base.c 58.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20
#include <linux/console.h>
21
#include <linux/ctype.h>
22
#include <linux/cpu.h>
23 24
#include <linux/module.h>
#include <linux/of.h>
25
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
26
#include <linux/spinlock.h>
27
#include <linux/slab.h>
28
#include <linux/string.h>
J
Jeremy Kerr 已提交
29
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
30

31
#include "of_private.h"
32

33
LIST_HEAD(aliases_lookup);
34

35 36
struct device_node *of_allnodes;
EXPORT_SYMBOL(of_allnodes);
37
struct device_node *of_chosen;
38
struct device_node *of_aliases;
39
struct device_node *of_stdout;
40

41
struct kset *of_kset;
42 43

/*
44 45 46 47
 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
 * This mutex must be held whenever modifications are being made to the
 * device tree. The of_{attach,detach}_node() and
 * of_{add,remove,update}_property() helpers make sure this happens.
48
 */
49
DEFINE_MUTEX(of_mutex);
50

S
Stephen Rothwell 已提交
51 52 53
/* use when traversing tree through the allnext, child, sibling,
 * or parent members of struct device_node.
 */
54
DEFINE_RAW_SPINLOCK(devtree_lock);
55 56 57

int of_n_addr_cells(struct device_node *np)
{
58
	const __be32 *ip;
59 60 61 62 63 64

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
65
			return be32_to_cpup(ip);
66 67 68 69 70 71 72 73
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
74
	const __be32 *ip;
75 76 77 78 79 80

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
81
			return be32_to_cpup(ip);
82 83 84 85 86 87
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

88 89 90 91 92 93 94
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
	return numa_node_id();
}
#endif

95
#ifndef CONFIG_OF_DYNAMIC
96 97 98 99
static void of_node_release(struct kobject *kobj)
{
	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
}
100
#endif /* CONFIG_OF_DYNAMIC */
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
struct kobj_type of_node_ktype = {
	.release = of_node_release,
};

static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
				struct bin_attribute *bin_attr, char *buf,
				loff_t offset, size_t count)
{
	struct property *pp = container_of(bin_attr, struct property, attr);
	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
}

static const char *safe_name(struct kobject *kobj, const char *orig_name)
{
	const char *name = orig_name;
	struct kernfs_node *kn;
	int i = 0;

	/* don't be a hero. After 16 tries give up */
	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
		sysfs_put(kn);
		if (name != orig_name)
			kfree(name);
		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
	}

	if (name != orig_name)
		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
			kobject_name(kobj), name);
	return name;
}

134
int __of_add_property_sysfs(struct device_node *np, struct property *pp)
135 136 137 138 139 140
{
	int rc;

	/* Important: Don't leak passwords */
	bool secure = strncmp(pp->name, "security-", 9) == 0;

141 142 143
	if (!of_kset || !of_node_is_attached(np))
		return 0;

144 145 146 147 148 149 150 151 152 153 154
	sysfs_bin_attr_init(&pp->attr);
	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
	pp->attr.size = secure ? 0 : pp->length;
	pp->attr.read = of_node_property_read;

	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
	return rc;
}

155
int __of_attach_node_sysfs(struct device_node *np)
156 157 158 159 160
{
	const char *name;
	struct property *pp;
	int rc;

161 162 163
	if (!of_kset)
		return 0;

164 165 166
	np->kobj.kset = of_kset;
	if (!np->parent) {
		/* Nodes without parents are new top level trees */
167 168
		rc = kobject_add(&np->kobj, NULL, "%s",
				 safe_name(&of_kset->kobj, "base"));
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	} else {
		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
		if (!name || !name[0])
			return -EINVAL;

		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
	}
	if (rc)
		return rc;

	for_each_property_of_node(np, pp)
		__of_add_property_sysfs(np, pp);

	return 0;
}

static int __init of_init(void)
{
	struct device_node *np;

	/* Create the kset, and register existing nodes */
190
	mutex_lock(&of_mutex);
191 192
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
193
		mutex_unlock(&of_mutex);
194 195 196
		return -ENOMEM;
	}
	for_each_of_allnodes(np)
197
		__of_attach_node_sysfs(np);
198
	mutex_unlock(&of_mutex);
199

G
Grant Likely 已提交
200
	/* Symlink in /proc as required by userspace ABI */
201 202 203 204 205 206 207
	if (of_allnodes)
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");

	return 0;
}
core_initcall(of_init);

208 209
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
210 211 212
{
	struct property *pp;

213 214 215
	if (!np)
		return NULL;

216
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
217
		if (of_prop_cmp(pp->name, name) == 0) {
218
			if (lenp)
S
Stephen Rothwell 已提交
219 220 221 222
				*lenp = pp->length;
			break;
		}
	}
223 224 225 226 227 228 229 230 231

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
232
	unsigned long flags;
233

234
	raw_spin_lock_irqsave(&devtree_lock, flags);
235
	pp = __of_find_property(np, name, lenp);
236
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
237 238 239 240 241

	return pp;
}
EXPORT_SYMBOL(of_find_property);

242 243 244 245 246 247 248 249 250 251 252
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
253
	unsigned long flags;
254

255
	raw_spin_lock_irqsave(&devtree_lock, flags);
256
	np = prev ? prev->allnext : of_allnodes;
257 258 259 260
	for (; np != NULL; np = np->allnext)
		if (of_node_get(np))
			break;
	of_node_put(prev);
261
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 263 264 265
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

266 267 268 269
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
270 271
const void *__of_get_property(const struct device_node *np,
			      const char *name, int *lenp)
272 273 274 275 276 277
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

278 279 280 281 282
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
283
			    int *lenp)
284 285 286 287 288 289
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
324
	if (!cell || !ac)
325
		return false;
326
	prop_len /= sizeof(*cell) * ac;
327 328 329 330 331 332 333 334 335 336 337 338
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
		return true;

	return false;
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
 * Returns a node pointer for the logical cpu if found, else NULL.
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
384
	struct device_node *cpun;
385

386 387
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
388 389 390 391 392 393
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
423
 */
424
static int __of_device_is_compatible(const struct device_node *device,
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
444

445 446 447 448 449
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
450 451
	}

452 453 454 455 456 457 458 459
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
460
}
461 462 463 464 465 466 467

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
468
	unsigned long flags;
469 470
	int res;

471
	raw_spin_lock_irqsave(&devtree_lock, flags);
472
	res = __of_device_is_compatible(device, compat, NULL, NULL);
473
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
474 475
	return res;
}
476
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
477

G
Grant Likely 已提交
478
/**
479
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
480 481 482 483 484
 * @compat: compatible string to look for in root node's compatible property.
 *
 * Returns true if the root node has the given value in its
 * compatible property.
 */
485
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
486 487 488 489 490 491 492 493 494 495 496
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
497
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
498

499
/**
500
 *  __of_device_is_available - check if a device is available for use
501
 *
502
 *  @device: Node to check for availability, with locks already held
503 504 505 506
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
507
static int __of_device_is_available(const struct device_node *device)
508 509 510 511
{
	const char *status;
	int statlen;

512 513 514
	if (!device)
		return 0;

515
	status = __of_get_property(device, "status", &statlen);
516 517 518 519 520 521 522 523 524 525
	if (status == NULL)
		return 1;

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
			return 1;
	}

	return 0;
}
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
int of_device_is_available(const struct device_node *device)
{
	unsigned long flags;
	int res;

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
546 547
EXPORT_SYMBOL(of_device_is_available);

S
Stephen Rothwell 已提交
548 549 550 551 552 553 554 555 556 557
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
558
	unsigned long flags;
S
Stephen Rothwell 已提交
559 560 561 562

	if (!node)
		return NULL;

563
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
564
	np = of_node_get(node->parent);
565
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
566 567 568
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
 * 	This is like of_get_parent() except that it drops the
 * 	refcount on the passed node, making it suitable for iterating
 * 	through a node's parents.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
584
	unsigned long flags;
585 586 587 588

	if (!node)
		return NULL;

589
	raw_spin_lock_irqsave(&devtree_lock, flags);
590 591
	parent = of_node_get(node->parent);
	of_node_put(node);
592
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
593 594
	return parent;
}
595
EXPORT_SYMBOL(of_get_next_parent);
596

597 598 599 600 601
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

602 603 604
	if (!node)
		return NULL;

605 606 607 608 609 610 611 612 613 614 615
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
616 617 618 619 620 621 622 623 624 625 626 627
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
628
	unsigned long flags;
S
Stephen Rothwell 已提交
629

630
	raw_spin_lock_irqsave(&devtree_lock, flags);
631
	next = __of_get_next_child(node, prev);
632
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
633 634 635
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
636

637 638 639 640 641 642 643 644 645 646 647 648
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
649
	unsigned long flags;
650

651 652 653
	if (!node)
		return NULL;

654
	raw_spin_lock_irqsave(&devtree_lock, flags);
655 656
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
657
		if (!__of_device_is_available(next))
658 659 660 661 662
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
663
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
664 665 666 667
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
static struct device_node *__of_find_node_by_path(struct device_node *parent,
						const char *path)
{
	struct device_node *child;
	int len = strchrnul(path, '/') - path;

	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
		const char *name = strrchr(child->full_name, '/');
		if (WARN(!name, "malformed device_node %s\n", child->full_name))
			continue;
		name++;
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

711 712
/**
 *	of_find_node_by_path - Find a node matching a full OF path
713 714 715 716 717 718 719 720 721
 *	@path: Either the full path to match, or if the path does not
 *	       start with '/', the name of a property of the /aliases
 *	       node (an alias).  In the case of an alias, the node
 *	       matching the alias' value will be returned.
 *
 *	Valid paths:
 *		/foo/bar	Full path
 *		foo		Valid alias
 *		foo/bar		Valid alias + relative path
722 723 724 725 726 727
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
728 729
	struct device_node *np = NULL;
	struct property *pp;
730
	unsigned long flags;
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	if (strcmp(path, "/") == 0)
		return of_node_get(of_allnodes);

	/* The path could begin with an alias */
	if (*path != '/') {
		char *p = strchrnul(path, '/');
		int len = p - path;

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
756
	raw_spin_lock_irqsave(&devtree_lock, flags);
757 758 759 760 761 762
	if (!np)
		np = of_node_get(of_allnodes);
	while (np && *path == '/') {
		path++; /* Increment past '/' delimiter */
		np = __of_find_node_by_path(np, path);
		path = strchrnul(path, '/');
763
	}
764
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	return np;
}
EXPORT_SYMBOL(of_find_node_by_path);

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
784
	unsigned long flags;
785

786
	raw_spin_lock_irqsave(&devtree_lock, flags);
787
	np = from ? from->allnext : of_allnodes;
788 789 790 791 792
	for (; np; np = np->allnext)
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
793
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
814
	unsigned long flags;
815

816
	raw_spin_lock_irqsave(&devtree_lock, flags);
817
	np = from ? from->allnext : of_allnodes;
818 819 820 821 822
	for (; np; np = np->allnext)
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
823
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
846
	unsigned long flags;
847

848
	raw_spin_lock_irqsave(&devtree_lock, flags);
849
	np = from ? from->allnext : of_allnodes;
850
	for (; np; np = np->allnext) {
851
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
852
		    of_node_get(np))
853 854 855
			break;
	}
	of_node_put(from);
856
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
857 858 859
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
878
	unsigned long flags;
879

880
	raw_spin_lock_irqsave(&devtree_lock, flags);
881
	np = from ? from->allnext : of_allnodes;
882
	for (; np; np = np->allnext) {
883
		for (pp = np->properties; pp; pp = pp->next) {
884 885 886 887 888 889 890 891
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
892
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
893 894 895 896
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

897 898 899
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
900
{
901 902 903
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

904 905 906
	if (!matches)
		return NULL;

907 908 909 910 911 912 913
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
914
	}
915 916

	return best_match;
917
}
918 919 920 921 922 923

/**
 * of_match_node - Tell if an device_node has a matching of_match structure
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
924
 *	Low level utility function used by device matching.
925 926 927 928 929
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
930
	unsigned long flags;
931

932
	raw_spin_lock_irqsave(&devtree_lock, flags);
933
	match = __of_match_node(matches, node);
934
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
935 936
	return match;
}
937 938 939
EXPORT_SYMBOL(of_match_node);

/**
940 941
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
942 943 944 945 946
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
947
 *	@match		Updated to point at the matches entry which matched
948 949 950 951
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
952 953 954
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
955 956
{
	struct device_node *np;
957
	const struct of_device_id *m;
958
	unsigned long flags;
959

960 961 962
	if (match)
		*match = NULL;

963
	raw_spin_lock_irqsave(&devtree_lock, flags);
964
	np = from ? from->allnext : of_allnodes;
965
	for (; np; np = np->allnext) {
966
		m = __of_match_node(matches, np);
967
		if (m && of_node_get(np)) {
968
			if (match)
969
				*match = m;
970
			break;
971
		}
972 973
	}
	of_node_put(from);
974
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
975 976
	return np;
}
977
EXPORT_SYMBOL(of_find_matching_node_and_match);
978 979 980 981 982 983 984

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
985 986 987 988
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
989
 *
990
 * This routine returns 0 on success, <0 on failure.
991 992 993
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
994 995
	const char *compatible, *p;
	int cplen;
996 997

	compatible = of_get_property(node, "compatible", &cplen);
998
	if (!compatible || strlen(compatible) > cplen)
999 1000
		return -ENODEV;
	p = strchr(compatible, ',');
1001
	strlcpy(modalias, p ? p + 1 : compatible, len);
1002 1003 1004 1005
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
1016
	unsigned long flags;
J
Jeremy Kerr 已提交
1017

1018
	raw_spin_lock_irqsave(&devtree_lock, flags);
1019
	for (np = of_allnodes; np; np = np->allnext)
J
Jeremy Kerr 已提交
1020 1021 1022
		if (np->phandle == handle)
			break;
	of_node_get(np);
1023
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1024 1025 1026 1027
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * of_property_count_elems_of_size - Count the number of elements in a property
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @elem_size:	size of the individual element
 *
 * Search for a property in a device node and count the number of elements of
 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
 * property does not exist or its length does not match a multiple of elem_size
 * and -ENODATA if the property does not have a value.
 */
int of_property_count_elems_of_size(const struct device_node *np,
				const char *propname, int elem_size)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	if (prop->length % elem_size != 0) {
		pr_err("size of %s in node %s is not a multiple of %d\n",
		       propname, np->full_name, elem_size);
		return -EINVAL;
	}

	return prop->length / elem_size;
}
EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @len:	requested length of property value
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
			const char *propname, u32 len)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
	if (len > prop->length)
		return ERR_PTR(-EOVERFLOW);

	return prop->value;
}

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
1107 1108
	const u32 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)));
1109

1110 1111
	if (IS_ERR(val))
		return PTR_ERR(val);
1112

1113
	*out_value = be32_to_cpup(((__be32 *)val) + index);
1114 1115 1116 1117
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

1118 1119 1120 1121 1122
/**
 * of_property_read_u8_array - Find and read an array of u8 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1123
 * @out_values:	pointer to return value, modified only if return value is 0.
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 8-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
1134
 * The out_values is modified only if a valid u8 value can be decoded.
1135 1136 1137 1138
 */
int of_property_read_u8_array(const struct device_node *np,
			const char *propname, u8 *out_values, size_t sz)
{
1139 1140
	const u8 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1141

1142 1143
	if (IS_ERR(val))
		return PTR_ERR(val);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155

	while (sz--)
		*out_values++ = *val++;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u8_array);

/**
 * of_property_read_u16_array - Find and read an array of u16 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1156
 * @out_values:	pointer to return value, modified only if return value is 0.
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 16-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1167
 * The out_values is modified only if a valid u16 value can be decoded.
1168 1169 1170 1171
 */
int of_property_read_u16_array(const struct device_node *np,
			const char *propname, u16 *out_values, size_t sz)
{
1172 1173
	const __be16 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1174

1175 1176
	if (IS_ERR(val))
		return PTR_ERR(val);
1177 1178 1179 1180 1181 1182 1183

	while (sz--)
		*out_values++ = be16_to_cpup(val++);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u16_array);

1184
/**
1185 1186 1187
 * of_property_read_u32_array - Find and read an array of 32 bit integers
 * from a property.
 *
1188 1189
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1190
 * @out_values:	pointer to return value, modified only if return value is 0.
1191
 * @sz:		number of array elements to read
1192
 *
1193
 * Search for a property in a device node and read 32-bit value(s) from
1194 1195 1196 1197
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
L
Lad, Prabhakar 已提交
1198
 * The out_values is modified only if a valid u32 value can be decoded.
1199
 */
1200 1201 1202
int of_property_read_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz)
1203
{
1204 1205
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1206

1207 1208
	if (IS_ERR(val))
		return PTR_ERR(val);
1209 1210 1211

	while (sz--)
		*out_values++ = be32_to_cpup(val++);
1212 1213
	return 0;
}
1214
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1232 1233
	const __be32 *val = of_find_property_value_of_size(np, propname,
						sizeof(*out_value));
1234

1235 1236 1237 1238
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1239 1240 1241 1242
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1258
int of_property_read_string(struct device_node *np, const char *propname,
1259
				const char **out_string)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
{
	struct property *prop = of_find_property(np, propname, NULL);
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/**
 * of_property_read_string_index - Find and read a string from a multiple
 * strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the string in the list of strings
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy) in the list of strings
 * contained in that property.
 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
 * property does not have a value, and -EILSEQ if the string is not
 * null-terminated within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
int of_property_read_string_index(struct device_node *np, const char *propname,
				  int index, const char **output)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

	for (i = 0; total < prop->length; total += l, p += l) {
		l = strlen(p) + 1;
1310
		if (i++ == index) {
1311 1312 1313 1314 1315 1316 1317 1318
			*output = p;
			return 0;
		}
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_read_string_index);

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
int of_property_match_string(struct device_node *np, const char *propname,
			     const char *string)
{
	struct property *prop = of_find_property(np, propname, NULL);
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
		l = strlen(p) + 1;
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

/**
 * of_property_count_strings - Find and return the number of strings from a
 * multiple strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 *
 * Search for a property in a device tree node and retrieve the number of null
 * terminated string contain in it. Returns the number of strings on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 */
int of_property_count_strings(struct device_node *np, const char *propname)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

1384
	for (i = 0; total < prop->length; total += l, p += l, i++)
1385
		l = strlen(p) + 1;
1386

1387 1388 1389 1390
	return i;
}
EXPORT_SYMBOL_GPL(of_property_count_strings);

1391 1392 1393 1394 1395 1396 1397 1398 1399
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
	for (i = 0; i < args->args_count; i++)
		printk(i ? ",%08x" : ":%08x", args->args[i]);
	printk("\n");
}

1400 1401
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1402 1403
					const char *cells_name,
					int cell_count, int index,
1404
					struct of_phandle_args *out_args)
1405
{
1406
	const __be32 *list, *list_end;
1407
	int rc = 0, size, cur_index = 0;
1408
	uint32_t count = 0;
1409
	struct device_node *node = NULL;
1410
	phandle phandle;
1411

1412
	/* Retrieve the phandle list property */
1413
	list = of_get_property(np, list_name, &size);
1414
	if (!list)
1415
		return -ENOENT;
1416 1417
	list_end = list + size / sizeof(*list);

1418
	/* Loop over the phandles until all the requested entry is found */
1419
	while (list < list_end) {
1420
		rc = -EINVAL;
1421
		count = 0;
1422

1423 1424 1425 1426
		/*
		 * If phandle is 0, then it is an empty entry with no
		 * arguments.  Skip forward to the next entry.
		 */
G
Grant Likely 已提交
1427
		phandle = be32_to_cpup(list++);
1428 1429 1430
		if (phandle) {
			/*
			 * Find the provider node and parse the #*-cells
1431 1432 1433 1434 1435 1436
			 * property to determine the argument length.
			 *
			 * This is not needed if the cell count is hard-coded
			 * (i.e. cells_name not set, but cell_count is set),
			 * except when we're going to return the found node
			 * below.
1437
			 */
1438 1439 1440 1441 1442 1443 1444
			if (cells_name || cur_index == index) {
				node = of_find_node_by_phandle(phandle);
				if (!node) {
					pr_err("%s: could not find phandle\n",
						np->full_name);
					goto err;
				}
1445
			}
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

			if (cells_name) {
				if (of_property_read_u32(node, cells_name,
							 &count)) {
					pr_err("%s: could not get %s for %s\n",
						np->full_name, cells_name,
						node->full_name);
					goto err;
				}
			} else {
				count = cell_count;
1457
			}
1458

1459 1460 1461 1462 1463 1464 1465
			/*
			 * Make sure that the arguments actually fit in the
			 * remaining property data length
			 */
			if (list + count > list_end) {
				pr_err("%s: arguments longer than property\n",
					 np->full_name);
1466
				goto err;
1467
			}
1468 1469
		}

1470 1471 1472 1473 1474 1475
		/*
		 * All of the error cases above bail out of the loop, so at
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1476
		rc = -ENOENT;
1477 1478
		if (cur_index == index) {
			if (!phandle)
1479
				goto err;
1480 1481 1482 1483 1484 1485 1486 1487 1488

			if (out_args) {
				int i;
				if (WARN_ON(count > MAX_PHANDLE_ARGS))
					count = MAX_PHANDLE_ARGS;
				out_args->np = node;
				out_args->args_count = count;
				for (i = 0; i < count; i++)
					out_args->args[i] = be32_to_cpup(list++);
1489 1490
			} else {
				of_node_put(node);
1491
			}
1492 1493

			/* Found it! return success */
1494
			return 0;
1495 1496 1497 1498
		}

		of_node_put(node);
		node = NULL;
1499
		list += count;
1500 1501 1502
		cur_index++;
	}

1503 1504 1505 1506
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
1507
	 * [1..n]  : Number of phandle (count mode; when index = -1)
1508
	 */
1509
	rc = index < 0 ? cur_index : -ENOENT;
1510
 err:
1511 1512
	if (node)
		of_node_put(node);
1513
	return rc;
1514
}
1515

S
Stephen Warren 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1529 1530 1531 1532
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1533

1534 1535
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1536 1537
		return NULL;

1538
	return args.np;
S
Stephen Warren 已提交
1539 1540 1541
}
EXPORT_SYMBOL(of_parse_phandle);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * 	#list-cells = <2>;
 * }
 *
 * phandle2: node2 {
 * 	#list-cells = <1>;
 * }
 *
 * node3 {
 * 	list = <&phandle1 1 2 &phandle2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1574 1575 1576 1577 1578 1579
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1580 1581
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1582
}
1583
EXPORT_SYMBOL(of_parse_phandle_with_args);
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
 * 	list = <&phandle1 0 2 &phandle2 2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1644 1645
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
					    NULL);
1646 1647 1648
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1649 1650 1651
/**
 * __of_add_property - Add a property to a node without lock operations
 */
1652
int __of_add_property(struct device_node *np, struct property *prop)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1670
/**
1671
 * of_add_property - Add a property to a node
1672
 */
1673
int of_add_property(struct device_node *np, struct property *prop)
1674 1675
{
	unsigned long flags;
1676 1677
	int rc;

1678
	mutex_lock(&of_mutex);
1679

1680
	raw_spin_lock_irqsave(&devtree_lock, flags);
1681
	rc = __of_add_property(np, prop);
1682
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1683

1684
	if (!rc)
1685
		__of_add_property_sysfs(np, prop);
1686

1687 1688
	mutex_unlock(&of_mutex);

1689 1690 1691
	if (!rc)
		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);

1692
	return rc;
1693 1694
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
int __of_remove_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	for (next = &np->properties; *next; next = &(*next)->next) {
		if (*next == prop)
			break;
	}
	if (*next == NULL)
		return -ENODEV;

	/* found the node */
	*next = prop->next;
	prop->next = np->deadprops;
	np->deadprops = prop;

	return 0;
}

1714 1715 1716 1717 1718 1719 1720
void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
{
	/* at early boot, bail here and defer setup to of_init() */
	if (of_kset && of_node_is_attached(np))
		sysfs_remove_bin_file(&np->kobj, &prop->attr);
}

1721
/**
1722
 * of_remove_property - Remove a property from a node.
1723 1724 1725 1726 1727 1728
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1729
int of_remove_property(struct device_node *np, struct property *prop)
1730 1731
{
	unsigned long flags;
1732 1733
	int rc;

1734
	mutex_lock(&of_mutex);
1735

1736
	raw_spin_lock_irqsave(&devtree_lock, flags);
1737
	rc = __of_remove_property(np, prop);
1738
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1739

1740 1741
	if (!rc)
		__of_remove_property_sysfs(np, prop);
1742

1743
	mutex_unlock(&of_mutex);
1744

1745 1746
	if (!rc)
		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1747

1748
	return rc;
1749 1750
}

1751 1752
int __of_update_property(struct device_node *np, struct property *newprop,
		struct property **oldpropp)
1753
{
1754
	struct property **next, *oldprop;
1755

1756 1757 1758 1759 1760
	for (next = &np->properties; *next; next = &(*next)->next) {
		if (of_prop_cmp((*next)->name, newprop->name) == 0)
			break;
	}
	*oldpropp = oldprop = *next;
1761

1762
	if (oldprop) {
1763
		/* replace the node */
1764 1765 1766 1767 1768 1769 1770 1771
		newprop->next = oldprop->next;
		*next = newprop;
		oldprop->next = np->deadprops;
		np->deadprops = oldprop;
	} else {
		/* new node */
		newprop->next = NULL;
		*next = newprop;
1772
	}
1773

1774 1775 1776
	return 0;
}

1777 1778 1779
void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
		struct property *oldprop)
{
1780 1781
	/* At early boot, bail out and defer setup to of_init() */
	if (!of_kset)
1782
		return;
1783

1784 1785
	if (oldprop)
		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1786
	__of_add_property_sysfs(np, newprop);
1787
}
1788 1789

/*
1790
 * of_update_property - Update a property in a node, if the property does
1791
 * not exist, add it.
1792
 *
1793 1794 1795 1796
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
1797
 */
1798
int of_update_property(struct device_node *np, struct property *newprop)
1799
{
1800
	struct property *oldprop;
1801
	unsigned long flags;
1802 1803
	int rc;

1804 1805
	if (!newprop->name)
		return -EINVAL;
1806

1807
	mutex_lock(&of_mutex);
1808

1809
	raw_spin_lock_irqsave(&devtree_lock, flags);
1810
	rc = __of_update_property(np, newprop, &oldprop);
1811
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1812

1813 1814
	if (!rc)
		__of_update_property_sysfs(np, newprop, oldprop);
1815

1816
	mutex_unlock(&of_mutex);
1817

1818 1819
	if (!rc)
		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1820

1821
	return rc;
1822 1823
}

1824 1825 1826 1827 1828 1829 1830 1831 1832
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1833
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
}

/**
 * of_alias_scan - Scan all properties of 'aliases' node
 *
 * The function scans all the properties of 'aliases' node and populate
 * the the global lookup table with the properties.  It returns the
 * number of alias_prop found, or error code in error case.
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for the resulting tree
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
1853 1854

	if (of_chosen) {
1855
		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1856 1857 1858
		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
		if (!name)
			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1859 1860
		if (IS_ENABLED(CONFIG_PPC) && !name)
			name = of_get_property(of_aliases, "stdout", NULL);
1861 1862 1863 1864
		if (name)
			of_stdout = of_find_node_by_path(name);
	}

1865 1866 1867 1868
	of_aliases = of_find_node_by_path("/aliases");
	if (!of_aliases)
		return;

1869
	for_each_property_of_node(of_aliases, pp) {
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
		if (!ap)
			continue;
1899
		memset(ap, 0, sizeof(*ap) + len + 1);
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
1910 1911
 * The function travels the lookup table to get the alias id for the given
 * device_node and alias stem.  It returns the alias id if found.
1912 1913 1914 1915 1916 1917
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

1918
	mutex_lock(&of_mutex);
1919 1920 1921 1922 1923 1924 1925 1926 1927
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
1928
	mutex_unlock(&of_mutex);
1929 1930 1931 1932

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
1974 1975

/**
1976 1977 1978 1979 1980 1981 1982 1983
 * of_console_check() - Test and setup console for DT setup
 * @dn - Pointer to device node
 * @name - Name to use for preferred console without index. ex. "ttyS"
 * @index - Index to use for preferred console.
 *
 * Check if the given device node matches the stdout-path property in the
 * /chosen node. If it does then register it as the preferred console and return
 * TRUE. Otherwise return FALSE.
1984
 */
1985
bool of_console_check(struct device_node *dn, char *name, int index)
1986
{
1987
	if (!dn || dn != of_stdout || console_set_on_cmdline)
1988
		return false;
1989
	return add_preferred_console(name, index, NULL);
1990
}
1991
EXPORT_SYMBOL_GPL(of_console_check);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
	struct device_node *child;
	const phandle *handle;

	handle = of_get_property(np, "l2-cache", NULL);
	if (!handle)
		handle = of_get_property(np, "next-level-cache", NULL);

	if (handle)
		return of_find_node_by_phandle(be32_to_cpup(handle));

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}
2023

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
/**
 * of_graph_parse_endpoint() - parse common endpoint node properties
 * @node: pointer to endpoint device_node
 * @endpoint: pointer to the OF endpoint data structure
 *
 * The caller should hold a reference to @node.
 */
int of_graph_parse_endpoint(const struct device_node *node,
			    struct of_endpoint *endpoint)
{
	struct device_node *port_node = of_get_parent(node);

2036 2037 2038
	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
		  __func__, node->full_name);

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_node = node;
	/*
	 * It doesn't matter whether the two calls below succeed.
	 * If they don't then the default value 0 is used.
	 */
	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}
EXPORT_SYMBOL(of_graph_parse_endpoint);

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 * of the passed @prev node is not decremented, the caller have to use
 * of_node_put() on it when done.
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
2068
	struct device_node *port;
2069 2070 2071 2072

	if (!parent)
		return NULL;

2073 2074 2075 2076 2077
	/*
	 * Start by locating the port node. If no previous endpoint is specified
	 * search for the first port node, otherwise get the previous endpoint
	 * parent port node.
	 */
2078 2079
	if (!prev) {
		struct device_node *node;
2080

2081 2082 2083 2084 2085 2086 2087
		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");
		of_node_put(node);

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
		if (!port) {
			pr_err("%s(): no port node found in %s\n",
			       __func__, parent->full_name);
			return NULL;
		}
	} else {
		port = of_get_parent(prev);
		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
			      __func__, prev->full_name))
			return NULL;
2098

2099 2100 2101 2102 2103
		/*
		 * Avoid dropping prev node refcount to 0 when getting the next
		 * child below.
		 */
		of_node_get(prev);
2104 2105
	}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	while (1) {
		/*
		 * Now that we have a port node, get the next endpoint by
		 * getting the next child. If the previous endpoint is NULL this
		 * will return the first child.
		 */
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}
2117

2118 2119
		/* No more endpoints under this port, try the next one. */
		prev = NULL;
2120

2121 2122 2123 2124 2125 2126
		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
		} while (of_node_cmp(port->name, "port"));
	}
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
	struct device_node *np;
	unsigned int depth;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);

	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && np; depth--) {
		np = of_get_next_parent(np);
		if (depth == 2 && of_node_cmp(np->name, "ports"))
			break;
	}
	return np;
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);