huge_memory.c 63.2 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13 14 15 16
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
17
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
18
#include <linux/mm_inline.h>
19
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
20
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
21
#include <linux/khugepaged.h>
22
#include <linux/freezer.h>
23
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
24
#include <linux/mman.h>
25
#include <linux/memremap.h>
R
Ralf Baechle 已提交
26
#include <linux/pagemap.h>
27
#include <linux/debugfs.h>
28
#include <linux/migrate.h>
29
#include <linux/hashtable.h>
30
#include <linux/userfaultfd_k.h>
31
#include <linux/page_idle.h>
32
#include <linux/shmem_fs.h>
33

34 35 36 37
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
38
/*
39 40 41 42 43 44
 * By default transparent hugepage support is disabled in order that avoid
 * to risk increase the memory footprint of applications without a guaranteed
 * benefit. When transparent hugepage support is enabled, is for all mappings,
 * and khugepaged scans all mappings.
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
45
 */
46
unsigned long transparent_hugepage_flags __read_mostly =
47
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
48
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 50 51 52
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
53
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 55
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
A
Andrea Arcangeli 已提交
56

57
static struct shrinker deferred_split_shrinker;
58

59
static atomic_t huge_zero_refcount;
60
struct page *huge_zero_page __read_mostly;
61

62
static struct page *get_huge_zero_page(void)
63 64 65 66
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67
		return READ_ONCE(huge_zero_page);
68 69

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70
			HPAGE_PMD_ORDER);
71 72
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73
		return NULL;
74 75
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
76
	preempt_disable();
77
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78
		preempt_enable();
79
		__free_pages(zero_page, compound_order(zero_page));
80 81 82 83 84 85
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
86
	return READ_ONCE(huge_zero_page);
87 88
}

89
static void put_huge_zero_page(void)
90
{
91 92 93 94 95
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

118 119
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
120
{
121 122 123
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
124

125 126 127
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
128
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 130
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
131
		__free_pages(zero_page, compound_order(zero_page));
132
		return HPAGE_PMD_NR;
133 134 135
	}

	return 0;
136 137
}

138
static struct shrinker huge_zero_page_shrinker = {
139 140
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
141 142 143
	.seeks = DEFAULT_SEEKS,
};

144
#ifdef CONFIG_SYSFS
A
Andrea Arcangeli 已提交
145

146
static ssize_t triple_flag_store(struct kobject *kobj,
147 148 149
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag enabled,
150
				 enum transparent_hugepage_flag deferred,
151 152
				 enum transparent_hugepage_flag req_madv)
{
153 154 155 156 157 158 159 160
	if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		if (enabled == deferred)
			return -EINVAL;
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
		set_bit(deferred, &transparent_hugepage_flags);
	} else if (!memcmp("always", buf,
161
		    min(sizeof("always")-1, count))) {
162
		clear_bit(deferred, &transparent_hugepage_flags);
163
		clear_bit(req_madv, &transparent_hugepage_flags);
164
		set_bit(enabled, &transparent_hugepage_flags);
165 166 167
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
168
		clear_bit(deferred, &transparent_hugepage_flags);
169 170 171 172 173
		set_bit(req_madv, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(enabled, &transparent_hugepage_flags);
		clear_bit(req_madv, &transparent_hugepage_flags);
174
		clear_bit(deferred, &transparent_hugepage_flags);
175 176 177 178 179 180 181 182 183
	} else
		return -EINVAL;

	return count;
}

static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
184 185 186 187 188 189
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
190
}
191

192 193 194 195
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
A
Andrea Arcangeli 已提交
196 197
	ssize_t ret;

198 199
	ret = triple_flag_store(kobj, attr, buf, count,
				TRANSPARENT_HUGEPAGE_FLAG,
A
Andrea Arcangeli 已提交
200 201 202 203
				TRANSPARENT_HUGEPAGE_FLAG,
				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);

	if (ret > 0) {
204
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
205 206 207 208 209
		if (err)
			ret = err;
	}

	return ret;
210 211 212 213
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

214
ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 216 217
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
218 219
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
220
}
221

222
ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 224 225 226
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
227 228 229 230 231 232 233 234 235 236
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
237
		set_bit(flag, &transparent_hugepage_flags);
238
	else
239 240 241 242 243 244 245 246 247 248 249 250 251
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

/*
 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 * memory just to allocate one more hugepage.
 */
static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
252 253 254 255 256 257 258 259 260
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] defer madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [defer] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [madvise] never\n");
	else
		return sprintf(buf, "always defer madvise [never]\n");

261 262 263 264 265
}
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
266 267 268
	return triple_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 270 271 272 273
				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

274 275 276
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
277
	return single_hugepage_flag_show(kobj, attr, buf,
278 279 280 281 282
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
283
	return single_hugepage_flag_store(kobj, attr, buf, count,
284 285 286 287
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 289 290 291
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
292
	return single_hugepage_flag_show(kobj, attr, buf,
293 294 295 296 297 298
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
299
	return single_hugepage_flag_store(kobj, attr, buf, count,
300 301 302 303 304 305 306 307 308
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
309
	&use_zero_page_attr.attr,
310
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 312
	&shmem_enabled_attr.attr,
#endif
313 314 315 316 317 318 319 320
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
	NULL,
};

static struct attribute_group hugepage_attr_group = {
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
321 322
};

S
Shaohua Li 已提交
323
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 325 326
{
	int err;

S
Shaohua Li 已提交
327 328
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
329
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
330
		return -ENOMEM;
A
Andrea Arcangeli 已提交
331 332
	}

S
Shaohua Li 已提交
333
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
334
	if (err) {
335
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
336
		goto delete_obj;
A
Andrea Arcangeli 已提交
337 338
	}

S
Shaohua Li 已提交
339
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
340
	if (err) {
341
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
342
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
343
	}
S
Shaohua Li 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

381 382 383 384 385 386 387 388 389 390
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
391 392
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
393
		goto err_sysfs;
A
Andrea Arcangeli 已提交
394

395
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
396
	if (err)
397
		goto err_slab;
A
Andrea Arcangeli 已提交
398

399 400 401
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
402 403 404
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
405

406 407 408 409 410
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
411
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412
		transparent_hugepage_flags = 0;
413 414
		return 0;
	}
415

416
	err = start_stop_khugepaged();
417 418
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
419

S
Shaohua Li 已提交
420
	return 0;
421
err_khugepaged:
422 423
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
424 425
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
426
	khugepaged_destroy();
427
err_slab:
S
Shaohua Li 已提交
428
	hugepage_exit_sysfs(hugepage_kobj);
429
err_sysfs:
A
Andrea Arcangeli 已提交
430
	return err;
431
}
432
subsys_initcall(hugepage_init);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
460
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 462 463 464
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

465
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 467 468 469 470 471
{
	if (likely(vma->vm_flags & VM_WRITE))
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static inline struct list_head *page_deferred_list(struct page *page)
{
	/*
	 * ->lru in the tail pages is occupied by compound_head.
	 * Let's use ->mapping + ->index in the second tail page as list_head.
	 */
	return (struct list_head *)&page[2].mapping;
}

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

K
Kirill A. Shutemov 已提交
535 536
static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
		gfp_t gfp)
537
{
K
Kirill A. Shutemov 已提交
538
	struct vm_area_struct *vma = fe->vma;
539
	struct mem_cgroup *memcg;
540
	pgtable_t pgtable;
K
Kirill A. Shutemov 已提交
541
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542

543
	VM_BUG_ON_PAGE(!PageCompound(page), page);
544

K
Kirill A. Shutemov 已提交
545
	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 547 548 549
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
550

K
Kirill A. Shutemov 已提交
551
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
552
	if (unlikely(!pgtable)) {
553
		mem_cgroup_cancel_charge(page, memcg, true);
554
		put_page(page);
555
		return VM_FAULT_OOM;
556
	}
557 558

	clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 560 561 562 563
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
564 565
	__SetPageUptodate(page);

K
Kirill A. Shutemov 已提交
566 567 568
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_none(*fe->pmd))) {
		spin_unlock(fe->ptl);
569
		mem_cgroup_cancel_charge(page, memcg, true);
570
		put_page(page);
K
Kirill A. Shutemov 已提交
571
		pte_free(vma->vm_mm, pgtable);
572 573
	} else {
		pmd_t entry;
574 575 576 577 578

		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
			int ret;

K
Kirill A. Shutemov 已提交
579
			spin_unlock(fe->ptl);
580
			mem_cgroup_cancel_charge(page, memcg, true);
581
			put_page(page);
K
Kirill A. Shutemov 已提交
582 583
			pte_free(vma->vm_mm, pgtable);
			ret = handle_userfault(fe, VM_UFFD_MISSING);
584 585 586 587
			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			return ret;
		}

588 589
		entry = mk_huge_pmd(page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590
		page_add_new_anon_rmap(page, vma, haddr, true);
591
		mem_cgroup_commit_charge(page, memcg, false, true);
592
		lru_cache_add_active_or_unevictable(page, vma);
K
Kirill A. Shutemov 已提交
593 594 595 596 597
		pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		atomic_long_inc(&vma->vm_mm->nr_ptes);
		spin_unlock(fe->ptl);
598
		count_vm_event(THP_FAULT_ALLOC);
599 600
	}

601
	return 0;
602 603
}

604
/*
605 606
 * If THP defrag is set to always then directly reclaim/compact as necessary
 * If set to defer then do only background reclaim/compact and defer to khugepaged
607
 * If set to madvise and the VMA is flagged then directly reclaim/compact
608
 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609 610 611
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
612 613 614 615 616 617 618 619 620 621 622 623 624
	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);

	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
				&transparent_hugepage_flags) && vma_madvised)
		return GFP_TRANSHUGE;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
						&transparent_hugepage_flags))
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);

	return GFP_TRANSHUGE_LIGHT;
625 626
}

627
/* Caller must hold page table lock. */
628
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630
		struct page *zero_page)
631 632
{
	pmd_t entry;
A
Andrew Morton 已提交
633 634
	if (!pmd_none(*pmd))
		return false;
635
	entry = mk_pmd(zero_page, vma->vm_page_prot);
636
	entry = pmd_mkhuge(entry);
637 638
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
639
	set_pmd_at(mm, haddr, pmd, entry);
640
	atomic_long_inc(&mm->nr_ptes);
A
Andrew Morton 已提交
641
	return true;
642 643
}

K
Kirill A. Shutemov 已提交
644
int do_huge_pmd_anonymous_page(struct fault_env *fe)
645
{
K
Kirill A. Shutemov 已提交
646
	struct vm_area_struct *vma = fe->vma;
647
	gfp_t gfp;
648
	struct page *page;
K
Kirill A. Shutemov 已提交
649
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650

651
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652
		return VM_FAULT_FALLBACK;
653 654
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
655
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656
		return VM_FAULT_OOM;
K
Kirill A. Shutemov 已提交
657 658
	if (!(fe->flags & FAULT_FLAG_WRITE) &&
			!mm_forbids_zeropage(vma->vm_mm) &&
659 660 661 662
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
663
		int ret;
K
Kirill A. Shutemov 已提交
664
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
665
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
666
			return VM_FAULT_OOM;
667
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
668
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
669
			pte_free(vma->vm_mm, pgtable);
670
			count_vm_event(THP_FAULT_FALLBACK);
671
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
672
		}
K
Kirill A. Shutemov 已提交
673
		fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 675
		ret = 0;
		set = false;
K
Kirill A. Shutemov 已提交
676
		if (pmd_none(*fe->pmd)) {
677
			if (userfaultfd_missing(vma)) {
K
Kirill A. Shutemov 已提交
678 679
				spin_unlock(fe->ptl);
				ret = handle_userfault(fe, VM_UFFD_MISSING);
680 681
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
682 683 684
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
						   haddr, fe->pmd, zero_page);
				spin_unlock(fe->ptl);
685 686 687
				set = true;
			}
		} else
K
Kirill A. Shutemov 已提交
688
			spin_unlock(fe->ptl);
689
		if (!set)
K
Kirill A. Shutemov 已提交
690
			pte_free(vma->vm_mm, pgtable);
691
		return ret;
692
	}
693
	gfp = alloc_hugepage_direct_gfpmask(vma);
694
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 696
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
697
		return VM_FAULT_FALLBACK;
698
	}
699
	prep_transhuge_page(page);
K
Kirill A. Shutemov 已提交
700
	return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 702
}

703
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
M
Matthew Wilcox 已提交
705 706 707 708 709 710
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
711 712 713
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
714 715 716
	if (write) {
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
717
	}
718 719
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
M
Matthew Wilcox 已提交
720 721 722 723
	spin_unlock(ptl);
}

int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724
			pmd_t *pmd, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
725 726 727 728 729 730 731 732 733 734 735
{
	pgprot_t pgprot = vma->vm_page_prot;
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736
	BUG_ON(!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
737 738 739

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
740 741 742

	track_pfn_insert(vma, &pgprot, pfn);

743 744
	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
745
}
746
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
747

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd)
{
	pmd_t _pmd;

	/*
	 * We should set the dirty bit only for FOLL_WRITE but for now
	 * the dirty bit in the pmd is meaningless.  And if the dirty
	 * bit will become meaningful and we'll only set it with
	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
	 * set the young bit, instead of the current set_pmd_at.
	 */
	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
				pmd, _pmd,  1))
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

805 806 807 808
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
809
	spinlock_t *dst_ptl, *src_ptl;
810 811
	struct page *src_page;
	pmd_t pmd;
812
	pgtable_t pgtable = NULL;
813
	int ret = -ENOMEM;
814

815 816 817 818 819 820 821
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
822

823 824 825
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826 827 828

	ret = -EAGAIN;
	pmd = *src_pmd;
829
	if (unlikely(!pmd_trans_huge(pmd))) {
830 831 832
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
833
	/*
834
	 * When page table lock is held, the huge zero pmd should not be
835 836 837 838
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
839
		struct page *zero_page;
840 841 842 843 844
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
845
		zero_page = mm_get_huge_zero_page(dst_mm);
846
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
847
				zero_page);
848 849 850
		ret = 0;
		goto out_unlock;
	}
851

852 853 854 855 856 857 858
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
	atomic_long_inc(&dst_mm->nr_ptes);
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
859 860 861 862 863 864 865

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
866 867
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
868 869 870 871
out:
	return ret;
}

K
Kirill A. Shutemov 已提交
872
void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
873 874 875 876
{
	pmd_t entry;
	unsigned long haddr;

K
Kirill A. Shutemov 已提交
877 878
	fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
879 880 881
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
K
Kirill A. Shutemov 已提交
882 883 884 885
	haddr = fe->address & HPAGE_PMD_MASK;
	if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
				fe->flags & FAULT_FLAG_WRITE))
		update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
886 887

unlock:
K
Kirill A. Shutemov 已提交
888
	spin_unlock(fe->ptl);
889 890
}

K
Kirill A. Shutemov 已提交
891 892
static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
		struct page *page)
893
{
K
Kirill A. Shutemov 已提交
894 895
	struct vm_area_struct *vma = fe->vma;
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
896
	struct mem_cgroup *memcg;
897 898 899 900
	pgtable_t pgtable;
	pmd_t _pmd;
	int ret = 0, i;
	struct page **pages;
901 902
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
903 904 905 906 907 908 909 910 911

	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
			GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
912
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
K
Kirill A. Shutemov 已提交
913 914
					       __GFP_OTHER_NODE, vma,
					       fe->address, page_to_nid(page));
A
Andrea Arcangeli 已提交
915
		if (unlikely(!pages[i] ||
K
Kirill A. Shutemov 已提交
916 917
			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
A
Andrea Arcangeli 已提交
918
			if (pages[i])
919
				put_page(pages[i]);
A
Andrea Arcangeli 已提交
920
			while (--i >= 0) {
921 922
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
923 924
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
A
Andrea Arcangeli 已提交
925 926
				put_page(pages[i]);
			}
927 928 929 930
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
931
		set_page_private(pages[i], (unsigned long)memcg);
932 933 934 935
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
936
				   haddr + PAGE_SIZE * i, vma);
937 938 939 940
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

941 942
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
943
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
944

K
Kirill A. Shutemov 已提交
945 946
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
947
		goto out_free_pages;
948
	VM_BUG_ON_PAGE(!PageHead(page), page);
949

K
Kirill A. Shutemov 已提交
950
	pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
951 952
	/* leave pmd empty until pte is filled */

K
Kirill A. Shutemov 已提交
953 954
	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
	pmd_populate(vma->vm_mm, &_pmd, pgtable);
955 956

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
K
Kirill A. Shutemov 已提交
957
		pte_t entry;
958 959
		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
960 961
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
K
Kirill A. Shutemov 已提交
962
		page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
963
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
964
		lru_cache_add_active_or_unevictable(pages[i], vma);
K
Kirill A. Shutemov 已提交
965 966 967 968
		fe->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*fe->pte));
		set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
		pte_unmap(fe->pte);
969 970 971 972
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
K
Kirill A. Shutemov 已提交
973
	pmd_populate(vma->vm_mm, fe->pmd, pgtable);
974
	page_remove_rmap(page, true);
K
Kirill A. Shutemov 已提交
975
	spin_unlock(fe->ptl);
976

K
Kirill A. Shutemov 已提交
977
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
978

979 980 981 982 983 984 985
	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
K
Kirill A. Shutemov 已提交
986 987
	spin_unlock(fe->ptl);
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
988
	for (i = 0; i < HPAGE_PMD_NR; i++) {
989 990
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
991
		mem_cgroup_cancel_charge(pages[i], memcg, false);
992
		put_page(pages[i]);
A
Andrea Arcangeli 已提交
993
	}
994 995 996 997
	kfree(pages);
	goto out;
}

K
Kirill A. Shutemov 已提交
998
int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
999
{
K
Kirill A. Shutemov 已提交
1000
	struct vm_area_struct *vma = fe->vma;
1001
	struct page *page = NULL, *new_page;
1002
	struct mem_cgroup *memcg;
K
Kirill A. Shutemov 已提交
1003
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1004 1005
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
1006
	gfp_t huge_gfp;			/* for allocation and charge */
K
Kirill A. Shutemov 已提交
1007
	int ret = 0;
1008

K
Kirill A. Shutemov 已提交
1009
	fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1010
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1011 1012
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
K
Kirill A. Shutemov 已提交
1013 1014
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1015 1016 1017
		goto out_unlock;

	page = pmd_page(orig_pmd);
1018
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1019 1020
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
1021
	 * part.
1022
	 */
1023
	if (page_trans_huge_mapcount(page, NULL) == 1) {
1024 1025 1026
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1027 1028
		if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry,  1))
			update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1029 1030 1031
		ret |= VM_FAULT_WRITE;
		goto out_unlock;
	}
1032
	get_page(page);
K
Kirill A. Shutemov 已提交
1033
	spin_unlock(fe->ptl);
1034
alloc:
1035
	if (transparent_hugepage_enabled(vma) &&
1036
	    !transparent_hugepage_debug_cow()) {
1037
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1038
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1039
	} else
1040 1041
		new_page = NULL;

1042 1043 1044
	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
1045
		if (!page) {
K
Kirill A. Shutemov 已提交
1046
			split_huge_pmd(vma, fe->pmd, fe->address);
1047
			ret |= VM_FAULT_FALLBACK;
1048
		} else {
K
Kirill A. Shutemov 已提交
1049
			ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1050
			if (ret & VM_FAULT_OOM) {
K
Kirill A. Shutemov 已提交
1051
				split_huge_pmd(vma, fe->pmd, fe->address);
1052 1053
				ret |= VM_FAULT_FALLBACK;
			}
1054
			put_page(page);
1055
		}
1056
		count_vm_event(THP_FAULT_FALLBACK);
1057 1058 1059
		goto out;
	}

K
Kirill A. Shutemov 已提交
1060 1061
	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
A
Andrea Arcangeli 已提交
1062
		put_page(new_page);
K
Kirill A. Shutemov 已提交
1063 1064
		split_huge_pmd(vma, fe->pmd, fe->address);
		if (page)
1065
			put_page(page);
1066
		ret |= VM_FAULT_FALLBACK;
1067
		count_vm_event(THP_FAULT_FALLBACK);
A
Andrea Arcangeli 已提交
1068 1069 1070
		goto out;
	}

1071 1072
	count_vm_event(THP_FAULT_ALLOC);

1073
	if (!page)
1074 1075 1076
		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1077 1078
	__SetPageUptodate(new_page);

1079 1080
	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
K
Kirill A. Shutemov 已提交
1081
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1082

K
Kirill A. Shutemov 已提交
1083
	spin_lock(fe->ptl);
1084
	if (page)
1085
		put_page(page);
K
Kirill A. Shutemov 已提交
1086 1087
	if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
		spin_unlock(fe->ptl);
1088
		mem_cgroup_cancel_charge(new_page, memcg, true);
1089
		put_page(new_page);
1090
		goto out_mn;
A
Andrea Arcangeli 已提交
1091
	} else {
1092
		pmd_t entry;
1093 1094
		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
K
Kirill A. Shutemov 已提交
1095
		pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1096
		page_add_new_anon_rmap(new_page, vma, haddr, true);
1097
		mem_cgroup_commit_charge(new_page, memcg, false, true);
1098
		lru_cache_add_active_or_unevictable(new_page, vma);
K
Kirill A. Shutemov 已提交
1099 1100
		set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
		update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1101
		if (!page) {
K
Kirill A. Shutemov 已提交
1102
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1103
		} else {
1104
			VM_BUG_ON_PAGE(!PageHead(page), page);
1105
			page_remove_rmap(page, true);
1106 1107
			put_page(page);
		}
1108 1109
		ret |= VM_FAULT_WRITE;
	}
K
Kirill A. Shutemov 已提交
1110
	spin_unlock(fe->ptl);
1111
out_mn:
K
Kirill A. Shutemov 已提交
1112
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1113 1114
out:
	return ret;
1115
out_unlock:
K
Kirill A. Shutemov 已提交
1116
	spin_unlock(fe->ptl);
1117
	return ret;
1118 1119
}

1120
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1121 1122 1123 1124
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1125
	struct mm_struct *mm = vma->vm_mm;
1126 1127
	struct page *page = NULL;

1128
	assert_spin_locked(pmd_lockptr(mm, pmd));
1129 1130 1131 1132

	if (flags & FOLL_WRITE && !pmd_write(*pmd))
		goto out;

1133 1134 1135 1136
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1137
	/* Full NUMA hinting faults to serialise migration in fault paths */
1138
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1139 1140
		goto out;

1141
	page = pmd_page(*pmd);
1142
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1143 1144
	if (flags & FOLL_TOUCH)
		touch_pmd(vma, addr, pmd);
E
Eric B Munson 已提交
1145
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1146 1147 1148 1149
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1150 1151
		 * For anon THP:
		 *
1152 1153 1154 1155 1156 1157 1158
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1159 1160 1161 1162 1163 1164
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1165
		 */
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1177
	}
1178
skip_mlock:
1179
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1180
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1181
	if (flags & FOLL_GET)
1182
		get_page(page);
1183 1184 1185 1186 1187

out:
	return page;
}

1188
/* NUMA hinting page fault entry point for trans huge pmds */
K
Kirill A. Shutemov 已提交
1189
int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1190
{
K
Kirill A. Shutemov 已提交
1191
	struct vm_area_struct *vma = fe->vma;
1192
	struct anon_vma *anon_vma = NULL;
1193
	struct page *page;
K
Kirill A. Shutemov 已提交
1194
	unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1195
	int page_nid = -1, this_nid = numa_node_id();
1196
	int target_nid, last_cpupid = -1;
1197 1198
	bool page_locked;
	bool migrated = false;
1199
	bool was_writable;
1200
	int flags = 0;
1201

K
Kirill A. Shutemov 已提交
1202 1203
	fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
	if (unlikely(!pmd_same(pmd, *fe->pmd)))
1204 1205
		goto out_unlock;

1206 1207 1208 1209 1210
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
K
Kirill A. Shutemov 已提交
1211 1212 1213
	if (unlikely(pmd_trans_migrating(*fe->pmd))) {
		page = pmd_page(*fe->pmd);
		spin_unlock(fe->ptl);
1214
		wait_on_page_locked(page);
1215 1216 1217
		goto out;
	}

1218
	page = pmd_page(pmd);
1219
	BUG_ON(is_huge_zero_page(page));
1220
	page_nid = page_to_nid(page);
1221
	last_cpupid = page_cpupid_last(page);
1222
	count_vm_numa_event(NUMA_HINT_FAULTS);
1223
	if (page_nid == this_nid) {
1224
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1225 1226
		flags |= TNF_FAULT_LOCAL;
	}
1227

1228
	/* See similar comment in do_numa_page for explanation */
1229
	if (!pmd_write(pmd))
1230 1231
		flags |= TNF_NO_GROUP;

1232 1233 1234 1235
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1236 1237 1238 1239
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1240
		if (page_locked)
1241
			goto clear_pmdnuma;
1242
	}
1243

1244
	/* Migration could have started since the pmd_trans_migrating check */
1245
	if (!page_locked) {
K
Kirill A. Shutemov 已提交
1246
		spin_unlock(fe->ptl);
1247
		wait_on_page_locked(page);
1248
		page_nid = -1;
1249 1250 1251
		goto out;
	}

1252 1253 1254 1255
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1256
	get_page(page);
K
Kirill A. Shutemov 已提交
1257
	spin_unlock(fe->ptl);
1258
	anon_vma = page_lock_anon_vma_read(page);
1259

P
Peter Zijlstra 已提交
1260
	/* Confirm the PMD did not change while page_table_lock was released */
K
Kirill A. Shutemov 已提交
1261 1262
	spin_lock(fe->ptl);
	if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1263 1264
		unlock_page(page);
		put_page(page);
1265
		page_nid = -1;
1266
		goto out_unlock;
1267
	}
1268

1269 1270 1271 1272 1273 1274 1275
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1276 1277
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1278
	 * and access rights restored.
1279
	 */
K
Kirill A. Shutemov 已提交
1280 1281 1282
	spin_unlock(fe->ptl);
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
				fe->pmd, pmd, fe->address, page, target_nid);
1283 1284
	if (migrated) {
		flags |= TNF_MIGRATED;
1285
		page_nid = target_nid;
1286 1287
	} else
		flags |= TNF_MIGRATE_FAIL;
1288

1289
	goto out;
1290
clear_pmdnuma:
1291
	BUG_ON(!PageLocked(page));
1292
	was_writable = pmd_write(pmd);
1293
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1294
	pmd = pmd_mkyoung(pmd);
1295 1296
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
K
Kirill A. Shutemov 已提交
1297 1298
	set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
	update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1299
	unlock_page(page);
1300
out_unlock:
K
Kirill A. Shutemov 已提交
1301
	spin_unlock(fe->ptl);
1302 1303 1304 1305 1306

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1307
	if (page_nid != -1)
K
Kirill A. Shutemov 已提交
1308
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1309

1310 1311 1312
	return 0;
}

1313 1314 1315 1316 1317
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1318 1319 1320 1321 1322 1323
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1324
	bool ret = false;
1325

1326 1327
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1328
		goto out_unlocked;
1329 1330

	orig_pmd = *pmd;
1331
	if (is_huge_zero_pmd(orig_pmd))
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		goto out;

	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1352
		split_huge_page(page);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
		put_page(page);
		unlock_page(page);
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (PageActive(page))
		deactivate_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
1374
	ret = true;
1375 1376 1377 1378 1379 1380
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1381
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1382
		 pmd_t *pmd, unsigned long addr)
1383
{
1384
	pmd_t orig_pmd;
1385
	spinlock_t *ptl;
1386

1387 1388
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1402
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1403 1404 1405 1406
	} else if (is_huge_zero_pmd(orig_pmd)) {
		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
		atomic_long_dec(&tlb->mm->nr_ptes);
		spin_unlock(ptl);
1407
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1408 1409
	} else {
		struct page *page = pmd_page(orig_pmd);
1410
		page_remove_rmap(page, true);
1411 1412
		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
		VM_BUG_ON_PAGE(!PageHead(page), page);
1413 1414 1415 1416 1417 1418 1419 1420 1421
		if (PageAnon(page)) {
			pgtable_t pgtable;
			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
			pte_free(tlb->mm, pgtable);
			atomic_long_dec(&tlb->mm->nr_ptes);
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
		}
1422
		spin_unlock(ptl);
1423
		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1424
	}
1425
	return 1;
1426 1427
}

1428
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1429
		  unsigned long new_addr, unsigned long old_end,
1430
		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1431
{
1432
	spinlock_t *old_ptl, *new_ptl;
1433 1434
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1435
	bool force_flush = false;
1436 1437 1438

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1439
	    old_end - old_addr < HPAGE_PMD_SIZE)
1440
		return false;
1441 1442 1443 1444 1445 1446 1447

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1448
		return false;
1449 1450
	}

1451 1452 1453 1454
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1455 1456
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1457 1458 1459
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1460
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1461 1462
		if (pmd_present(pmd) && pmd_dirty(pmd))
			force_flush = true;
1463
		VM_BUG_ON(!pmd_none(*new_pmd));
1464

1465 1466
		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
				vma_is_anonymous(vma)) {
1467
			pgtable_t pgtable;
1468 1469 1470
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1471 1472 1473
		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1474 1475 1476 1477
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
		else
			*need_flush = true;
1478
		spin_unlock(old_ptl);
1479
		return true;
1480
	}
1481
	return false;
1482 1483
}

1484 1485 1486 1487 1488 1489
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1490
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1491
		unsigned long addr, pgprot_t newprot, int prot_numa)
1492 1493
{
	struct mm_struct *mm = vma->vm_mm;
1494
	spinlock_t *ptl;
1495 1496
	int ret = 0;

1497 1498
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
1499
		pmd_t entry;
1500
		bool preserve_write = prot_numa && pmd_write(*pmd);
1501
		ret = 1;
1502 1503 1504 1505 1506 1507 1508 1509

		/*
		 * Avoid trapping faults against the zero page. The read-only
		 * data is likely to be read-cached on the local CPU and
		 * local/remote hits to the zero page are not interesting.
		 */
		if (prot_numa && is_huge_zero_pmd(*pmd)) {
			spin_unlock(ptl);
1510
			return ret;
1511 1512
		}

1513
		if (!prot_numa || !pmd_protnone(*pmd)) {
1514
			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1515
			entry = pmd_modify(entry, newprot);
1516 1517
			if (preserve_write)
				entry = pmd_mkwrite(entry);
1518 1519
			ret = HPAGE_PMD_NR;
			set_pmd_at(mm, addr, pmd, entry);
1520 1521
			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
					pmd_write(entry));
1522
		}
1523
		spin_unlock(ptl);
1524 1525 1526 1527 1528 1529
	}

	return ret;
}

/*
1530
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1531
 *
1532 1533
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
1534
 */
1535
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1536
{
1537 1538
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
1539
	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1540 1541 1542
		return ptl;
	spin_unlock(ptl);
	return NULL;
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

	/* leave pmd empty until pte is filled */
	pmdp_huge_clear_flush_notify(vma, haddr, pmd);

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1573
		unsigned long haddr, bool freeze)
1574 1575 1576 1577 1578
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
	pmd_t _pmd;
1579
	bool young, write, dirty, soft_dirty;
1580
	unsigned long addr;
1581 1582 1583 1584 1585
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1586
	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1587 1588 1589

	count_vm_event(THP_SPLIT_PMD);

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1600 1601 1602 1603 1604 1605 1606
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

	page = pmd_page(*pmd);
	VM_BUG_ON_PAGE(!page_count(page), page);
1607
	page_ref_add(page, HPAGE_PMD_NR - 1);
1608 1609
	write = pmd_write(*pmd);
	young = pmd_young(*pmd);
1610
	dirty = pmd_dirty(*pmd);
1611
	soft_dirty = pmd_soft_dirty(*pmd);
1612

1613
	pmdp_huge_split_prepare(vma, haddr, pmd);
1614 1615 1616
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

1617
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1618 1619 1620 1621 1622 1623
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
1624 1625 1626 1627
		if (freeze) {
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
1628 1629
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
1630
		} else {
1631
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1632
			entry = maybe_mkwrite(entry, vma);
1633 1634 1635 1636
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
1637 1638
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
1639
		}
1640 1641
		if (dirty)
			SetPageDirty(page + i);
1642
		pte = pte_offset_map(&_pmd, addr);
1643
		BUG_ON(!pte_none(*pte));
1644
		set_pte_at(mm, addr, pte, entry);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
1660
		__dec_node_page_state(page, NR_ANON_THPS);
1661 1662 1663 1664 1665 1666 1667 1668
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * and pmd_trans_splitting must remain set at all times on the pmd
	 * until the split is complete for this pmd), then we flush the SMP TLB
	 * and finally we write the non-huge version of the pmd entry with
	 * pmd_populate.
	 */
	pmdp_invalidate(vma, haddr, pmd);
1691
	pmd_populate(mm, pmd, pgtable);
1692 1693

	if (freeze) {
1694
		for (i = 0; i < HPAGE_PMD_NR; i++) {
1695 1696 1697 1698
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
1699 1700 1701
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1702
		unsigned long address, bool freeze, struct page *page)
1703 1704 1705 1706 1707 1708 1709
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
1710 1711 1712 1713 1714 1715 1716 1717 1718

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

1719
	if (pmd_trans_huge(*pmd)) {
1720
		page = pmd_page(*pmd);
1721
		if (PageMlocked(page))
1722
			clear_page_mlock(page);
1723
	} else if (!pmd_devmap(*pmd))
1724
		goto out;
1725
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1726
out:
1727 1728 1729 1730
	spin_unlock(ptl);
	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
}

1731 1732
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
1733
{
1734 1735
	pgd_t *pgd;
	pud_t *pud;
1736 1737
	pmd_t *pmd;

1738
	pgd = pgd_offset(vma->vm_mm, address);
1739 1740 1741 1742 1743 1744 1745 1746
	if (!pgd_present(*pgd))
		return;

	pud = pud_offset(pgd, address);
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
1747

1748
	__split_huge_pmd(vma, pmd, address, freeze, page);
1749 1750
}

1751
void vma_adjust_trans_huge(struct vm_area_struct *vma,
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1764
		split_huge_pmd_address(vma, start, false, NULL);
1765 1766 1767 1768 1769 1770 1771 1772 1773

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1774
		split_huge_pmd_address(vma, end, false, NULL);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1788
			split_huge_pmd_address(next, nstart, false, NULL);
1789 1790
	}
}
1791

1792
static void freeze_page(struct page *page)
1793
{
1794 1795
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
		TTU_RMAP_LOCKED;
1796
	int i, ret;
1797 1798 1799

	VM_BUG_ON_PAGE(!PageHead(page), page);

1800 1801 1802
	if (PageAnon(page))
		ttu_flags |= TTU_MIGRATION;

1803 1804 1805 1806 1807 1808
	/* We only need TTU_SPLIT_HUGE_PMD once */
	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
		/* Cut short if the page is unmapped */
		if (page_count(page) == 1)
			return;
1809

1810
		ret = try_to_unmap(page + i, ttu_flags);
1811
	}
1812
	VM_BUG_ON_PAGE(ret, page + i - 1);
1813 1814
}

1815
static void unfreeze_page(struct page *page)
1816
{
1817
	int i;
1818

1819 1820
	for (i = 0; i < HPAGE_PMD_NR; i++)
		remove_migration_ptes(page + i, page + i, true);
1821 1822
}

1823
static void __split_huge_page_tail(struct page *head, int tail,
1824 1825 1826 1827
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

1828
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1829
	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1830 1831

	/*
1832
	 * tail_page->_refcount is zero and not changing from under us. But
1833
	 * get_page_unless_zero() may be running from under us on the
1834 1835
	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
	 * atomic_add(), we would then run atomic_set() concurrently with
1836 1837 1838 1839
	 * get_page_unless_zero(), and atomic_set() is implemented in C not
	 * using locked ops. spin_unlock on x86 sometime uses locked ops
	 * because of PPro errata 66, 92, so unless somebody can guarantee
	 * atomic_set() here would be safe on all archs (and not only on x86),
1840
	 * it's safer to use atomic_inc()/atomic_add().
1841
	 */
1842 1843 1844 1845 1846 1847
	if (PageAnon(head)) {
		page_ref_inc(page_tail);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(page_tail, 2);
	}
1848 1849 1850 1851 1852 1853 1854 1855 1856

	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
			 (1L << PG_locked) |
1857 1858
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	/*
	 * After clearing PageTail the gup refcount can be released.
	 * Page flags also must be visible before we make the page non-compound.
	 */
	smp_wmb();

	clear_compound_head(page_tail);

	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	/* ->mapping in first tail page is compound_mapcount */
1874
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1875 1876 1877 1878 1879 1880 1881 1882
			page_tail);
	page_tail->mapping = head->mapping;

	page_tail->index = head->index + tail;
	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
	lru_add_page_tail(head, page_tail, lruvec, list);
}

1883 1884
static void __split_huge_page(struct page *page, struct list_head *list,
		unsigned long flags)
1885 1886 1887 1888
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
1889
	pgoff_t end = -1;
1890
	int i;
1891

M
Mel Gorman 已提交
1892
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1893 1894 1895 1896

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

1897 1898 1899 1900
	if (!PageAnon(page))
		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);

	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1901
		__split_huge_page_tail(head, i, lruvec, list);
1902 1903 1904 1905
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
			__ClearPageDirty(head + i);
			__delete_from_page_cache(head + i, NULL);
1906 1907
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
1908 1909 1910
			put_page(head + i);
		}
	}
1911 1912

	ClearPageCompound(head);
1913 1914 1915 1916 1917 1918 1919 1920 1921
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
		page_ref_inc(head);
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
		spin_unlock(&head->mapping->tree_lock);
	}

1922
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1923

1924
	unfreeze_page(head);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

1943 1944
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
1945
	int i, compound, ret;
1946 1947 1948 1949 1950 1951

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
1952
	compound = compound_mapcount(page);
1953
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
1954 1955
		return compound;
	ret = compound;
1956 1957
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
1958 1959 1960
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
1961 1962 1963 1964 1965
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2046
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2047 2048 2049
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2050
	bool mlocked;
2051
	unsigned long flags;
2052 2053 2054 2055 2056 2057

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
		extra_pins = 0;
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		/* Addidional pins from radix tree */
		extra_pins = HPAGE_PMD_NR;
		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2088 2089 2090 2091 2092 2093
	}

	/*
	 * Racy check if we can split the page, before freeze_page() will
	 * split PMDs
	 */
2094
	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2095 2096 2097 2098
		ret = -EBUSY;
		goto out_unlock;
	}

2099
	mlocked = PageMlocked(page);
2100
	freeze_page(head);
2101 2102
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2103 2104 2105 2106
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2107
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2108
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

	if (mapping) {
		void **pslot;

		spin_lock(&mapping->tree_lock);
		pslot = radix_tree_lookup_slot(&mapping->page_tree,
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
					&mapping->tree_lock) != head)
			goto fail;
	}

2125
	/* Prevent deferred_split_scan() touching ->_refcount */
2126
	spin_lock(&pgdata->split_queue_lock);
2127 2128
	count = page_count(head);
	mapcount = total_mapcount(head);
2129
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2130
		if (!list_empty(page_deferred_list(head))) {
2131
			pgdata->split_queue_len--;
2132 2133
			list_del(page_deferred_list(head));
		}
2134
		if (mapping)
2135
			__dec_node_page_state(page, NR_SHMEM_THPS);
2136 2137
		spin_unlock(&pgdata->split_queue_lock);
		__split_huge_page(page, list, flags);
2138 2139
		ret = 0;
	} else {
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
		spin_unlock(&pgdata->split_queue_lock);
fail:		if (mapping)
			spin_unlock(&mapping->tree_lock);
2151
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2152
		unfreeze_page(head);
2153 2154 2155 2156
		ret = -EBUSY;
	}

out_unlock:
2157 2158 2159 2160 2161 2162
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2163 2164 2165 2166
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2167 2168 2169

void free_transhuge_page(struct page *page)
{
2170
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2171 2172
	unsigned long flags;

2173
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2174
	if (!list_empty(page_deferred_list(page))) {
2175
		pgdata->split_queue_len--;
2176 2177
		list_del(page_deferred_list(page));
	}
2178
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2179 2180 2181 2182 2183
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2184
	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2185 2186 2187 2188
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2189
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2190
	if (list_empty(page_deferred_list(page))) {
2191
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2192 2193
		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
		pgdata->split_queue_len++;
2194
	}
2195
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2196 2197 2198 2199 2200
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2201
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2202
	return ACCESS_ONCE(pgdata->split_queue_len);
2203 2204 2205 2206 2207
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2208
	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2209 2210 2211 2212 2213
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2214
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2215
	/* Take pin on all head pages to avoid freeing them under us */
2216
	list_for_each_safe(pos, next, &pgdata->split_queue) {
2217 2218
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2219 2220 2221 2222
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2223
			list_del_init(page_deferred_list(page));
2224
			pgdata->split_queue_len--;
2225
		}
2226 2227
		if (!--sc->nr_to_scan)
			break;
2228
	}
2229
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
		lock_page(page);
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
		put_page(page);
	}

2241 2242 2243
	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
	list_splice_tail(&list, &pgdata->split_queue);
	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2244

2245 2246 2247 2248 2249 2250 2251
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
	if (!split && list_empty(&pgdata->split_queue))
		return SHRINK_STOP;
	return split;
2252 2253 2254 2255 2256 2257
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
2258
	.flags = SHRINKER_NUMA_AWARE,
2259
};
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

2285
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

2298
	pr_info("%lu of %lu THP split\n", split, total);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

2309
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2310 2311 2312 2313 2314 2315 2316
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif