intel_breadcrumbs.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/kthread.h>
26
#include <uapi/linux/sched/types.h>
27

28 29
#include "i915_drv.h"

30
static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31
{
32
	struct intel_wait *wait;
33 34
	unsigned int result = 0;

35 36 37
	lockdep_assert_held(&b->irq_lock);

	wait = b->irq_wait;
38
	if (wait) {
39
		result = ENGINE_WAKEUP_WAITER;
40 41
		if (wake_up_process(wait->tsk))
			result |= ENGINE_WAKEUP_ASLEEP;
42
	}
43 44 45 46 47 48 49 50 51 52

	return result;
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
	unsigned int result;

53
	spin_lock_irqsave(&b->irq_lock, flags);
54
	result = __intel_breadcrumbs_wakeup(b);
55
	spin_unlock_irqrestore(&b->irq_lock, flags);
56 57 58 59

	return result;
}

60 61 62 63 64
static unsigned long wait_timeout(void)
{
	return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
}

65 66 67 68 69 70 71 72 73 74
static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
{
	DRM_DEBUG_DRIVER("%s missed breadcrumb at %pF, irq posted? %s\n",
			 engine->name, __builtin_return_address(0),
			 yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
					&engine->irq_posted)));

	set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

75 76 77 78 79
static void intel_breadcrumbs_hangcheck(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

80
	if (!b->irq_armed)
81 82
		return;

83 84 85
	if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
		b->hangcheck_interrupts = atomic_read(&engine->irq_count);
		mod_timer(&b->hangcheck, wait_timeout());
86 87 88
		return;
	}

89 90
	/* We keep the hangcheck time alive until we disarm the irq, even
	 * if there are no waiters at present.
91
	 *
92
	 * If the waiter was currently running, assume it hasn't had a chance
93 94
	 * to process the pending interrupt (e.g, low priority task on a loaded
	 * system) and wait until it sleeps before declaring a missed interrupt.
95 96 97 98 99
	 *
	 * If the waiter was asleep (and not even pending a wakeup), then we
	 * must have missed an interrupt as the GPU has stopped advancing
	 * but we still have a waiter. Assuming all batches complete within
	 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
100
	 */
101
	if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
102
		missed_breadcrumb(engine);
103 104
		mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
	} else {
105 106
		mod_timer(&b->hangcheck, wait_timeout());
	}
107 108
}

109 110 111
static void intel_breadcrumbs_fake_irq(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
112 113
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
114 115 116 117 118 119 120 121

	/*
	 * The timer persists in case we cannot enable interrupts,
	 * or if we have previously seen seqno/interrupt incoherency
	 * ("missed interrupt" syndrome). Here the worker will wake up
	 * every jiffie in order to kick the oldest waiter to do the
	 * coherent seqno check.
	 */
122

123
	spin_lock_irqsave(&b->irq_lock, flags);
124 125
	if (!__intel_breadcrumbs_wakeup(b))
		__intel_engine_disarm_breadcrumbs(engine);
126
	spin_unlock_irqrestore(&b->irq_lock, flags);
127
	if (!b->irq_armed)
128 129
		return;

130
	mod_timer(&b->fake_irq, jiffies + 1);
131 132 133 134 135 136 137 138 139 140 141

	/* Ensure that even if the GPU hangs, we get woken up.
	 *
	 * However, note that if no one is waiting, we never notice
	 * a gpu hang. Eventually, we will have to wait for a resource
	 * held by the GPU and so trigger a hangcheck. In the most
	 * pathological case, this will be upon memory starvation! To
	 * prevent this, we also queue the hangcheck from the retire
	 * worker.
	 */
	i915_queue_hangcheck(engine->i915);
142 143 144 145
}

static void irq_enable(struct intel_engine_cs *engine)
{
146 147 148 149
	/* Enabling the IRQ may miss the generation of the interrupt, but
	 * we still need to force the barrier before reading the seqno,
	 * just in case.
	 */
150
	set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
151

152 153
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
154
	engine->irq_enable(engine);
155
	spin_unlock(&engine->i915->irq_lock);
156 157 158 159
}

static void irq_disable(struct intel_engine_cs *engine)
{
160 161
	/* Caller disables interrupts */
	spin_lock(&engine->i915->irq_lock);
162
	engine->irq_disable(engine);
163
	spin_unlock(&engine->i915->irq_lock);
164 165
}

166 167 168 169
void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

170
	lockdep_assert_held(&b->irq_lock);
171

172 173 174 175 176 177
	if (b->irq_enabled) {
		irq_disable(engine);
		b->irq_enabled = false;
	}

	b->irq_armed = false;
178 179
}

180
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
181
{
182 183
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	unsigned long flags;
184

185
	if (!b->irq_armed)
186
		return;
187

188
	spin_lock_irqsave(&b->irq_lock, flags);
189 190 191 192

	/* We only disarm the irq when we are idle (all requests completed),
	 * so if there remains a sleeping waiter, it missed the request
	 * completion.
193
	 */
194
	if (__intel_breadcrumbs_wakeup(b) & ENGINE_WAKEUP_ASLEEP)
195
		missed_breadcrumb(engine);
196

197 198
	__intel_engine_disarm_breadcrumbs(engine);

199
	spin_unlock_irqrestore(&b->irq_lock, flags);
200 201
}

202 203 204 205 206 207 208
static bool use_fake_irq(const struct intel_breadcrumbs *b)
{
	const struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);

	if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
		return false;
209

210 211 212 213 214 215 216 217 218
	/* Only start with the heavy weight fake irq timer if we have not
	 * seen any interrupts since enabling it the first time. If the
	 * interrupts are still arriving, it means we made a mistake in our
	 * engine->seqno_barrier(), a timing error that should be transient
	 * and unlikely to reoccur.
	 */
	return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
}

219 220 221 222
static void enable_fake_irq(struct intel_breadcrumbs *b)
{
	/* Ensure we never sleep indefinitely */
	if (!b->irq_enabled || use_fake_irq(b))
223
		mod_timer(&b->fake_irq, jiffies + 1);
224 225
	else
		mod_timer(&b->hangcheck, wait_timeout());
226 227
}

228
static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
229 230 231 232 233
{
	struct intel_engine_cs *engine =
		container_of(b, struct intel_engine_cs, breadcrumbs);
	struct drm_i915_private *i915 = engine->i915;

234
	lockdep_assert_held(&b->irq_lock);
235
	if (b->irq_armed)
236 237
		return;

238 239 240 241 242 243 244 245
	/* The breadcrumb irq will be disarmed on the interrupt after the
	 * waiters are signaled. This gives us a single interrupt window in
	 * which we can add a new waiter and avoid the cost of re-enabling
	 * the irq.
	 */
	b->irq_armed = true;
	GEM_BUG_ON(b->irq_enabled);

246 247 248 249 250 251 252 253 254 255 256
	if (I915_SELFTEST_ONLY(b->mock)) {
		/* For our mock objects we want to avoid interaction
		 * with the real hardware (which is not set up). So
		 * we simply pretend we have enabled the powerwell
		 * and the irq, and leave it up to the mock
		 * implementation to call intel_engine_wakeup()
		 * itself when it wants to simulate a user interrupt,
		 */
		return;
	}

257
	/* Since we are waiting on a request, the GPU should be busy
258 259 260 261
	 * and should have its own rpm reference. This is tracked
	 * by i915->gt.awake, we can forgo holding our own wakref
	 * for the interrupt as before i915->gt.awake is released (when
	 * the driver is idle) we disarm the breadcrumbs.
262 263 264 265
	 */

	/* No interrupts? Kick the waiter every jiffie! */
	if (intel_irqs_enabled(i915)) {
266
		if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
267 268 269 270
			irq_enable(engine);
		b->irq_enabled = true;
	}

271
	enable_fake_irq(b);
272 273 274 275
}

static inline struct intel_wait *to_wait(struct rb_node *node)
{
276
	return rb_entry(node, struct intel_wait, node);
277 278 279 280 281
}

static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
					      struct intel_wait *wait)
{
282
	lockdep_assert_held(&b->rb_lock);
283 284 285 286 287 288 289 290 291 292

	/* This request is completed, so remove it from the tree, mark it as
	 * complete, and *then* wake up the associated task.
	 */
	rb_erase(&wait->node, &b->waiters);
	RB_CLEAR_NODE(&wait->node);

	wake_up_process(wait->tsk); /* implicit smp_wmb() */
}

293 294 295 296 297
static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
					    struct rb_node *next)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

298
	spin_lock(&b->irq_lock);
299
	GEM_BUG_ON(!b->irq_armed);
300 301
	b->irq_wait = to_wait(next);
	spin_unlock(&b->irq_lock);
302 303 304 305 306 307 308 309 310

	/* We always wake up the next waiter that takes over as the bottom-half
	 * as we may delegate not only the irq-seqno barrier to the next waiter
	 * but also the task of waking up concurrent waiters.
	 */
	if (next)
		wake_up_process(to_wait(next)->tsk);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
				    struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node **p, *parent, *completed;
	bool first;
	u32 seqno;

	/* Insert the request into the retirement ordered list
	 * of waiters by walking the rbtree. If we are the oldest
	 * seqno in the tree (the first to be retired), then
	 * set ourselves as the bottom-half.
	 *
	 * As we descend the tree, prune completed branches since we hold the
	 * spinlock we know that the first_waiter must be delayed and can
	 * reduce some of the sequential wake up latency if we take action
	 * ourselves and wake up the completed tasks in parallel. Also, by
	 * removing stale elements in the tree, we may be able to reduce the
	 * ping-pong between the old bottom-half and ourselves as first-waiter.
	 */
	first = true;
	parent = NULL;
	completed = NULL;
334
	seqno = intel_engine_get_seqno(engine);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	 /* If the request completed before we managed to grab the spinlock,
	  * return now before adding ourselves to the rbtree. We let the
	  * current bottom-half handle any pending wakeups and instead
	  * try and get out of the way quickly.
	  */
	if (i915_seqno_passed(seqno, wait->seqno)) {
		RB_CLEAR_NODE(&wait->node);
		return first;
	}

	p = &b->waiters.rb_node;
	while (*p) {
		parent = *p;
		if (wait->seqno == to_wait(parent)->seqno) {
			/* We have multiple waiters on the same seqno, select
			 * the highest priority task (that with the smallest
			 * task->prio) to serve as the bottom-half for this
			 * group.
			 */
			if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
				p = &parent->rb_right;
				first = false;
			} else {
				p = &parent->rb_left;
			}
		} else if (i915_seqno_passed(wait->seqno,
					     to_wait(parent)->seqno)) {
			p = &parent->rb_right;
			if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
				completed = parent;
			else
				first = false;
		} else {
			p = &parent->rb_left;
		}
	}
	rb_link_node(&wait->node, parent, p);
	rb_insert_color(&wait->node, &b->waiters);

	if (completed) {
		struct rb_node *next = rb_next(completed);

		GEM_BUG_ON(!next && !first);
		if (next && next != &wait->node) {
			GEM_BUG_ON(first);
381
			__intel_breadcrumbs_next(engine, next);
382 383 384 385 386 387 388 389 390 391
		}

		do {
			struct intel_wait *crumb = to_wait(completed);
			completed = rb_prev(completed);
			__intel_breadcrumbs_finish(b, crumb);
		} while (completed);
	}

	if (first) {
392
		spin_lock(&b->irq_lock);
393
		GEM_BUG_ON(rb_first(&b->waiters) != &wait->node);
394
		b->irq_wait = wait;
395 396 397 398 399
		/* After assigning ourselves as the new bottom-half, we must
		 * perform a cursory check to prevent a missed interrupt.
		 * Either we miss the interrupt whilst programming the hardware,
		 * or if there was a previous waiter (for a later seqno) they
		 * may be woken instead of us (due to the inherent race
400 401
		 * in the unlocked read of b->irq_seqno_bh in the irq handler)
		 * and so we miss the wake up.
402 403
		 */
		__intel_breadcrumbs_enable_irq(b);
404
		spin_unlock(&b->irq_lock);
405
	}
406 407
	GEM_BUG_ON(!b->irq_wait);
	GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
408 409 410 411 412 413 414 415 416 417

	return first;
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool first;

418
	spin_lock_irq(&b->rb_lock);
419
	first = __intel_engine_add_wait(engine, wait);
420
	spin_unlock_irq(&b->rb_lock);
421 422 423 424 425 426 427 428 429

	return first;
}

static inline bool chain_wakeup(struct rb_node *rb, int priority)
{
	return rb && to_wait(rb)->tsk->prio <= priority;
}

430 431 432 433 434 435 436 437 438
static inline int wakeup_priority(struct intel_breadcrumbs *b,
				  struct task_struct *tsk)
{
	if (tsk == b->signaler)
		return INT_MIN;
	else
		return tsk->prio;
}

439 440
static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
				       struct intel_wait *wait)
441 442 443
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

444
	lockdep_assert_held(&b->rb_lock);
445 446

	if (RB_EMPTY_NODE(&wait->node))
447
		goto out;
448

449
	if (b->irq_wait == wait) {
450
		const int priority = wakeup_priority(b, wait->tsk);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
		struct rb_node *next;

		/* We are the current bottom-half. Find the next candidate,
		 * the first waiter in the queue on the remaining oldest
		 * request. As multiple seqnos may complete in the time it
		 * takes us to wake up and find the next waiter, we have to
		 * wake up that waiter for it to perform its own coherent
		 * completion check.
		 */
		next = rb_next(&wait->node);
		if (chain_wakeup(next, priority)) {
			/* If the next waiter is already complete,
			 * wake it up and continue onto the next waiter. So
			 * if have a small herd, they will wake up in parallel
			 * rather than sequentially, which should reduce
			 * the overall latency in waking all the completed
			 * clients.
			 *
			 * However, waking up a chain adds extra latency to
			 * the first_waiter. This is undesirable if that
			 * waiter is a high priority task.
			 */
473
			u32 seqno = intel_engine_get_seqno(engine);
474 475 476 477 478 479 480 481 482 483 484

			while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
				struct rb_node *n = rb_next(next);

				__intel_breadcrumbs_finish(b, to_wait(next));
				next = n;
				if (!chain_wakeup(next, priority))
					break;
			}
		}

485
		__intel_breadcrumbs_next(engine, next);
486 487 488 489 490 491 492
	} else {
		GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
	}

	GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
	rb_erase(&wait->node, &b->waiters);

493
out:
494
	GEM_BUG_ON(b->irq_wait == wait);
495
	GEM_BUG_ON(rb_first(&b->waiters) !=
496
		   (b->irq_wait ? &b->irq_wait->node : NULL));
497 498 499 500 501 502 503 504 505 506 507 508 509 510
}

void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	/* Quick check to see if this waiter was already decoupled from
	 * the tree by the bottom-half to avoid contention on the spinlock
	 * by the herd.
	 */
	if (RB_EMPTY_NODE(&wait->node))
		return;

511
	spin_lock_irq(&b->rb_lock);
512
	__intel_engine_remove_wait(engine, wait);
513
	spin_unlock_irq(&b->rb_lock);
514 515
}

516 517 518
static bool signal_valid(const struct drm_i915_gem_request *request)
{
	return intel_wait_check_request(&request->signaling.wait, request);
519 520
}

521
static bool signal_complete(const struct drm_i915_gem_request *request)
522
{
523
	if (!request)
524 525 526 527 528
		return false;

	/* If another process served as the bottom-half it may have already
	 * signalled that this wait is already completed.
	 */
529
	if (intel_wait_complete(&request->signaling.wait))
530
		return signal_valid(request);
531 532 533 534

	/* Carefully check if the request is complete, giving time for the
	 * seqno to be visible or if the GPU hung.
	 */
535
	if (__i915_request_irq_complete(request))
536 537 538 539 540
		return true;

	return false;
}

541
static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
542
{
543
	return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
544 545 546 547 548 549 550 551 552 553 554 555 556
}

static void signaler_set_rtpriority(void)
{
	 struct sched_param param = { .sched_priority = 1 };

	 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
}

static int intel_breadcrumbs_signaler(void *arg)
{
	struct intel_engine_cs *engine = arg;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
557
	struct drm_i915_gem_request *request;
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572

	/* Install ourselves with high priority to reduce signalling latency */
	signaler_set_rtpriority();

	do {
		set_current_state(TASK_INTERRUPTIBLE);

		/* We are either woken up by the interrupt bottom-half,
		 * or by a client adding a new signaller. In both cases,
		 * the GPU seqno may have advanced beyond our oldest signal.
		 * If it has, propagate the signal, remove the waiter and
		 * check again with the next oldest signal. Otherwise we
		 * need to wait for a new interrupt from the GPU or for
		 * a new client.
		 */
573 574 575 576 577
		rcu_read_lock();
		request = rcu_dereference(b->first_signal);
		if (request)
			request = i915_gem_request_get_rcu(request);
		rcu_read_unlock();
578
		if (signal_complete(request)) {
579
			local_bh_disable();
580
			dma_fence_signal(&request->fence);
581
			local_bh_enable(); /* kick start the tasklets */
582

583
			spin_lock_irq(&b->rb_lock);
584

585 586 587
			/* Wake up all other completed waiters and select the
			 * next bottom-half for the next user interrupt.
			 */
588 589
			__intel_engine_remove_wait(engine,
						   &request->signaling.wait);
590

591 592 593 594 595 596
			/* Find the next oldest signal. Note that as we have
			 * not been holding the lock, another client may
			 * have installed an even older signal than the one
			 * we just completed - so double check we are still
			 * the oldest before picking the next one.
			 */
597
			if (request == rcu_access_pointer(b->first_signal)) {
598 599
				struct rb_node *rb =
					rb_next(&request->signaling.node);
600 601
				rcu_assign_pointer(b->first_signal,
						   rb ? to_signaler(rb) : NULL);
602 603
			}
			rb_erase(&request->signaling.node, &b->signals);
604 605
			RB_CLEAR_NODE(&request->signaling.node);

606
			spin_unlock_irq(&b->rb_lock);
607

608
			i915_gem_request_put(request);
609
		} else {
610 611
			DEFINE_WAIT(exec);

612 613
			if (kthread_should_stop()) {
				GEM_BUG_ON(request);
614
				break;
615
			}
616

617 618
			if (request)
				add_wait_queue(&request->execute, &exec);
619 620

			schedule();
621

622 623 624
			if (request)
				remove_wait_queue(&request->execute, &exec);

625 626
			if (kthread_should_park())
				kthread_parkme();
627
		}
628
		i915_gem_request_put(request);
629 630 631 632 633 634
	} while (1);
	__set_current_state(TASK_RUNNING);

	return 0;
}

635
void intel_engine_enable_signaling(struct drm_i915_gem_request *request)
636 637 638 639 640
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	struct rb_node *parent, **p;
	bool first, wakeup;
641
	u32 seqno;
642

643 644 645 646 647 648 649 650
	/* Note that we may be called from an interrupt handler on another
	 * device (e.g. nouveau signaling a fence completion causing us
	 * to submit a request, and so enable signaling). As such,
	 * we need to make sure that all other users of b->lock protect
	 * against interrupts, i.e. use spin_lock_irqsave.
	 */

	/* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
651
	GEM_BUG_ON(!irqs_disabled());
652
	lockdep_assert_held(&request->lock);
653 654 655

	seqno = i915_gem_request_global_seqno(request);
	if (!seqno)
656
		return;
657

658
	request->signaling.wait.tsk = b->signaler;
659
	request->signaling.wait.request = request;
660
	request->signaling.wait.seqno = seqno;
661
	i915_gem_request_get(request);
662

663
	spin_lock(&b->rb_lock);
664

665 666 667 668 669 670 671 672
	/* First add ourselves into the list of waiters, but register our
	 * bottom-half as the signaller thread. As per usual, only the oldest
	 * waiter (not just signaller) is tasked as the bottom-half waking
	 * up all completed waiters after the user interrupt.
	 *
	 * If we are the oldest waiter, enable the irq (after which we
	 * must double check that the seqno did not complete).
	 */
673
	wakeup = __intel_engine_add_wait(engine, &request->signaling.wait);
674 675 676 677 678 679 680 681 682 683

	/* Now insert ourselves into the retirement ordered list of signals
	 * on this engine. We track the oldest seqno as that will be the
	 * first signal to complete.
	 */
	parent = NULL;
	first = true;
	p = &b->signals.rb_node;
	while (*p) {
		parent = *p;
684 685
		if (i915_seqno_passed(seqno,
				      to_signaler(parent)->signaling.wait.seqno)) {
686 687 688 689 690 691
			p = &parent->rb_right;
			first = false;
		} else {
			p = &parent->rb_left;
		}
	}
692 693
	rb_link_node(&request->signaling.node, parent, p);
	rb_insert_color(&request->signaling.node, &b->signals);
694
	if (first)
695
		rcu_assign_pointer(b->first_signal, request);
696

697
	spin_unlock(&b->rb_lock);
698 699 700 701 702

	if (wakeup)
		wake_up_process(b->signaler);
}

703 704 705 706 707
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

708
	GEM_BUG_ON(!irqs_disabled());
709
	lockdep_assert_held(&request->lock);
710 711
	GEM_BUG_ON(!request->signaling.wait.seqno);

712
	spin_lock(&b->rb_lock);
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

	if (!RB_EMPTY_NODE(&request->signaling.node)) {
		if (request == rcu_access_pointer(b->first_signal)) {
			struct rb_node *rb =
				rb_next(&request->signaling.node);
			rcu_assign_pointer(b->first_signal,
					   rb ? to_signaler(rb) : NULL);
		}
		rb_erase(&request->signaling.node, &b->signals);
		RB_CLEAR_NODE(&request->signaling.node);
		i915_gem_request_put(request);
	}

	__intel_engine_remove_wait(engine, &request->signaling.wait);

728
	spin_unlock(&b->rb_lock);
729 730 731 732

	request->signaling.wait.seqno = 0;
}

733 734 735
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
736
	struct task_struct *tsk;
737

738 739 740
	spin_lock_init(&b->rb_lock);
	spin_lock_init(&b->irq_lock);

741 742 743
	setup_timer(&b->fake_irq,
		    intel_breadcrumbs_fake_irq,
		    (unsigned long)engine);
744 745 746
	setup_timer(&b->hangcheck,
		    intel_breadcrumbs_hangcheck,
		    (unsigned long)engine);
747

748 749 750 751 752 753 754 755 756 757 758 759 760
	/* Spawn a thread to provide a common bottom-half for all signals.
	 * As this is an asynchronous interface we cannot steal the current
	 * task for handling the bottom-half to the user interrupt, therefore
	 * we create a thread to do the coherent seqno dance after the
	 * interrupt and then signal the waitqueue (via the dma-buf/fence).
	 */
	tsk = kthread_run(intel_breadcrumbs_signaler, engine,
			  "i915/signal:%d", engine->id);
	if (IS_ERR(tsk))
		return PTR_ERR(tsk);

	b->signaler = tsk;

761 762 763
	return 0;
}

764 765 766 767 768 769 770 771 772 773 774 775 776 777
static void cancel_fake_irq(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	del_timer_sync(&b->hangcheck);
	del_timer_sync(&b->fake_irq);
	clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
}

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

	cancel_fake_irq(engine);
778
	spin_lock_irq(&b->irq_lock);
779

780 781 782
	if (b->irq_enabled)
		irq_enable(engine);
	else
783 784
		irq_disable(engine);

785 786 787 788 789 790 791 792 793 794 795
	/* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
	 * GPU is active and may have already executed the MI_USER_INTERRUPT
	 * before the CPU is ready to receive. However, the engine is currently
	 * idle (we haven't started it yet), there is no possibility for a
	 * missed interrupt as we enabled the irq and so we can clear the
	 * immediate wakeup (until a real interrupt arrives for the waiter).
	 */
	clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);

	if (b->irq_armed)
		enable_fake_irq(b);
796

797
	spin_unlock_irq(&b->irq_lock);
798 799
}

800 801 802 803
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
{
	struct intel_breadcrumbs *b = &engine->breadcrumbs;

804
	/* The engines should be idle and all requests accounted for! */
805
	WARN_ON(READ_ONCE(b->irq_wait));
806
	WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
807
	WARN_ON(rcu_access_pointer(b->first_signal));
808 809
	WARN_ON(!RB_EMPTY_ROOT(&b->signals));

810 811 812
	if (!IS_ERR_OR_NULL(b->signaler))
		kthread_stop(b->signaler);

813
	cancel_fake_irq(engine);
814 815
}

816
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
817
{
818 819
	struct intel_breadcrumbs *b = &engine->breadcrumbs;
	bool busy = false;
820

821
	spin_lock_irq(&b->rb_lock);
822

823 824
	if (b->irq_wait) {
		wake_up_process(b->irq_wait->tsk);
825 826
		busy |= intel_engine_flag(engine);
	}
827

828
	if (rcu_access_pointer(b->first_signal)) {
829 830
		wake_up_process(b->signaler);
		busy |= intel_engine_flag(engine);
831 832
	}

833
	spin_unlock_irq(&b->rb_lock);
834 835

	return busy;
836
}
837 838 839 840

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/intel_breadcrumbs.c"
#endif