huge_memory.c 72.8 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
static struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
static void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

118 119
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
120
{
121 122 123
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
124

125 126 127
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
128
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 130
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
131
		__free_pages(zero_page, compound_order(zero_page));
132
		return HPAGE_PMD_NR;
133 134 135
	}

	return 0;
136 137
}

138
static struct shrinker huge_zero_page_shrinker = {
139 140
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
141 142 143
	.seeks = DEFAULT_SEEKS,
};

144 145 146 147
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
148 149 150 151 152 153
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
154
}
155

156 157 158 159
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
160
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
176 177

	if (ret > 0) {
178
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
179 180 181 182
		if (err)
			ret = err;
	}
	return ret;
183 184 185 186
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

187
ssize_t single_hugepage_flag_show(struct kobject *kobj,
188 189 190
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
191 192
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
193
}
194

195
ssize_t single_hugepage_flag_store(struct kobject *kobj,
196 197 198 199
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
200 201 202 203 204 205 206 207 208 209
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
210
		set_bit(flag, &transparent_hugepage_flags);
211
	else
212 213 214 215 216 217 218 219
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
220
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
221
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
222
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
223 224 225 226 227 228
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
229
}
230

231 232 233 234
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
269 270 271 272
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

273 274 275
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
276
	return single_hugepage_flag_show(kobj, attr, buf,
277 278 279 280 281
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
282
	return single_hugepage_flag_store(kobj, attr, buf, count,
283 284 285 286
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
287 288 289 290 291 292 293 294 295

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

296 297 298 299
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
300
	return single_hugepage_flag_show(kobj, attr, buf,
301 302 303 304 305 306
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
307
	return single_hugepage_flag_store(kobj, attr, buf, count,
308 309 310 311 312 313 314 315 316
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
317
	&use_zero_page_attr.attr,
318
	&hpage_pmd_size_attr.attr,
319
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
320 321
	&shmem_enabled_attr.attr,
#endif
322 323 324 325 326 327 328 329
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
330 331
};

S
Shaohua Li 已提交
332
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
333 334 335
{
	int err;

S
Shaohua Li 已提交
336 337
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
338
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
339
		return -ENOMEM;
A
Andrea Arcangeli 已提交
340 341
	}

S
Shaohua Li 已提交
342
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
343
	if (err) {
344
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
345
		goto delete_obj;
A
Andrea Arcangeli 已提交
346 347
	}

S
Shaohua Li 已提交
348
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
349
	if (err) {
350
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
351
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
352
	}
S
Shaohua Li 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

390 391 392 393 394 395 396 397 398 399
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
400 401
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
402
		goto err_sysfs;
A
Andrea Arcangeli 已提交
403

404
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
405
	if (err)
406
		goto err_slab;
A
Andrea Arcangeli 已提交
407

408 409 410
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
411 412 413
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
414

415 416 417 418 419
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
420
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
421
		transparent_hugepage_flags = 0;
422 423
		return 0;
	}
424

425
	err = start_stop_khugepaged();
426 427
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
428

S
Shaohua Li 已提交
429
	return 0;
430
err_khugepaged:
431 432
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
433 434
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
435
	khugepaged_destroy();
436
err_slab:
S
Shaohua Li 已提交
437
	hugepage_exit_sysfs(hugepage_kobj);
438
err_sysfs:
A
Andrea Arcangeli 已提交
439
	return err;
440
}
441
subsys_initcall(hugepage_init);
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
469
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
470 471 472 473
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

474
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
475 476 477 478 479 480
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

J
Jan Kara 已提交
544
static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
K
Kirill A. Shutemov 已提交
545
		gfp_t gfp)
546
{
J
Jan Kara 已提交
547
	struct vm_area_struct *vma = vmf->vma;
548
	struct mem_cgroup *memcg;
549
	pgtable_t pgtable;
J
Jan Kara 已提交
550
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551

552
	VM_BUG_ON_PAGE(!PageCompound(page), page);
553

K
Kirill A. Shutemov 已提交
554
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
555 556 557 558
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
559

K
Kirill A. Shutemov 已提交
560
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
561
	if (unlikely(!pgtable)) {
562
		mem_cgroup_cancel_charge(page, memcg, true);
563
		put_page(page);
564
		return VM_FAULT_OOM;
565
	}
566 567

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
568 569 570 571 572
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
573 574
	__SetPageUptodate(page);

J
Jan Kara 已提交
575 576 577
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
		spin_unlock(vmf->ptl);
578
		mem_cgroup_cancel_charge(page, memcg, true);
579
		put_page(page);
K
Kirill A. Shutemov 已提交
580
		pte_free(vma->vm_mm, pgtable);
581 582
	} else {
		pmd_t entry;
583 584 585 586 587

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

J
Jan Kara 已提交
588
			spin_unlock(vmf->ptl);
589
			mem_cgroup_cancel_charge(page, memcg, true);
590
			put_page(page);
K
Kirill A. Shutemov 已提交
591
			pte_free(vma->vm_mm, pgtable);
J
Jan Kara 已提交
592
			ret = handle_userfault(vmf, VM_UFFD_MISSING);
593 594 595 596
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

597 598
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
599
		page_add_new_anon_rmap(page, vma, haddr, true);
600
		mem_cgroup_commit_charge(page, memcg, false, true);
601
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
602 603
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
604 605
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
J
Jan Kara 已提交
606
		spin_unlock(vmf->ptl);
607
		count_vm_event(THP_FAULT_ALLOC);
608 609
	}

610
	return 0;
611 612
}

613
/*
614 615 616 617 618 619 620
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
621 622 623
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
624
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
625

626
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
627
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
628 629 630 631 632 633 634 635
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
636
	return GFP_TRANSHUGE_LIGHT;
637 638
}

639
/* Caller must hold page table lock. */
640
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
641
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
642
		struct page *zero_page)
643 644
{
	pmd_t entry;
A
Andrew Morton 已提交
645 646
	if (!pmd_none(*pmd))
		return false;
647
	entry = mk_pmd(zero_page, vma->vm_page_prot);
648
	entry = pmd_mkhuge(entry);
649 650
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
651
	set_pmd_at(mm, haddr, pmd, entry);
652
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
653
	return true;
654 655
}

J
Jan Kara 已提交
656
int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
657
{
J
Jan Kara 已提交
658
	struct vm_area_struct *vma = vmf->vma;
659
	gfp_t gfp;
660
	struct page *page;
J
Jan Kara 已提交
661
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
662

663
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
664
		return VM_FAULT_FALLBACK;
665 666
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
667
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
668
		return VM_FAULT_OOM;
J
Jan Kara 已提交
669
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
670
			!mm_forbids_zeropage(vma->vm_mm) &&
671 672 673 674
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
675
		int ret;
K
Kirill A. Shutemov 已提交
676
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
677
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
678
			return VM_FAULT_OOM;
679
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
680
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
681
			pte_free(vma->vm_mm, pgtable);
682
			count_vm_event(THP_FAULT_FALLBACK);
683
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
684
		}
J
Jan Kara 已提交
685
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 687
		ret = 0;
		set = false;
J
Jan Kara 已提交
688
		if (pmd_none(*vmf->pmd)) {
689
			if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
690 691
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
692 693
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
694
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
695 696
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
697 698 699
				set = true;
			}
		} else
J
Jan Kara 已提交
700
			spin_unlock(vmf->ptl);
701
		if (!set)
K
Kirill A. Shutemov 已提交
702
			pte_free(vma->vm_mm, pgtable);
703
		return ret;
704
	}
705
	gfp = alloc_hugepage_direct_gfpmask(vma);
706
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
707 708
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
709
		return VM_FAULT_FALLBACK;
710
	}
711
	prep_transhuge_page(page);
J
Jan Kara 已提交
712
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
713 714
}

715
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
716
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
717 718 719 720 721 722
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
723 724 725
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
726 727 728
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
729
	}
730 731
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
732 733 734 735
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
736
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
737 738 739 740 741 742 743 744 745 746 747
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
748
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
749 750 751

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
752 753 754

	track_pfn_insert(vma, &pgprot, pfn);

755 756
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
757
}
758
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
759

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
{
	if (likely(vma->vm_flags & VM_WRITE))
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
	spin_unlock(ptl);
}

int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
			pud_t *pud, pfn_t pfn, bool write)
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON(!pfn_t_devmap(pfn));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

842 843 844 845 846 847
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

877 878 879 880
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
881
	spinlock_t *dst_ptl, *src_ptl;
882 883
	struct page *src_page;
	pmd_t pmd;
884
	pgtable_t pgtable = NULL;
885
	int ret = -ENOMEM;
886

887 888 889 890 891 892 893
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
894

895 896 897
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
898 899 900

	ret = -EAGAIN;
	pmd = *src_pmd;
901
	if (unlikely(!pmd_trans_huge(pmd))) {
902 903 904
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
905
	/*
906
	 * When page table lock is held, the huge zero pmd should not be
907 908 909 910
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
911
		struct page *zero_page;
912 913 914 915 916
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
917
		zero_page = mm_get_huge_zero_page(dst_mm);
918
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
919
				zero_page);
920 921 922
		ret = 0;
		goto out_unlock;
	}
923

924 925 926 927 928 929 930
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
931 932 933 934 935 936 937

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
938 939
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
940 941 942 943
out:
	return ret;
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud)
{
	pud_t _pud;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pud is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
	 * set the young bit, instead of the current set_pud_at.
	 */
	_pud = pud_mkyoung(pud_mkdirty(*pud));
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
				pud, _pud,  1))
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

	if (flags & FOLL_WRITE && !pud_write(*pud))
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pud(vma, addr, pud);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1061
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1062 1063 1064
{
	pmd_t entry;
	unsigned long haddr;
1065
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1066

J
Jan Kara 已提交
1067 1068
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1069 1070 1071
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1072 1073
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1074
	haddr = vmf->address & HPAGE_PMD_MASK;
1075
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1076
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1077 1078

unlock:
J
Jan Kara 已提交
1079
	spin_unlock(vmf->ptl);
1080 1081
}

J
Jan Kara 已提交
1082
static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
K
Kirill A. Shutemov 已提交
1083
		struct page *page)
1084
{
J
Jan Kara 已提交
1085 1086
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1087
	struct mem_cgroup *memcg;
1088 1089 1090 1091
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
1092 1093
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1094 1095 1096 1097 1098 1099 1100 1101 1102

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
M
Michal Hocko 已提交
1103
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
J
Jan Kara 已提交
1104
					       vmf->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
1105
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
1106 1107
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
1108
			if (pages[i])
1109
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
1110
			while (--i >= 0) {
1111 1112
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
1113 1114
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
1115 1116
				put_page(pages[i]);
			}
1117 1118 1119 1120
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
1121
		set_page_private(pages[i], (unsigned long)memcg);
1122 1123 1124 1125
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
1126
				   haddr + PAGE_SIZE * i, vma);
1127 1128 1129 1130
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

1131 1132
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1133
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1134

J
Jan Kara 已提交
1135 1136
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1137
		goto out_free_pages;
1138
	VM_BUG_ON_PAGE(!PageHead(page), page);
1139

J
Jan Kara 已提交
1140
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1141 1142
	/* leave pmd empty until pte is filled */

J
Jan Kara 已提交
1143
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
K
Kirill A. Shutemov 已提交
1144
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1145 1146

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
1147
		pte_t entry;
1148 1149
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1150 1151
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
J
Jan Kara 已提交
1152
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1153
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1154
		lru_cache_add_active_or_unevictable(pages[i], vma);
J
Jan Kara 已提交
1155 1156 1157 1158
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
1159 1160 1161 1162
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
J
Jan Kara 已提交
1163
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1164
	page_remove_rmap(page, true);
J
Jan Kara 已提交
1165
	spin_unlock(vmf->ptl);
1166

K
Kirill A. Shutemov 已提交
1167
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1168

1169 1170 1171 1172 1173 1174 1175
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
J
Jan Kara 已提交
1176
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1177
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1178
	for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 1180
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
1181
		mem_cgroup_cancel_charge(pages[i], memcg, false);
1182
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
1183
	}
1184 1185 1186 1187
	kfree(pages);
	goto out;
}

J
Jan Kara 已提交
1188
int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1189
{
J
Jan Kara 已提交
1190
	struct vm_area_struct *vma = vmf->vma;
1191
	struct page *page = NULL, *new_page;
1192
	struct mem_cgroup *memcg;
J
Jan Kara 已提交
1193
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1194 1195
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1196
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1197
	int ret = 0;
1198

J
Jan Kara 已提交
1199
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1200
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1201 1202
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
J
Jan Kara 已提交
1203 1204
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1205 1206 1207
		goto out_unlock;

	page = pmd_page(orig_pmd);
1208
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1209 1210
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1211
	 * part.
1212
	 */
1213
	if (page_trans_huge_mapcount(page, NULL) == 1) {
1214 1215 1216
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1217 1218
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1219 1220 1221
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
1222
	get_page(page);
J
Jan Kara 已提交
1223
	spin_unlock(vmf->ptl);
1224
alloc:
1225
	if (transparent_hugepage_enabled(vma) &&
1226
	    !transparent_hugepage_debug_cow()) {
1227
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1228
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1229
	} else
1230 1231
		new_page = NULL;

1232 1233 1234
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1235
		if (!page) {
J
Jan Kara 已提交
1236
			split_huge_pmd(vma, vmf->pmd, vmf->address);
1237
			ret |= VM_FAULT_FALLBACK;
1238
		} else {
J
Jan Kara 已提交
1239
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1240
			if (ret & VM_FAULT_OOM) {
J
Jan Kara 已提交
1241
				split_huge_pmd(vma, vmf->pmd, vmf->address);
1242 1243
				ret |= VM_FAULT_FALLBACK;
			}
1244
			put_page(page);
1245
		}
1246
		count_vm_event(THP_FAULT_FALLBACK);
1247 1248 1249
		goto out;
	}

K
Kirill A. Shutemov 已提交
1250 1251
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1252
		put_page(new_page);
J
Jan Kara 已提交
1253
		split_huge_pmd(vma, vmf->pmd, vmf->address);
K
Kirill A. Shutemov 已提交
1254
		if (page)
1255
			put_page(page);
1256
		ret |= VM_FAULT_FALLBACK;
1257
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1258 1259 1260
		goto out;
	}

1261 1262
	count_vm_event(THP_FAULT_ALLOC);

1263
	if (!page)
1264 1265 1266
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1267 1268
	__SetPageUptodate(new_page);

1269 1270
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1271
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1272

J
Jan Kara 已提交
1273
	spin_lock(vmf->ptl);
1274
	if (page)
1275
		put_page(page);
J
Jan Kara 已提交
1276 1277
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
1278
		mem_cgroup_cancel_charge(new_page, memcg, true);
1279
		put_page(new_page);
1280
		goto out_mn;
A
Andrea Arcangeli 已提交
1281
	} else {
1282
		pmd_t entry;
1283 1284
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
J
Jan Kara 已提交
1285
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1286
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1287
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1288
		lru_cache_add_active_or_unevictable(new_page, vma);
J
Jan Kara 已提交
1289 1290
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1291
		if (!page) {
K
Kirill A. Shutemov 已提交
1292
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1293
		} else {
1294
			VM_BUG_ON_PAGE(!PageHead(page), page);
1295
			page_remove_rmap(page, true);
1296 1297
			put_page(page);
		}
1298 1299
		ret |= VM_FAULT_WRITE;
	}
J
Jan Kara 已提交
1300
	spin_unlock(vmf->ptl);
1301
out_mn:
K
Kirill A. Shutemov 已提交
1302
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1303 1304
out:
	return ret;
1305
out_unlock:
J
Jan Kara 已提交
1306
	spin_unlock(vmf->ptl);
1307
	return ret;
1308 1309
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
	return pmd_write(pmd) ||
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1320
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1321 1322 1323 1324
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1325
	struct mm_struct *mm = vma->vm_mm;
1326 1327
	struct page *page = NULL;

1328
	assert_spin_locked(pmd_lockptr(mm, pmd));
1329

1330
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1331 1332
		goto out;

1333 1334 1335 1336
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1337
	/* Full NUMA hinting faults to serialise migration in fault paths */
1338
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1339 1340
		goto out;

1341
	page = pmd_page(*pmd);
1342
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1343 1344
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1345
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1346 1347 1348 1349
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1350 1351
		 * For anon THP:
		 *
1352 1353 1354 1355 1356 1357 1358
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1359 1360 1361 1362 1363 1364
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1365
		 */
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1377
	}
1378
skip_mlock:
1379
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1380
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1381
	if (flags & FOLL_GET)
1382
		get_page(page);
1383 1384 1385 1386 1387

out:
	return page;
}

1388
/* NUMA hinting page fault entry point for trans huge pmds */
J
Jan Kara 已提交
1389
int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1390
{
J
Jan Kara 已提交
1391
	struct vm_area_struct *vma = vmf->vma;
1392
	struct anon_vma *anon_vma = NULL;
1393
	struct page *page;
J
Jan Kara 已提交
1394
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1395
	int page_nid = -1, this_nid = numa_node_id();
1396
	int target_nid, last_cpupid = -1;
1397 1398
	bool page_locked;
	bool migrated = false;
1399
	bool was_writable;
1400
	int flags = 0;
1401

J
Jan Kara 已提交
1402 1403
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1404 1405
		goto out_unlock;

1406 1407 1408 1409 1410
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1411 1412 1413
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
		spin_unlock(vmf->ptl);
1414
		wait_on_page_locked(page);
1415 1416 1417
		goto out;
	}

1418
	page = pmd_page(pmd);
1419
	BUG_ON(is_huge_zero_page(page));
1420
	page_nid = page_to_nid(page);
1421
	last_cpupid = page_cpupid_last(page);
1422
	count_vm_numa_event(NUMA_HINT_FAULTS);
1423
	if (page_nid == this_nid) {
1424
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1425 1426
		flags |= TNF_FAULT_LOCAL;
	}
1427

1428
	/* See similar comment in do_numa_page for explanation */
1429
	if (!pmd_write(pmd))
1430 1431
		flags |= TNF_NO_GROUP;

1432 1433 1434 1435
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1436 1437 1438 1439
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1440
		if (page_locked)
1441
			goto clear_pmdnuma;
1442
	}
1443

1444
	/* Migration could have started since the pmd_trans_migrating check */
1445
	if (!page_locked) {
J
Jan Kara 已提交
1446
		spin_unlock(vmf->ptl);
1447
		wait_on_page_locked(page);
1448
		page_nid = -1;
1449 1450 1451
		goto out;
	}

1452 1453 1454 1455
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1456
	get_page(page);
J
Jan Kara 已提交
1457
	spin_unlock(vmf->ptl);
1458
	anon_vma = page_lock_anon_vma_read(page);
1459

P
Peter Zijlstra 已提交
1460
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1461 1462
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1463 1464
		unlock_page(page);
		put_page(page);
1465
		page_nid = -1;
1466
		goto out_unlock;
1467
	}
1468

1469 1470 1471 1472 1473 1474 1475
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1476 1477
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1478
	 * and access rights restored.
1479
	 */
J
Jan Kara 已提交
1480
	spin_unlock(vmf->ptl);
K
Kirill A. Shutemov 已提交
1481
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1482
				vmf->pmd, pmd, vmf->address, page, target_nid);
1483 1484
	if (migrated) {
		flags |= TNF_MIGRATED;
1485
		page_nid = target_nid;
1486 1487
	} else
		flags |= TNF_MIGRATE_FAIL;
1488

1489
	goto out;
1490
clear_pmdnuma:
1491
	BUG_ON(!PageLocked(page));
1492
	was_writable = pmd_write(pmd);
1493
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1494
	pmd = pmd_mkyoung(pmd);
1495 1496
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1497 1498
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1499
	unlock_page(page);
1500
out_unlock:
J
Jan Kara 已提交
1501
	spin_unlock(vmf->ptl);
1502 1503 1504 1505 1506

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1507
	if (page_nid != -1)
J
Jan Kara 已提交
1508 1509
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
				vmf->flags);
1510

1511 1512 1513
	return 0;
}

1514 1515 1516 1517 1518
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1519 1520 1521 1522 1523 1524
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1525
	bool ret = false;
1526

1527 1528
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1529 1530
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1531
		goto out_unlocked;
1532 1533

	orig_pmd = *pmd;
1534
	if (is_huge_zero_pmd(orig_pmd))
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1555
		split_huge_page(page);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1577
	ret = true;
1578 1579 1580 1581 1582 1583
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1584 1585 1586 1587 1588 1589 1590 1591 1592
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
	atomic_long_dec(&mm->nr_ptes);
}

1593
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1594
		 pmd_t *pmd, unsigned long addr)
1595
{
1596
	pmd_t orig_pmd;
1597
	spinlock_t *ptl;
1598

1599 1600
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1601 1602
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1616
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1617 1618 1619 1620
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1621
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1622 1623
	} else {
		struct page *page = pmd_page(orig_pmd);
1624
		page_remove_rmap(page, true);
1625 1626
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1627 1628 1629 1630 1631 1632 1633
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1634 1635
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1636 1637
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1638
		spin_unlock(ptl);
1639
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1640
	}
1641
	return 1;
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1659
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1660
		  unsigned long new_addr, unsigned long old_end,
1661
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1662
{
1663
	spinlock_t *old_ptl, *new_ptl;
1664 1665
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1666
	bool force_flush = false;
1667 1668 1669

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1670
	    old_end - old_addr < HPAGE_PMD_SIZE)
1671
		return false;
1672 1673 1674 1675 1676 1677 1678

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1679
		return false;
1680 1681
	}

1682 1683 1684 1685
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1686 1687
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1688 1689 1690
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1691
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1692 1693
		if (pmd_present(pmd) && pmd_dirty(pmd))
			force_flush = true;
1694
		VM_BUG_ON(!pmd_none(*new_pmd));
1695

1696
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1697
			pgtable_t pgtable;
1698 1699 1700
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1701 1702 1703
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1704 1705 1706 1707
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1708
		spin_unlock(old_ptl);
1709
		return true;
1710
	}
1711
	return false;
1712 1713
}

1714 1715 1716 1717 1718 1719
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1720
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1721
		unsigned long addr, pgprot_t newprot, int prot_numa)
1722 1723
{
	struct mm_struct *mm = vma->vm_mm;
1724
	spinlock_t *ptl;
1725 1726
	int ret = 0;

1727 1728
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1729
		pmd_t entry;
1730
		bool preserve_write = prot_numa && pmd_write(*pmd);
1731
		ret = 1;
1732 1733 1734 1735 1736 1737 1738 1739

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1740
			return ret;
1741 1742
		}

1743
		if (!prot_numa || !pmd_protnone(*pmd)) {
1744
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1745
			entry = pmd_modify(entry, newprot);
1746 1747
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1748 1749
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1750 1751
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1752
		}
1753
		spin_unlock(ptl);
1754 1755 1756 1757 1758 1759
	}

	return ret;
}

/*
1760
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1761
 *
1762 1763
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1764
 */
1765
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1766
{
1767 1768
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1769
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1770 1771 1772
		return ptl;
	spin_unlock(ptl);
	return NULL;
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

	count_vm_event(THP_SPLIT_PMD);

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1881
		unsigned long haddr, bool freeze)
1882 1883 1884 1885 1886
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1887
	bool young, write, dirty, soft_dirty;
1888
	unsigned long addr;
1889 1890 1891 1892 1893
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1894
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1895 1896 1897

	count_vm_event(THP_SPLIT_PMD);

1898 1899
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1900 1901 1902 1903 1904 1905
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
1906 1907 1908 1909 1910 1911 1912 1913
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1914 1915 1916 1917 1918 1919 1920
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1921
	page_ref_add(page, HPAGE_PMD_NR - 1);
1922 1923
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1924
	dirty = pmd_dirty(*pmd);
1925
	soft_dirty = pmd_soft_dirty(*pmd);
1926

1927
	pmdp_huge_split_prepare(vma, haddr, pmd);
1928 1929 1930
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1931
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1932 1933 1934 1935 1936 1937
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1938 1939 1940 1941
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1942 1943
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1944
		} else {
1945
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1946
			entry = maybe_mkwrite(entry, vma);
1947 1948 1949 1950
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1951 1952
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1953
		}
1954 1955
		if (dirty)
			SetPageDirty(page + i);
1956
		pte = pte_offset_map(&_pmd, addr);
1957
		BUG_ON(!pte_none(*pte));
1958
		set_pte_at(mm, addr, pte, entry);
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1974
		__dec_node_page_state(page, NR_ANON_THPS);
1975 1976 1977 1978 1979 1980 1981 1982
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
2005
	pmd_populate(mm, pmd, pgtable);
2006 2007

	if (freeze) {
2008
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2009 2010 2011 2012
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2013 2014 2015
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2016
		unsigned long address, bool freeze, struct page *page)
2017 2018 2019 2020 2021 2022 2023
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2024 2025 2026 2027 2028 2029 2030 2031 2032

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2033
	if (pmd_trans_huge(*pmd)) {
2034
		page = pmd_page(*pmd);
2035
		if (PageMlocked(page))
2036
			clear_page_mlock(page);
2037
	} else if (!pmd_devmap(*pmd))
2038
		goto out;
2039
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2040
out:
2041 2042 2043 2044
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

2045 2046
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2047
{
2048 2049
	pgd_t *pgd;
	pud_t *pud;
2050 2051
	pmd_t *pmd;

2052
	pgd = pgd_offset(vma->vm_mm, address);
2053 2054 2055 2056 2057 2058 2059 2060
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2061

2062
	__split_huge_pmd(vma, pmd, address, freeze, page);
2063 2064
}

2065
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2078
		split_huge_pmd_address(vma, start, false, NULL);
2079 2080 2081 2082 2083 2084 2085 2086 2087

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2088
		split_huge_pmd_address(vma, end, false, NULL);
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2102
			split_huge_pmd_address(next, nstart, false, NULL);
2103 2104
	}
}
2105

2106
static void freeze_page(struct page *page)
2107
{
2108
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2109 2110
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
	int ret;
2111 2112 2113

	VM_BUG_ON_PAGE(!PageHead(page), page);

2114 2115 2116
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

2117 2118
	ret = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(ret, page);
2119 2120
}

2121
static void unfreeze_page(struct page *page)
2122
{
2123
	int i;
2124 2125 2126 2127 2128 2129
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2130 2131
}

2132
static void __split_huge_page_tail(struct page *head, int tail,
2133 2134 2135 2136
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2137
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2138
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2139 2140

	/*
2141
	 * tail_page->_refcount is zero and not changing from under us. But
2142
	 * get_page_unless_zero() may be running from under us on the
2143 2144
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
2145 2146 2147 2148
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
2149
	 * it's safer to use atomic_inc()/atomic_add().
2150
	 */
2151 2152 2153 2154 2155 2156
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
2157 2158 2159 2160 2161 2162 2163 2164 2165

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
2166 2167
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
2183
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2184 2185 2186 2187 2188 2189 2190 2191
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2192 2193
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
2194 2195 2196 2197
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2198
	pgoff_t end = -1;
2199
	int i;
2200

M
Mel Gorman 已提交
2201
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2202 2203 2204 2205

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2206 2207 2208 2209
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2210
		__split_huge_page_tail(head, i, lruvec, list);
2211 2212 2213 2214
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
2215 2216
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2217 2218 2219
			put_page(head + i);
		}
	}
2220 2221

	ClearPageCompound(head);
2222 2223 2224 2225 2226 2227 2228 2229 2230
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

2231
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2232

2233
	unfreeze_page(head);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2252 2253
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2254
	int i, compound, ret;
2255 2256 2257 2258 2259 2260

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2261
	compound = compound_mapcount(page);
2262
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2263 2264
		return compound;
	ret = compound;
2265 2266
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2267 2268 2269
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2270 2271 2272 2273 2274
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2355
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2356 2357 2358
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2359
	bool mlocked;
2360
	unsigned long flags;
2361 2362 2363 2364 2365 2366

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2397 2398 2399 2400 2401 2402
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2403
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2404 2405 2406 2407
		ret = -EBUSY;
		goto out_unlock;
	}

2408
	mlocked = PageMlocked(page);
2409
	freeze_page(head);
2410 2411
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2412 2413 2414 2415
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2416
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2417
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2434
	/* Prevent deferred_split_scan() touching ->_refcount */
2435
	spin_lock(&pgdata->split_queue_lock);
2436 2437
	count = page_count(head);
	mapcount = total_mapcount(head);
2438
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2439
		if (!list_empty(page_deferred_list(head))) {
2440
			pgdata->split_queue_len--;
2441 2442
			list_del(page_deferred_list(head));
		}
2443
		if (mapping)
2444
			__dec_node_page_state(page, NR_SHMEM_THPS);
2445 2446
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2447 2448
		ret = 0;
	} else {
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2460
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2461
		unfreeze_page(head);
2462 2463 2464 2465
		ret = -EBUSY;
	}

out_unlock:
2466 2467 2468 2469 2470 2471
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2472 2473 2474 2475
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2476 2477 2478

void free_transhuge_page(struct page *page)
{
2479
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2480 2481
	unsigned long flags;

2482
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2483
	if (!list_empty(page_deferred_list(page))) {
2484
		pgdata->split_queue_len--;
2485 2486
		list_del(page_deferred_list(page));
	}
2487
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2488 2489 2490 2491 2492
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2493
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2494 2495 2496 2497
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2498
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2499
	if (list_empty(page_deferred_list(page))) {
2500
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2501 2502
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2503
	}
2504
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2505 2506 2507 2508 2509
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2510
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2511
	return ACCESS_ONCE(pgdata->split_queue_len);
2512 2513 2514 2515 2516
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2517
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2518 2519 2520 2521 2522
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2523
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2524
	/* Take pin on all head pages to avoid freeing them under us */
2525
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2526 2527
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2528 2529 2530 2531
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2532
			list_del_init(page_deferred_list(page));
2533
			pgdata->split_queue_len--;
2534
		}
2535 2536
		if (!--sc->nr_to_scan)
			break;
2537
	}
2538
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2550 2551 2552
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2553

2554 2555 2556 2557 2558 2559 2560
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2561 2562 2563 2564 2565 2566
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2567
	.flags = SHRINKER_NUMA_AWARE,
2568
};
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2594
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2607
	pr_info("%lu of %lu THP split\n", split, total);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2618
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2619 2620 2621 2622 2623 2624 2625
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif