_unlock(vmf->ptl);
1292
alloc:
1293
	if (transparent_hugepage_enabled(vma) &&
1294
	    !transparent_hugepage_debug_cow()) {
1295
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297
	} else
1298 1299
		new_page = NULL;

1300 1301 1302
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1303
		if (!page) {
J
Jan Kara 已提交
1304
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305
			ret |= VM_FAULT_FALLBACK;
1306
		} else {
J
Jan Kara 已提交
1307
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1309
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310 1311
				ret |= VM_FAULT_FALLBACK;
			}
1312
			put_page(page);
1313
		}
1314
		count_vm_event(THP_FAULT_FALLBACK);
1315 1316 1317
		goto out;
	}

K
Kirill A. Shutemov 已提交
1318
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1320
		put_page(new_page);
J
Jan Kara 已提交
1321
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1322
		if (page)
1323
			put_page(page);
1324
		ret |= VM_FAULT_FALLBACK;
1325
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1326 1327 1328
		goto out;
	}

1329 1330
	count_vm_event(THP_FAULT_ALLOC);

1331
	if (!page)
1332
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333 1334
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335 1336
	__SetPageUptodate(new_page);

1337 1338
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1339
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340

J
Jan Kara 已提交
1341
	spin_lock(vmf->ptl);
1342
	if (page)
1343
		put_page(page);
J
Jan Kara 已提交
1344 1345
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1346
		mem_cgroup_cancel_charge(new_page, memcg, true);
1347
		put_page(new_page);
1348
		goto out_mn;
A
Andrea Arcangeli 已提交
1349
	} else {
1350
		pmd_t entry;
1351
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1353
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1357 1358
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359
		if (!page) {
K
Kirill A. Shutemov 已提交
1360
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361
		} else {
1362
			VM_BUG_ON_PAGE(!PageHead(page), page);
1363
			page_remove_rmap(page, true);
1364 1365
			put_page(page);
		}
1366 1367
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1368
	spin_unlock(vmf->ptl);
1369
out_mn:
1370 1371 1372 1373 1374 1375
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
1376 1377
out:
	return ret;
1378
out_unlock:
J
Jan Kara 已提交
1379
	spin_unlock(vmf->ptl);
1380
	return ret;
1381 1382
}

1383 1384 1385 1386 1387 1388
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1389
	return pmd_write(pmd) ||
1390 1391 1392
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1393
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394 1395 1396 1397
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1398
	struct mm_struct *mm = vma->vm_mm;
1399 1400
	struct page *page = NULL;

1401
	assert_spin_locked(pmd_lockptr(mm, pmd));
1402

1403
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404 1405
		goto out;

1406 1407 1408 1409
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1410
	/* Full NUMA hinting faults to serialise migration in fault paths */
1411
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412 1413
		goto out;

1414
	page = pmd_page(*pmd);
1415
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416
	if (flags & FOLL_TOUCH)
1417
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1418
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419 1420 1421 1422
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1423 1424
		 * For anon THP:
		 *
1425 1426 1427 1428 1429 1430 1431
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1432 1433 1434 1435 1436 1437
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1438
		 */
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1450
	}
1451
skip_mlock:
1452
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454
	if (flags & FOLL_GET)
1455
		get_page(page);
1456 1457 1458 1459 1460

out:
	return page;
}

1461
/* NUMA hinting page fault entry point for trans huge pmds */
J
Jan Kara 已提交
1462
int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463
{
J
Jan Kara 已提交
1464
	struct vm_area_struct *vma = vmf->vma;
1465
	struct anon_vma *anon_vma = NULL;
1466
	struct page *page;
J
Jan Kara 已提交
1467
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468
	int page_nid = -1, this_nid = numa_node_id();
1469
	int target_nid, last_cpupid = -1;
1470 1471
	bool page_locked;
	bool migrated = false;
1472
	bool was_writable;
1473
	int flags = 0;
1474

J
Jan Kara 已提交
1475 1476
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477 1478
		goto out_unlock;

1479 1480 1481 1482 1483
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1484 1485
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1486 1487
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1488
		spin_unlock(vmf->ptl);
1489
		wait_on_page_locked(page);
1490
		put_page(page);
1491 1492 1493
		goto out;
	}

1494
	page = pmd_page(pmd);
1495
	BUG_ON(is_huge_zero_page(page));
1496
	page_nid = page_to_nid(page);
1497
	last_cpupid = page_cpupid_last(page);
1498
	count_vm_numa_event(NUMA_HINT_FAULTS);
1499
	if (page_nid == this_nid) {
1500
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501 1502
		flags |= TNF_FAULT_LOCAL;
	}
1503

1504
	/* See similar comment in do_numa_page for explanation */
1505
	if (!pmd_savedwrite(pmd))
1506 1507
		flags |= TNF_NO_GROUP;

1508 1509 1510 1511
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1512 1513 1514 1515
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1516
		if (page_locked)
1517
			goto clear_pmdnuma;
1518
	}
1519

1520
	/* Migration could have started since the pmd_trans_migrating check */
1521
	if (!page_locked) {
1522 1523 1524
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1525
		spin_unlock(vmf->ptl);
1526
		wait_on_page_locked(page);
1527
		put_page(page);
1528 1529 1530
		goto out;
	}

1531 1532 1533 1534
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1535
	get_page(page);
J
Jan Kara 已提交
1536
	spin_unlock(vmf->ptl);
1537
	anon_vma = page_lock_anon_vma_read(page);
1538

P
Peter Zijlstra 已提交
1539
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1540 1541
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542 1543
		unlock_page(page);
		put_page(page);
1544
		page_nid = -1;
1545
		goto out_unlock;
1546
	}
1547

1548 1549 1550 1551 1552 1553 1554
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1555 1556 1557 1558 1559 1560
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1561 1562 1563 1564
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1565 1566
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1567
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568

1569 1570
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1571
	 * and access rights restored.
1572
	 */
J
Jan Kara 已提交
1573
	spin_unlock(vmf->ptl);
1574

K
Kirill A. Shutemov 已提交
1575
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1576
				vmf->pmd, pmd, vmf->address, page, target_nid);
1577 1578
	if (migrated) {
		flags |= TNF_MIGRATED;
1579
		page_nid = target_nid;
1580 1581
	} else
		flags |= TNF_MIGRATE_FAIL;
1582

1583
	goto out;
1584
clear_pmdnuma:
1585
	BUG_ON(!PageLocked(page));
1586
	was_writable = pmd_savedwrite(pmd);
1587
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588
	pmd = pmd_mkyoung(pmd);
1589 1590
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1591 1592
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593
	unlock_page(page);
1594
out_unlock:
J
Jan Kara 已提交
1595
	spin_unlock(vmf->ptl);
1596 1597 1598 1599 1600

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1601
	if (page_nid != -1)
J
Jan Kara 已提交
1602
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603
				flags);
1604

1605 1606 1607
	return 0;
}

1608 1609 1610 1611 1612
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613 1614 1615 1616 1617 1618
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1619
	bool ret = false;
1620

1621 1622
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1623 1624
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1625
		goto out_unlocked;
1626 1627

	orig_pmd = *pmd;
1628
	if (is_huge_zero_pmd(orig_pmd))
1629 1630
		goto out;

1631 1632 1633 1634 1635 1636
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1655
		split_huge_page(page);
1656
		unlock_page(page);
1657
		put_page(page);
1658 1659 1660 1661 1662 1663 1664 1665
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666
		pmdp_invalidate(vma, addr, pmd);
1667 1668 1669 1670 1671 1672
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1673 1674

	mark_page_lazyfree(page);
1675
	ret = true;
1676 1677 1678 1679 1680 1681
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1682 1683 1684 1685 1686 1687
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1688
	mm_dec_nr_ptes(mm);
1689 1690
}

1691
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1692
		 pmd_t *pmd, unsigned long addr)
1693
{
1694
	pmd_t orig_pmd;
1695
	spinlock_t *ptl;
1696

1697 1698
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1699 1700
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1712 1713
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1714 1715
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1716
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717
	} else if (is_huge_zero_pmd(orig_pmd)) {
1718
		zap_deposited_table(tlb->mm, pmd);
1719
		spin_unlock(ptl);
1720
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721
	} else {
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1740
		if (PageAnon(page)) {
1741
			zap_deposited_table(tlb->mm, pmd);
1742 1743
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1744 1745
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1746 1747
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1748

1749
		spin_unlock(ptl);
1750 1751
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752
	}
1753
	return 1;
1754 1755
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1782
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783
		  unsigned long new_addr, unsigned long old_end,
1784
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785
{
1786
	spinlock_t *old_ptl, *new_ptl;
1787 1788
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1789
	bool force_flush = false;
1790 1791 1792

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1793
	    old_end - old_addr < HPAGE_PMD_SIZE)
1794
		return false;
1795 1796 1797 1798 1799 1800 1801

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802
		return false;
1803 1804
	}

1805 1806 1807 1808
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1809 1810
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1811 1812 1813
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815 1816
		if (pmd_present(pmd) && pmd_dirty(pmd))
			force_flush = true;
1817
		VM_BUG_ON(!pmd_none(*new_pmd));
1818

1819
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820
			pgtable_t pgtable;
1821 1822 1823
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1824 1825
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826 1827
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1828 1829 1830 1831
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1832
		spin_unlock(old_ptl);
1833
		return true;
1834
	}
1835
	return false;
1836 1837
}

1838 1839 1840 1841 1842 1843
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1844
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845
		unsigned long addr, pgprot_t newprot, int prot_numa)
1846 1847
{
	struct mm_struct *mm = vma->vm_mm;
1848
	spinlock_t *ptl;
1849 1850 1851
	pmd_t entry;
	bool preserve_write;
	int ret;
1852

1853
	ptl = __pmd_trans_huge_lock(pmd, vma);
1854 1855
	if (!ptl)
		return 0;
1856

1857 1858
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
1873 1874
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875 1876 1877 1878 1879 1880
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

1881 1882 1883 1884 1885 1886 1887
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
1888

1889 1890 1891
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
1913
	entry = pmdp_invalidate(vma, addr, pmd);
1914

1915 1916 1917 1918 1919 1920 1921 1922
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
1923 1924 1925 1926
	return ret;
}

/*
1927
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928
 *
1929 1930
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1931
 */
1932
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933
{
1934 1935
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1936 1937
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
1938 1939 1940
		return ptl;
	spin_unlock(ptl);
	return NULL;
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

1997
	count_vm_event(THP_SPLIT_PUD);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2017 2018 2019 2020 2021 2022
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2023 2024 2025
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2026 2027 2028 2029 2030 2031 2032 2033
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2034 2035 2036 2037 2038 2039 2040 2041 2042
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
	 * See Documentation/vm/mmu_notifier.txt
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061
		unsigned long haddr, bool freeze)
2062 2063 2064 2065
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2066
	pmd_t old_pmd, _pmd;
2067
	bool young, write, soft_dirty, pmd_migration = false;
2068
	unsigned long addr;
2069 2070 2071 2072 2073
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074 2075
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2076 2077 2078

	count_vm_event(THP_SPLIT_PMD);

2079 2080
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081 2082 2083 2084 2085 2086
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2087 2088 2089 2090 2091 2092 2093 2094
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095 2096
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2097 2098 2099 2100 2101 2102 2103 2104 2105
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2106 2107 2108
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

2131
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132
	pmd_migration = is_pmd_migration_entry(old_pmd);
2133 2134 2135
	if (pmd_migration) {
		swp_entry_t entry;

2136
		entry = pmd_to_swp_entry(old_pmd);
2137 2138 2139
		page = pfn_to_page(swp_offset(entry));
	} else
#endif
2140
		page = pmd_page(old_pmd);
2141
	VM_BUG_ON_PAGE(!page_count(page), page);
2142
	page_ref_add(page, HPAGE_PMD_NR - 1);
2143 2144 2145 2146 2147
	if (pmd_dirty(old_pmd))
		SetPageDirty(page);
	write = pmd_write(old_pmd);
	young = pmd_young(old_pmd);
	soft_dirty = pmd_soft_dirty(old_pmd);
2148

2149 2150 2151 2152
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2153 2154 2155
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2156
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157 2158 2159 2160 2161 2162
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2163
		if (freeze || pmd_migration) {
2164 2165 2166
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2167 2168
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2169
		} else {
2170
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171
			entry = maybe_mkwrite(entry, vma);
2172 2173 2174 2175
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2176 2177
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2178
		}
2179
		pte = pte_offset_map(&_pmd, addr);
2180
		BUG_ON(!pte_none(*pte));
2181
		set_pte_at(mm, addr, pte, entry);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2197
		__dec_node_page_state(page, NR_ANON_THPS);
2198 2199 2200 2201 2202 2203 2204 2205 2206
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2207 2208

	if (freeze) {
2209
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210 2211 2212 2213
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2214 2215 2216
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217
		unsigned long address, bool freeze, struct page *page)
2218 2219 2220 2221 2222 2223 2224
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2225 2226 2227 2228 2229 2230 2231 2232 2233

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2234
	if (pmd_trans_huge(*pmd)) {
2235
		page = pmd_page(*pmd);
2236
		if (PageMlocked(page))
2237
			clear_page_mlock(page);
2238
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239
		goto out;
2240
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241
out:
2242
	spin_unlock(ptl);
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2258 2259
}

2260 2261
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2262
{
2263
	pgd_t *pgd;
2264
	p4d_t *p4d;
2265
	pud_t *pud;
2266 2267
	pmd_t *pmd;

2268
	pgd = pgd_offset(vma->vm_mm, address);
2269 2270 2271
	if (!pgd_present(*pgd))
		return;

2272 2273 2274 2275 2276
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2277 2278 2279 2280
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2281

2282
	__split_huge_pmd(vma, pmd, address, freeze, page);
2283 2284
}

2285
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298
		split_huge_pmd_address(vma, start, false, NULL);
2299 2300 2301 2302 2303 2304 2305 2306 2307

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308
		split_huge_pmd_address(vma, end, false, NULL);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322
			split_huge_pmd_address(next, nstart, false, NULL);
2323 2324
	}
}
2325

2326
static void freeze_page(struct page *page)
2327
{
2328
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2330
	bool unmap_success;
2331 2332 2333

	VM_BUG_ON_PAGE(!PageHead(page), page);

2334
	if (PageAnon(page))
2335
		ttu_flags |= TTU_SPLIT_FREEZE;
2336

M
Minchan Kim 已提交
2337 2338
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2339 2340
}

2341
static void unfreeze_page(struct page *page)
2342
{
2343
	int i;
2344 2345 2346 2347 2348 2349
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2350 2351
}

2352
static void __split_huge_page_tail(struct page *head, int tail,
2353 2354 2355 2356
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2357
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358 2359

	/*
2360 2361 2362 2363
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2364 2365 2366 2367 2368
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2369
			 (1L << PG_swapcache) |
2370 2371 2372 2373
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
2374 2375
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2376

2377
	/* Page flags must be visible before we make the page non-compound. */
2378 2379
	smp_wmb();

2380 2381 2382 2383 2384 2385
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2386 2387
	clear_compound_head(page_tail);

2388 2389 2390 2391
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2392 2393 2394 2395 2396 2397
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
2398
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2399 2400 2401 2402 2403
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2404 2405 2406 2407 2408 2409

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2410 2411 2412
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2413 2414
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
2415 2416 2417 2418
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2419
	pgoff_t end = -1;
2420
	int i;
2421

M
Mel Gorman 已提交
2422
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423 2424 2425 2426

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2427 2428 2429 2430
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431
		__split_huge_page_tail(head, i, lruvec, list);
2432 2433 2434 2435
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
2436 2437
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2438 2439 2440
			put_page(head + i);
		}
	}
2441 2442

	ClearPageCompound(head);
2443 2444
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2445 2446 2447 2448 2449
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2450 2451 2452
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2453
		xa_unlock(&head->mapping->i_pages);
2454 2455
	}

2456
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457

2458
	unfreeze_page(head);
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2477 2478
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2479
	int i, compound, ret;
2480 2481 2482 2483 2484 2485

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2486
	compound = compound_mapcount(page);
2487
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2488 2489
		return compound;
	ret = compound;
2490 2491
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2492 2493 2494
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2495 2496 2497 2498 2499
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2595
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596 2597 2598
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2599
	bool mlocked;
2600
	unsigned long flags;
2601 2602 2603 2604 2605

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2606 2607 2608
	if (PageWriteback(page))
		return -EBUSY;

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2636 2637 2638 2639 2640 2641
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2642
	if (!can_split_huge_page(head, &extra_pins)) {
2643 2644 2645 2646
		ret = -EBUSY;
		goto out_unlock;
	}

2647
	mlocked = PageMlocked(page);
2648
	freeze_page(head);
2649 2650
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2651 2652 2653 2654
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2655
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657 2658 2659 2660

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2661 2662
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2663 2664 2665 2666 2667 2668
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2669
					&mapping->i_pages.xa_lock) != head)
2670 2671 2672
			goto fail;
	}

2673
	/* Prevent deferred_split_scan() touching ->_refcount */
2674
	spin_lock(&pgdata->split_queue_lock);
2675 2676
	count = page_count(head);
	mapcount = total_mapcount(head);
2677
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678
		if (!list_empty(page_deferred_list(head))) {
2679
			pgdata->split_queue_len--;
2680 2681
			list_del(page_deferred_list(head));
		}
2682
		if (mapping)
2683
			__dec_node_page_state(page, NR_SHMEM_THPS);
2684 2685
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2686 2687 2688 2689 2690 2691
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2692
	} else {
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
M
Matthew Wilcox 已提交
2703
			xa_unlock(&mapping->i_pages);
2704
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705
		unfreeze_page(head);
2706 2707 2708 2709
		ret = -EBUSY;
	}

out_unlock:
2710 2711 2712 2713 2714 2715
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2716 2717 2718 2719
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2720 2721 2722

void free_transhuge_page(struct page *page)
{
2723
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724 2725
	unsigned long flags;

2726
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727
	if (!list_empty(page_deferred_list(page))) {
2728
		pgdata->split_queue_len--;
2729 2730
		list_del(page_deferred_list(page));
	}
2731
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732 2733 2734 2735 2736
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2737
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738 2739 2740 2741
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2742
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743
	if (list_empty(page_deferred_list(page))) {
2744
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745 2746
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2747
	}
2748
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749 2750 2751 2752 2753
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2754
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755
	return READ_ONCE(pgdata->split_queue_len);
2756 2757 2758 2759 2760
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2761
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762 2763 2764 2765 2766
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2767
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768
	/* Take pin on all head pages to avoid freeing them under us */
2769
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770 2771
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2772 2773 2774 2775
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2776
			list_del_init(page_deferred_list(page));
2777
			pgdata->split_queue_len--;
2778
		}
2779 2780
		if (!--sc->nr_to_scan)
			break;
2781
	}
2782
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783 2784 2785

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2786 2787
		if (!trylock_page(page))
			goto next;
2788 2789 2790 2791
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2792
next:
2793 2794 2795
		put_page(page);
	}

2796 2797 2798
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2799

2800 2801 2802 2803 2804 2805 2806
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2807 2808 2809 2810 2811 2812
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2813
	.flags = SHRINKER_NUMA_AWARE,
2814
};
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2840
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2853
	pr_info("%lu of %lu THP split\n", split, total);
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2864
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2865 2866 2867 2868 2869 2870 2871
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
2882
	pmd_t pmdswp;
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	mmu_notifier_invalidate_range_start(mm, address,
			address + HPAGE_PMD_SIZE);

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
2896 2897 2898 2899
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	page_remove_rmap(page, true);
	put_page(page);

	mmu_notifier_invalidate_range_end(mm, address,
			address + HPAGE_PMD_SIZE);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2922 2923
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
2924
	if (is_write_migration_entry(entry))
2925
		pmde = maybe_pmd_mkwrite(pmde, vma);
2926 2927 2928 2929 2930 2931 2932 2933 2934

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
	page_add_anon_rmap(new, vma, mmun_start, true);
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
	if (vma->vm_flags & VM_LOCKED)
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif