huge_memory.c 61.6 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
100
{
101 102 103
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
104

105 106 107
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
108
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
109 110
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
111
		__free_pages(zero_page, compound_order(zero_page));
112
		return HPAGE_PMD_NR;
113 114 115
	}

	return 0;
116 117
}

118
static struct shrinker huge_zero_page_shrinker = {
119 120
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
121 122 123
	.seeks = DEFAULT_SEEKS,
};

124
#ifdef CONFIG_SYSFS
A
Andrea Arcangeli 已提交
125

126
static ssize_t triple_flag_store(struct kobject *kobj,
127 128 129
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag enabled,
130
				 enum transparent_hugepage_flag deferred,
131 132
				 enum transparent_hugepage_flag req_madv)
{
133 134 135 136 137 138 139 140
	if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		if (enabled == deferred)
			return -EINVAL;
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
		set_bit(deferred, &transparent_hugepage_flags);
	} else if (!memcmp("always", buf,
141
		    min(sizeof("always")-1, count))) {
142
		clear_bit(deferred, &transparent_hugepage_flags);
143
		clear_bit(req_madv, &transparent_hugepage_flags);
144
		set_bit(enabled, &transparent_hugepage_flags);
145 146 147
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
148
		clear_bit(deferred, &transparent_hugepage_flags);
149 150 151 152 153
		set_bit(req_madv, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
154
		clear_bit(deferred, &transparent_hugepage_flags);
155 156 157 158 159 160 161 162 163
	} else
		return -EINVAL;

	return count;
}

static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
164 165 166 167 168 169
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
170
}
171

172 173 174 175
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
A
Andrea Arcangeli 已提交
176 177
	ssize_t ret;

178 179
	ret = triple_flag_store(kobj, attr, buf, count,
				TRANSPARENT_HUGEPAGE_FLAG,
A
Andrea Arcangeli 已提交
180 181 182 183
				TRANSPARENT_HUGEPAGE_FLAG,
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);

	if (ret > 0) {
184
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
185 186 187 188 189
		if (err)
			ret = err;
	}

	return ret;
190 191 192 193
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

194
ssize_t single_hugepage_flag_show(struct kobject *kobj,
195 196 197
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
198 199
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
200
}
201

202
ssize_t single_hugepage_flag_store(struct kobject *kobj,
203 204 205 206
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
207 208 209 210 211 212 213 214 215 216
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
217
		set_bit(flag, &transparent_hugepage_flags);
218
	else
219 220 221 222 223 224 225 226 227 228 229 230 231
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

/*
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 * memory just to allocate one more hugepage.
 */
static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
232 233 234 235 236 237 238 239 240
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] defer madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [defer] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [madvise] never\n");
	else
		return sprintf(buf, "always defer madvise [never]\n");

241 242 243 244 245
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
246 247 248
	return triple_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
249 250 251 252 253
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

254 255 256
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
257
	return single_hugepage_flag_show(kobj, attr, buf,
258 259 260 261 262
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
263
	return single_hugepage_flag_store(kobj, attr, buf, count,
264 265 266 267
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
268 269 270 271
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
272
	return single_hugepage_flag_show(kobj, attr, buf,
273 274 275 276 277 278
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
279
	return single_hugepage_flag_store(kobj, attr, buf, count,
280 281 282 283 284 285 286 287 288
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
289
	&use_zero_page_attr.attr,
290
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
291 292
	&shmem_enabled_attr.attr,
#endif
293 294 295 296 297 298 299 300
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
301 302
};

S
Shaohua Li 已提交
303
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
304 305 306
{
	int err;

S
Shaohua Li 已提交
307 308
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
309
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
310
		return -ENOMEM;
A
Andrea Arcangeli 已提交
311 312
	}

S
Shaohua Li 已提交
313
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
314
	if (err) {
315
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
316
		goto delete_obj;
A
Andrea Arcangeli 已提交
317 318
	}

S
Shaohua Li 已提交
319
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
320
	if (err) {
321
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
322
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
323
	}
S
Shaohua Li 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

361 362 363 364 365 366 367 368 369 370
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
371 372
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
373
		goto err_sysfs;
A
Andrea Arcangeli 已提交
374

375
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
376
	if (err)
377
		goto err_slab;
A
Andrea Arcangeli 已提交
378

379 380 381
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
382 383 384
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
385

386 387 388 389 390
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
391
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
392
		transparent_hugepage_flags = 0;
393 394
		return 0;
	}
395

396
	err = start_stop_khugepaged();
397 398
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
399

S
Shaohua Li 已提交
400
	return 0;
401
err_khugepaged:
402 403
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
404 405
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
406
	khugepaged_destroy();
407
err_slab:
S
Shaohua Li 已提交
408
	hugepage_exit_sysfs(hugepage_kobj);
409
err_sysfs:
A
Andrea Arcangeli 已提交
410
	return err;
411
}
412
subsys_initcall(hugepage_init);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
440
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
441 442 443 444
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

445
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
446 447 448 449 450 451
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

K
Kirill A. Shutemov 已提交
472 473
static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
		gfp_t gfp)
474
{
K
Kirill A. Shutemov 已提交
475
	struct vm_area_struct *vma = fe->vma;
476
	struct mem_cgroup *memcg;
477
	pgtable_t pgtable;
K
Kirill A. Shutemov 已提交
478
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
479

480
	VM_BUG_ON_PAGE(!PageCompound(page), page);
481

K
Kirill A. Shutemov 已提交
482
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
483 484 485 486
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
487

K
Kirill A. Shutemov 已提交
488
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
489
	if (unlikely(!pgtable)) {
490
		mem_cgroup_cancel_charge(page, memcg, true);
491
		put_page(page);
492
		return VM_FAULT_OOM;
493
	}
494 495

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
496 497 498 499 500
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
501 502
	__SetPageUptodate(page);

K
Kirill A. Shutemov 已提交
503 504 505
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_none(*fe->pmd))) {
		spin_unlock(fe->ptl);
506
		mem_cgroup_cancel_charge(page, memcg, true);
507
		put_page(page);
K
Kirill A. Shutemov 已提交
508
		pte_free(vma->vm_mm, pgtable);
509 510
	} else {
		pmd_t entry;
511 512 513 514 515

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

K
Kirill A. Shutemov 已提交
516
			spin_unlock(fe->ptl);
517
			mem_cgroup_cancel_charge(page, memcg, true);
518
			put_page(page);
K
Kirill A. Shutemov 已提交
519 520
			pte_free(vma->vm_mm, pgtable);
			ret = handle_userfault(fe, VM_UFFD_MISSING);
521 522 523 524
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

525 526
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
527
		page_add_new_anon_rmap(page, vma, haddr, true);
528
		mem_cgroup_commit_charge(page, memcg, false, true);
529
		lru_cache_add_active_or_unevictable(page, vma);
K
Kirill A. Shutemov 已提交
530 531 532 533 534
		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
		spin_unlock(fe->ptl);
535
		count_vm_event(THP_FAULT_ALLOC);
536 537
	}

538
	return 0;
539 540
}

541
/*
542 543
 * If THP defrag is set to always then directly reclaim/compact as necessary
 * If set to defer then do only background reclaim/compact and defer to khugepaged
544
 * If set to madvise and the VMA is flagged then directly reclaim/compact
545
 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
546 547 548
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
549 550 551 552 553 554 555 556 557 558 559 560 561
	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
				&transparent_hugepage_flags) && vma_madvised)
		return GFP_TRANSHUGE;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);

	return GFP_TRANSHUGE_LIGHT;
562 563
}

564
/* Caller must hold page table lock. */
565
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
566
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
567
		struct page *zero_page)
568 569
{
	pmd_t entry;
A
Andrew Morton 已提交
570 571
	if (!pmd_none(*pmd))
		return false;
572
	entry = mk_pmd(zero_page, vma->vm_page_prot);
573
	entry = pmd_mkhuge(entry);
574 575
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
576
	set_pmd_at(mm, haddr, pmd, entry);
577
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
578
	return true;
579 580
}

K
Kirill A. Shutemov 已提交
581
int do_huge_pmd_anonymous_page(struct fault_env *fe)
582
{
K
Kirill A. Shutemov 已提交
583
	struct vm_area_struct *vma = fe->vma;
584
	gfp_t gfp;
585
	struct page *page;
K
Kirill A. Shutemov 已提交
586
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
587

588
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
589
		return VM_FAULT_FALLBACK;
590 591
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
592
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
593
		return VM_FAULT_OOM;
K
Kirill A. Shutemov 已提交
594 595
	if (!(fe->flags & FAULT_FLAG_WRITE) &&
			!mm_forbids_zeropage(vma->vm_mm) &&
596 597 598 599
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
600
		int ret;
K
Kirill A. Shutemov 已提交
601
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
602
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
603
			return VM_FAULT_OOM;
604 605
		zero_page = get_huge_zero_page();
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
606
			pte_free(vma->vm_mm, pgtable);
607
			count_vm_event(THP_FAULT_FALLBACK);
608
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
609
		}
K
Kirill A. Shutemov 已提交
610
		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
611 612
		ret = 0;
		set = false;
K
Kirill A. Shutemov 已提交
613
		if (pmd_none(*fe->pmd)) {
614
			if (userfaultfd_missing(vma)) {
K
Kirill A. Shutemov 已提交
615 616
				spin_unlock(fe->ptl);
				ret = handle_userfault(fe, VM_UFFD_MISSING);
617 618
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
619 620 621
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
						   haddr, fe->pmd, zero_page);
				spin_unlock(fe->ptl);
622 623 624
				set = true;
			}
		} else
K
Kirill A. Shutemov 已提交
625
			spin_unlock(fe->ptl);
626
		if (!set) {
K
Kirill A. Shutemov 已提交
627
			pte_free(vma->vm_mm, pgtable);
628
			put_huge_zero_page();
629
		}
630
		return ret;
631
	}
632
	gfp = alloc_hugepage_direct_gfpmask(vma);
633
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
634 635
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
636
		return VM_FAULT_FALLBACK;
637
	}
638
	prep_transhuge_page(page);
K
Kirill A. Shutemov 已提交
639
	return __do_huge_pmd_anonymous_page(fe, page, gfp);
640 641
}

642
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
643
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
644 645 646 647 648 649
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
650 651 652
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
653 654 655
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
656
	}
657 658
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
659 660 661 662
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
663
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
664 665 666 667 668 669 670 671 672 673 674
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
675
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
676 677 678 679 680

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
	if (track_pfn_insert(vma, &pgprot, pfn))
		return VM_FAULT_SIGBUS;
681 682
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
683
}
684
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

743 744 745 746
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
747
	spinlock_t *dst_ptl, *src_ptl;
748 749
	struct page *src_page;
	pmd_t pmd;
750
	pgtable_t pgtable = NULL;
751
	int ret = -ENOMEM;
752

753 754 755 756 757 758 759
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
760

761 762 763
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
764 765 766

	ret = -EAGAIN;
	pmd = *src_pmd;
767
	if (unlikely(!pmd_trans_huge(pmd))) {
768 769 770
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
771
	/*
772
	 * When page table lock is held, the huge zero pmd should not be
773 774 775 776
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
777
		struct page *zero_page;
778 779 780 781 782
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
783
		zero_page = get_huge_zero_page();
784
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
785
				zero_page);
786 787 788
		ret = 0;
		goto out_unlock;
	}
789

790 791 792 793 794 795 796
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
797 798 799 800 801 802 803

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
804 805
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
806 807 808 809
out:
	return ret;
}

K
Kirill A. Shutemov 已提交
810
void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
811 812 813 814
{
	pmd_t entry;
	unsigned long haddr;

K
Kirill A. Shutemov 已提交
815 816
	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
817 818 819
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
K
Kirill A. Shutemov 已提交
820 821 822 823
	haddr = fe->address & HPAGE_PMD_MASK;
	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
				fe->flags & FAULT_FLAG_WRITE))
		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
824 825

unlock:
K
Kirill A. Shutemov 已提交
826
	spin_unlock(fe->ptl);
827 828
}

K
Kirill A. Shutemov 已提交
829 830
static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
		struct page *page)
831
{
K
Kirill A. Shutemov 已提交
832 833
	struct vm_area_struct *vma = fe->vma;
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
834
	struct mem_cgroup *memcg;
835 836 837 838
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
839 840
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
841 842 843 844 845 846 847 848 849

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
850
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
K
Kirill A. Shutemov 已提交
851 852
					       __GFP_OTHER_NODE, vma,
					       fe->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
853
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
854 855
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
856
			if (pages[i])
857
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
858
			while (--i >= 0) {
859 860
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
861 862
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
863 864
				put_page(pages[i]);
			}
865 866 867 868
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
869
		set_page_private(pages[i], (unsigned long)memcg);
870 871 872 873
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
874
				   haddr + PAGE_SIZE * i, vma);
875 876 877 878
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

879 880
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
881
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
882

K
Kirill A. Shutemov 已提交
883 884
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
885
		goto out_free_pages;
886
	VM_BUG_ON_PAGE(!PageHead(page), page);
887

K
Kirill A. Shutemov 已提交
888
	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
889 890
	/* leave pmd empty until pte is filled */

K
Kirill A. Shutemov 已提交
891 892
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
893 894

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
895
		pte_t entry;
896 897
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
898 899
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
K
Kirill A. Shutemov 已提交
900
		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
901
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
902
		lru_cache_add_active_or_unevictable(pages[i], vma);
K
Kirill A. Shutemov 已提交
903 904 905 906
		fe->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*fe->pte));
		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
		pte_unmap(fe->pte);
907 908 909 910
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
K
Kirill A. Shutemov 已提交
911
	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
912
	page_remove_rmap(page, true);
K
Kirill A. Shutemov 已提交
913
	spin_unlock(fe->ptl);
914

K
Kirill A. Shutemov 已提交
915
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
916

917 918 919 920 921 922 923
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
K
Kirill A. Shutemov 已提交
924 925
	spin_unlock(fe->ptl);
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
926
	for (i = 0; i < HPAGE_PMD_NR; i++) {
927 928
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
929
		mem_cgroup_cancel_charge(pages[i], memcg, false);
930
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
931
	}
932 933 934 935
	kfree(pages);
	goto out;
}

K
Kirill A. Shutemov 已提交
936
int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
937
{
K
Kirill A. Shutemov 已提交
938
	struct vm_area_struct *vma = fe->vma;
939
	struct page *page = NULL, *new_page;
940
	struct mem_cgroup *memcg;
K
Kirill A. Shutemov 已提交
941
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
942 943
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
944
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
945
	int ret = 0;
946

K
Kirill A. Shutemov 已提交
947
	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
948
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
949 950
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
K
Kirill A. Shutemov 已提交
951 952
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
953 954 955
		goto out_unlock;

	page = pmd_page(orig_pmd);
956
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
957 958
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
959
	 * part.
960
	 */
961
	if (page_trans_huge_mapcount(page, NULL) == 1) {
962 963 964
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
965 966
		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
967 968 969
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
970
	get_page(page);
K
Kirill A. Shutemov 已提交
971
	spin_unlock(fe->ptl);
972
alloc:
973
	if (transparent_hugepage_enabled(vma) &&
974
	    !transparent_hugepage_debug_cow()) {
975
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
976
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
977
	} else
978 979
		new_page = NULL;

980 981 982
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
983
		if (!page) {
K
Kirill A. Shutemov 已提交
984
			split_huge_pmd(vma, fe->pmd, fe->address);
985
			ret |= VM_FAULT_FALLBACK;
986
		} else {
K
Kirill A. Shutemov 已提交
987
			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
988
			if (ret & VM_FAULT_OOM) {
K
Kirill A. Shutemov 已提交
989
				split_huge_pmd(vma, fe->pmd, fe->address);
990 991
				ret |= VM_FAULT_FALLBACK;
			}
992
			put_page(page);
993
		}
994
		count_vm_event(THP_FAULT_FALLBACK);
995 996 997
		goto out;
	}

K
Kirill A. Shutemov 已提交
998 999
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1000
		put_page(new_page);
K
Kirill A. Shutemov 已提交
1001 1002
		split_huge_pmd(vma, fe->pmd, fe->address);
		if (page)
1003
			put_page(page);
1004
		ret |= VM_FAULT_FALLBACK;
1005
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1006 1007 1008
		goto out;
	}

1009 1010
	count_vm_event(THP_FAULT_ALLOC);

1011
	if (!page)
1012 1013 1014
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1015 1016
	__SetPageUptodate(new_page);

1017 1018
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1019
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1020

K
Kirill A. Shutemov 已提交
1021
	spin_lock(fe->ptl);
1022
	if (page)
1023
		put_page(page);
K
Kirill A. Shutemov 已提交
1024 1025
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
		spin_unlock(fe->ptl);
1026
		mem_cgroup_cancel_charge(new_page, memcg, true);
1027
		put_page(new_page);
1028
		goto out_mn;
A
Andrea Arcangeli 已提交
1029
	} else {
1030
		pmd_t entry;
1031 1032
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1033
		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1034
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1035
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1036
		lru_cache_add_active_or_unevictable(new_page, vma);
K
Kirill A. Shutemov 已提交
1037 1038
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1039
		if (!page) {
K
Kirill A. Shutemov 已提交
1040
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1041 1042
			put_huge_zero_page();
		} else {
1043
			VM_BUG_ON_PAGE(!PageHead(page), page);
1044
			page_remove_rmap(page, true);
1045 1046
			put_page(page);
		}
1047 1048
		ret |= VM_FAULT_WRITE;
	}
K
Kirill A. Shutemov 已提交
1049
	spin_unlock(fe->ptl);
1050
out_mn:
K
Kirill A. Shutemov 已提交
1051
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1052 1053
out:
	return ret;
1054
out_unlock:
K
Kirill A. Shutemov 已提交
1055
	spin_unlock(fe->ptl);
1056
	return ret;
1057 1058
}

1059
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1060 1061 1062 1063
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1064
	struct mm_struct *mm = vma->vm_mm;
1065 1066
	struct page *page = NULL;

1067
	assert_spin_locked(pmd_lockptr(mm, pmd));
1068 1069 1070 1071

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		goto out;

1072 1073 1074 1075
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1076
	/* Full NUMA hinting faults to serialise migration in fault paths */
1077
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1078 1079
		goto out;

1080
	page = pmd_page(*pmd);
1081
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1082 1083
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1084
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1085 1086 1087 1088
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1089 1090
		 * For anon THP:
		 *
1091 1092 1093 1094 1095 1096 1097
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1098 1099 1100 1101 1102 1103
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1104
		 */
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1116
	}
1117
skip_mlock:
1118
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1119
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1120
	if (flags & FOLL_GET)
1121
		get_page(page);
1122 1123 1124 1125 1126

out:
	return page;
}

1127
/* NUMA hinting page fault entry point for trans huge pmds */
K
Kirill A. Shutemov 已提交
1128
int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1129
{
K
Kirill A. Shutemov 已提交
1130
	struct vm_area_struct *vma = fe->vma;
1131
	struct anon_vma *anon_vma = NULL;
1132
	struct page *page;
K
Kirill A. Shutemov 已提交
1133
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1134
	int page_nid = -1, this_nid = numa_node_id();
1135
	int target_nid, last_cpupid = -1;
1136 1137
	bool page_locked;
	bool migrated = false;
1138
	bool was_writable;
1139
	int flags = 0;
1140

K
Kirill A. Shutemov 已提交
1141 1142
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1143 1144
		goto out_unlock;

1145 1146 1147 1148 1149
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
K
Kirill A. Shutemov 已提交
1150 1151 1152
	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
		page = pmd_page(*fe->pmd);
		spin_unlock(fe->ptl);
1153
		wait_on_page_locked(page);
1154 1155 1156
		goto out;
	}

1157
	page = pmd_page(pmd);
1158
	BUG_ON(is_huge_zero_page(page));
1159
	page_nid = page_to_nid(page);
1160
	last_cpupid = page_cpupid_last(page);
1161
	count_vm_numa_event(NUMA_HINT_FAULTS);
1162
	if (page_nid == this_nid) {
1163
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1164 1165
		flags |= TNF_FAULT_LOCAL;
	}
1166

1167
	/* See similar comment in do_numa_page for explanation */
1168
	if (!pmd_write(pmd))
1169 1170
		flags |= TNF_NO_GROUP;

1171 1172 1173 1174
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1175 1176 1177 1178
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1179
		if (page_locked)
1180
			goto clear_pmdnuma;
1181
	}
1182

1183
	/* Migration could have started since the pmd_trans_migrating check */
1184
	if (!page_locked) {
K
Kirill A. Shutemov 已提交
1185
		spin_unlock(fe->ptl);
1186
		wait_on_page_locked(page);
1187
		page_nid = -1;
1188 1189 1190
		goto out;
	}

1191 1192 1193 1194
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1195
	get_page(page);
K
Kirill A. Shutemov 已提交
1196
	spin_unlock(fe->ptl);
1197
	anon_vma = page_lock_anon_vma_read(page);
1198

P
Peter Zijlstra 已提交
1199
	/* Confirm the PMD did not change while page_table_lock was released */
K
Kirill A. Shutemov 已提交
1200 1201
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1202 1203
		unlock_page(page);
		put_page(page);
1204
		page_nid = -1;
1205
		goto out_unlock;
1206
	}
1207

1208 1209 1210 1211 1212 1213 1214
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1215 1216
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1217
	 * and access rights restored.
1218
	 */
K
Kirill A. Shutemov 已提交
1219 1220 1221
	spin_unlock(fe->ptl);
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
				fe->pmd, pmd, fe->address, page, target_nid);
1222 1223
	if (migrated) {
		flags |= TNF_MIGRATED;
1224
		page_nid = target_nid;
1225 1226
	} else
		flags |= TNF_MIGRATE_FAIL;
1227

1228
	goto out;
1229
clear_pmdnuma:
1230
	BUG_ON(!PageLocked(page));
1231
	was_writable = pmd_write(pmd);
1232
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1233
	pmd = pmd_mkyoung(pmd);
1234 1235
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
K
Kirill A. Shutemov 已提交
1236 1237
	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1238
	unlock_page(page);
1239
out_unlock:
K
Kirill A. Shutemov 已提交
1240
	spin_unlock(fe->ptl);
1241 1242 1243 1244 1245

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1246
	if (page_nid != -1)
K
Kirill A. Shutemov 已提交
1247
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1248

1249 1250 1251
	return 0;
}

1252 1253 1254 1255 1256
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1257 1258 1259 1260 1261 1262
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1263
	bool ret = false;
1264

1265 1266
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1267
		goto out_unlocked;
1268 1269

	orig_pmd = *pmd;
1270
	if (is_huge_zero_pmd(orig_pmd))
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1291
		split_huge_page(page);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1313
	ret = true;
1314 1315 1316 1317 1318 1319
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1320
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1321
		 pmd_t *pmd, unsigned long addr)
1322
{
1323
	pmd_t orig_pmd;
1324
	spinlock_t *ptl;
1325

1326 1327
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1341
			tlb_remove_page(tlb, pmd_page(orig_pmd));
1342 1343 1344 1345
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1346
		tlb_remove_page(tlb, pmd_page(orig_pmd));
1347 1348
	} else {
		struct page *page = pmd_page(orig_pmd);
1349
		page_remove_rmap(page, true);
1350 1351
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1352 1353 1354 1355 1356 1357 1358 1359 1360
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1361
		spin_unlock(ptl);
1362
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1363
	}
1364
	return 1;
1365 1366
}

1367
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1368 1369 1370
		  unsigned long new_addr, unsigned long old_end,
		  pmd_t *old_pmd, pmd_t *new_pmd)
{
1371
	spinlock_t *old_ptl, *new_ptl;
1372 1373 1374 1375 1376
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1377
	    old_end - old_addr < HPAGE_PMD_SIZE)
1378
		return false;
1379 1380 1381 1382 1383 1384 1385

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1386
		return false;
1387 1388
	}

1389 1390 1391 1392
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1393 1394
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1395 1396 1397
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1398
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1399
		VM_BUG_ON(!pmd_none(*new_pmd));
1400

1401 1402
		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
				vma_is_anonymous(vma)) {
1403
			pgtable_t pgtable;
1404 1405 1406
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1407 1408 1409
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1410
		spin_unlock(old_ptl);
1411
		return true;
1412
	}
1413
	return false;
1414 1415
}

1416 1417 1418 1419 1420 1421
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1422
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1423
		unsigned long addr, pgprot_t newprot, int prot_numa)
1424 1425
{
	struct mm_struct *mm = vma->vm_mm;
1426
	spinlock_t *ptl;
1427 1428
	int ret = 0;

1429 1430
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1431
		pmd_t entry;
1432
		bool preserve_write = prot_numa && pmd_write(*pmd);
1433
		ret = 1;
1434 1435 1436 1437 1438 1439 1440 1441

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1442
			return ret;
1443 1444
		}

1445
		if (!prot_numa || !pmd_protnone(*pmd)) {
1446
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1447
			entry = pmd_modify(entry, newprot);
1448 1449
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1450 1451
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1452 1453
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1454
		}
1455
		spin_unlock(ptl);
1456 1457 1458 1459 1460 1461
	}

	return ret;
}

/*
1462
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1463
 *
1464 1465
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1466
 */
1467
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1468
{
1469 1470
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1471
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1472 1473 1474
		return ptl;
	spin_unlock(ptl);
	return NULL;
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
	put_huge_zero_page();
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1506
		unsigned long haddr, bool freeze)
1507 1508 1509 1510 1511
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1512
	bool young, write, dirty, soft_dirty;
1513
	unsigned long addr;
1514 1515 1516 1517 1518
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1519
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1520 1521 1522

	count_vm_event(THP_SPLIT_PMD);

1523 1524
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1525 1526
		if (is_huge_zero_pmd(_pmd))
			put_huge_zero_page();
1527 1528 1529 1530 1531 1532 1533 1534
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1535 1536 1537 1538 1539 1540 1541
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1542
	page_ref_add(page, HPAGE_PMD_NR - 1);
1543 1544
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1545
	dirty = pmd_dirty(*pmd);
1546
	soft_dirty = pmd_soft_dirty(*pmd);
1547

1548
	pmdp_huge_split_prepare(vma, haddr, pmd);
1549 1550 1551
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1552
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1553 1554 1555 1556 1557 1558
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1559 1560 1561 1562
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1563 1564
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1565 1566
		} else {
			entry = mk_pte(page + i, vma->vm_page_prot);
1567
			entry = maybe_mkwrite(entry, vma);
1568 1569 1570 1571
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1572 1573
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1574
		}
1575 1576
		if (dirty)
			SetPageDirty(page + i);
1577
		pte = pte_offset_map(&_pmd, addr);
1578
		BUG_ON(!pte_none(*pte));
1579
		set_pte_at(mm, addr, pte, entry);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1595
		__dec_node_page_state(page, NR_ANON_THPS);
1596 1597 1598 1599 1600 1601 1602 1603
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
1626
	pmd_populate(mm, pmd, pgtable);
1627 1628

	if (freeze) {
1629
		for (i = 0; i < HPAGE_PMD_NR; i++) {
1630 1631 1632 1633
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
1634 1635 1636
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1637
		unsigned long address, bool freeze, struct page *page)
1638 1639 1640 1641 1642 1643 1644
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
1645 1646 1647 1648 1649 1650 1651 1652 1653

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

1654
	if (pmd_trans_huge(*pmd)) {
1655
		page = pmd_page(*pmd);
1656
		if (PageMlocked(page))
1657
			clear_page_mlock(page);
1658
	} else if (!pmd_devmap(*pmd))
1659
		goto out;
1660
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1661
out:
1662 1663 1664 1665
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

1666 1667
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
1668
{
1669 1670
	pgd_t *pgd;
	pud_t *pud;
1671 1672
	pmd_t *pmd;

1673
	pgd = pgd_offset(vma->vm_mm, address);
1674 1675 1676 1677 1678 1679 1680 1681
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
1682

1683
	__split_huge_pmd(vma, pmd, address, freeze, page);
1684 1685
}

1686
void vma_adjust_trans_huge(struct vm_area_struct *vma,
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1699
		split_huge_pmd_address(vma, start, false, NULL);
1700 1701 1702 1703 1704 1705 1706 1707 1708

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1709
		split_huge_pmd_address(vma, end, false, NULL);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1723
			split_huge_pmd_address(next, nstart, false, NULL);
1724 1725
	}
}
1726

1727
static void freeze_page(struct page *page)
1728
{
1729 1730
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
		TTU_RMAP_LOCKED;
1731
	int i, ret;
1732 1733 1734

	VM_BUG_ON_PAGE(!PageHead(page), page);

1735 1736 1737
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

1738 1739 1740 1741 1742 1743
	/* We only need TTU_SPLIT_HUGE_PMD once */
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
		/* Cut short if the page is unmapped */
		if (page_count(page) == 1)
			return;
1744

1745
		ret = try_to_unmap(page + i, ttu_flags);
1746
	}
1747
	VM_BUG_ON_PAGE(ret, page + i - 1);
1748 1749
}

1750
static void unfreeze_page(struct page *page)
1751
{
1752
	int i;
1753

1754 1755
	for (i = 0; i < HPAGE_PMD_NR; i++)
		remove_migration_ptes(page + i, page + i, true);
1756 1757
}

1758
static void __split_huge_page_tail(struct page *head, int tail,
1759 1760 1761 1762
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

1763
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1764
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1765 1766

	/*
1767
	 * tail_page->_refcount is zero and not changing from under us. But
1768
	 * get_page_unless_zero() may be running from under us on the
1769 1770
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
1771 1772 1773 1774
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
1775
	 * it's safer to use atomic_inc()/atomic_add().
1776
	 */
1777 1778 1779 1780 1781 1782
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
1783 1784 1785 1786 1787 1788 1789 1790 1791

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
1792 1793
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
1809
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1810 1811 1812 1813 1814 1815 1816 1817
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

1818 1819
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
1820 1821 1822 1823
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
1824
	pgoff_t end = -1;
1825
	int i;
1826

M
Mel Gorman 已提交
1827
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1828 1829 1830 1831

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

1832 1833 1834 1835
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1836
		__split_huge_page_tail(head, i, lruvec, list);
1837 1838 1839 1840
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
1841 1842
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
1843 1844 1845
			put_page(head + i);
		}
	}
1846 1847

	ClearPageCompound(head);
1848 1849 1850 1851 1852 1853 1854 1855 1856
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

1857
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1858

1859
	unfreeze_page(head);
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

1878 1879
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
1880
	int i, compound, ret;
1881 1882 1883 1884 1885 1886

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
1887
	compound = compound_mapcount(page);
1888
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
1889 1890
		return compound;
	ret = compound;
1891 1892
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
1893 1894 1895
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
1896 1897 1898 1899 1900
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
1981
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
1982 1983 1984
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
1985
	bool mlocked;
1986
	unsigned long flags;
1987 1988 1989 1990 1991 1992

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2023 2024 2025 2026 2027 2028
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2029
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2030 2031 2032 2033
		ret = -EBUSY;
		goto out_unlock;
	}

2034
	mlocked = PageMlocked(page);
2035
	freeze_page(head);
2036 2037
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2038 2039 2040 2041
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2042
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2043
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2060
	/* Prevent deferred_split_scan() touching ->_refcount */
2061
	spin_lock(&pgdata->split_queue_lock);
2062 2063
	count = page_count(head);
	mapcount = total_mapcount(head);
2064
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2065
		if (!list_empty(page_deferred_list(head))) {
2066
			pgdata->split_queue_len--;
2067 2068
			list_del(page_deferred_list(head));
		}
2069
		if (mapping)
2070
			__dec_node_page_state(page, NR_SHMEM_THPS);
2071 2072
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2073 2074
		ret = 0;
	} else {
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2086
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2087
		unfreeze_page(head);
2088 2089 2090 2091
		ret = -EBUSY;
	}

out_unlock:
2092 2093 2094 2095 2096 2097
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2098 2099 2100 2101
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2102 2103 2104

void free_transhuge_page(struct page *page)
{
2105
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2106 2107
	unsigned long flags;

2108
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2109
	if (!list_empty(page_deferred_list(page))) {
2110
		pgdata->split_queue_len--;
2111 2112
		list_del(page_deferred_list(page));
	}
2113
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2114 2115 2116 2117 2118
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2119
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2120 2121 2122 2123
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2124
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2125
	if (list_empty(page_deferred_list(page))) {
2126
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2127 2128
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2129
	}
2130
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2131 2132 2133 2134 2135
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2136
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2137
	return ACCESS_ONCE(pgdata->split_queue_len);
2138 2139 2140 2141 2142
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2143
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2144 2145 2146 2147 2148
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2149
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2150
	/* Take pin on all head pages to avoid freeing them under us */
2151
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2152 2153
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2154 2155 2156 2157
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2158
			list_del_init(page_deferred_list(page));
2159
			pgdata->split_queue_len--;
2160
		}
2161 2162
		if (!--sc->nr_to_scan)
			break;
2163
	}
2164
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2176 2177 2178
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2179

2180 2181 2182 2183 2184 2185 2186
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2187 2188 2189 2190 2191 2192
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2193
	.flags = SHRINKER_NUMA_AWARE,
2194
};
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2220
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2233
	pr_info("%lu of %lu THP split\n", split, total);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2244
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2245 2246 2247 2248 2249 2250 2251
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif