base.c 55.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20
#include <linux/ctype.h>
21
#include <linux/cpu.h>
22 23
#include <linux/module.h>
#include <linux/of.h>
S
Stephen Rothwell 已提交
24
#include <linux/spinlock.h>
25
#include <linux/slab.h>
26
#include <linux/string.h>
J
Jeremy Kerr 已提交
27
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
28

29
#include "of_private.h"
30

31
LIST_HEAD(aliases_lookup);
32

33 34
struct device_node *of_allnodes;
EXPORT_SYMBOL(of_allnodes);
35
struct device_node *of_chosen;
36
struct device_node *of_aliases;
37
static struct device_node *of_stdout;
38

39 40 41 42 43 44
static struct kset *of_kset;

/*
 * Used to protect the of_aliases; but also overloaded to hold off addition of
 * nodes to sysfs
 */
45
DEFINE_MUTEX(of_aliases_mutex);
46

S
Stephen Rothwell 已提交
47 48 49
/* use when traversing tree through the allnext, child, sibling,
 * or parent members of struct device_node.
 */
50
DEFINE_RAW_SPINLOCK(devtree_lock);
51 52 53

int of_n_addr_cells(struct device_node *np)
{
54
	const __be32 *ip;
55 56 57 58 59 60

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
61
			return be32_to_cpup(ip);
62 63 64 65 66 67 68 69
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
70
	const __be32 *ip;
71 72 73 74 75 76

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
77
			return be32_to_cpup(ip);
78 79 80 81 82 83
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

84 85 86 87 88 89 90
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
	return numa_node_id();
}
#endif

91
#if defined(CONFIG_OF_DYNAMIC)
92 93 94 95 96 97 98 99 100 101
/**
 *	of_node_get - Increment refcount of a node
 *	@node:	Node to inc refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Returns node.
 */
struct device_node *of_node_get(struct device_node *node)
{
	if (node)
102
		kobject_get(&node->kobj);
103 104 105 106
	return node;
}
EXPORT_SYMBOL(of_node_get);

107
static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
108
{
109
	return container_of(kobj, struct device_node, kobj);
110 111 112 113 114 115 116 117 118
}

/**
 *	of_node_release - release a dynamically allocated node
 *	@kref:  kref element of the node to be released
 *
 *	In of_node_put() this function is passed to kref_put()
 *	as the destructor.
 */
119
static void of_node_release(struct kobject *kobj)
120
{
121
	struct device_node *node = kobj_to_device_node(kobj);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	struct property *prop = node->properties;

	/* We should never be releasing nodes that haven't been detached. */
	if (!of_node_check_flag(node, OF_DETACHED)) {
		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
		dump_stack();
		return;
	}

	if (!of_node_check_flag(node, OF_DYNAMIC))
		return;

	while (prop) {
		struct property *next = prop->next;
		kfree(prop->name);
		kfree(prop->value);
		kfree(prop);
		prop = next;

		if (!prop) {
			prop = node->deadprops;
			node->deadprops = NULL;
		}
	}
	kfree(node->full_name);
	kfree(node->data);
	kfree(node);
}

/**
 *	of_node_put - Decrement refcount of a node
 *	@node:	Node to dec refcount, NULL is supported to
 *		simplify writing of callers
 *
 */
void of_node_put(struct device_node *node)
{
	if (node)
160
		kobject_put(&node->kobj);
161 162
}
EXPORT_SYMBOL(of_node_put);
163 164 165 166 167
#else
static void of_node_release(struct kobject *kobj)
{
	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
}
168
#endif /* CONFIG_OF_DYNAMIC */
169

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
struct kobj_type of_node_ktype = {
	.release = of_node_release,
};

static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
				struct bin_attribute *bin_attr, char *buf,
				loff_t offset, size_t count)
{
	struct property *pp = container_of(bin_attr, struct property, attr);
	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
}

static const char *safe_name(struct kobject *kobj, const char *orig_name)
{
	const char *name = orig_name;
	struct kernfs_node *kn;
	int i = 0;

	/* don't be a hero. After 16 tries give up */
	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
		sysfs_put(kn);
		if (name != orig_name)
			kfree(name);
		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
	}

	if (name != orig_name)
		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
			kobject_name(kobj), name);
	return name;
}

static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
{
	int rc;

	/* Important: Don't leak passwords */
	bool secure = strncmp(pp->name, "security-", 9) == 0;

	sysfs_bin_attr_init(&pp->attr);
	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
	pp->attr.size = secure ? 0 : pp->length;
	pp->attr.read = of_node_property_read;

	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
	return rc;
}

static int __of_node_add(struct device_node *np)
{
	const char *name;
	struct property *pp;
	int rc;

	np->kobj.kset = of_kset;
	if (!np->parent) {
		/* Nodes without parents are new top level trees */
		rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base"));
	} else {
		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
		if (!name || !name[0])
			return -EINVAL;

		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
	}
	if (rc)
		return rc;

	for_each_property_of_node(np, pp)
		__of_add_property_sysfs(np, pp);

	return 0;
}

int of_node_add(struct device_node *np)
{
	int rc = 0;
	kobject_init(&np->kobj, &of_node_ktype);
	mutex_lock(&of_aliases_mutex);
	if (of_kset)
		rc = __of_node_add(np);
	mutex_unlock(&of_aliases_mutex);
	return rc;
}

#if defined(CONFIG_OF_DYNAMIC)
static void of_node_remove(struct device_node *np)
{
	struct property *pp;

	for_each_property_of_node(np, pp)
		sysfs_remove_bin_file(&np->kobj, &pp->attr);

	kobject_del(&np->kobj);
}
#endif

static int __init of_init(void)
{
	struct device_node *np;

	/* Create the kset, and register existing nodes */
	mutex_lock(&of_aliases_mutex);
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
		mutex_unlock(&of_aliases_mutex);
		return -ENOMEM;
	}
	for_each_of_allnodes(np)
		__of_node_add(np);
	mutex_unlock(&of_aliases_mutex);

G
Grant Likely 已提交
284
	/* Symlink in /proc as required by userspace ABI */
285 286 287 288 289 290 291
	if (of_allnodes)
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");

	return 0;
}
core_initcall(of_init);

292 293
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
294 295 296
{
	struct property *pp;

297 298 299
	if (!np)
		return NULL;

300
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
301
		if (of_prop_cmp(pp->name, name) == 0) {
302
			if (lenp)
S
Stephen Rothwell 已提交
303 304 305 306
				*lenp = pp->length;
			break;
		}
	}
307 308 309 310 311 312 313 314 315

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
316
	unsigned long flags;
317

318
	raw_spin_lock_irqsave(&devtree_lock, flags);
319
	pp = __of_find_property(np, name, lenp);
320
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
321 322 323 324 325

	return pp;
}
EXPORT_SYMBOL(of_find_property);

326 327 328 329 330 331 332 333 334 335 336
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
337
	unsigned long flags;
338

339
	raw_spin_lock_irqsave(&devtree_lock, flags);
340
	np = prev ? prev->allnext : of_allnodes;
341 342 343 344
	for (; np != NULL; np = np->allnext)
		if (of_node_get(np))
			break;
	of_node_put(prev);
345
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
346 347 348 349
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

350 351 352 353 354 355 356 357 358 359 360 361
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
static const void *__of_get_property(const struct device_node *np,
				     const char *name, int *lenp)
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

362 363 364 365 366
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
367
			    int *lenp)
368 369 370 371 372 373
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
408
	if (!cell || !ac)
409
		return false;
410
	prop_len /= sizeof(*cell) * ac;
411 412 413 414 415 416 417 418 419 420 421 422
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
		return true;

	return false;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
 * Returns a node pointer for the logical cpu if found, else NULL.
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
468
	struct device_node *cpun;
469

470 471
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
472 473 474 475 476 477
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
507
 */
508
static int __of_device_is_compatible(const struct device_node *device,
509
				     const char *compat, const char *type, const char *name)
510
{
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
528

529 530 531 532 533
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
534 535
	}

536 537 538 539 540 541 542 543
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
544
}
545 546 547 548 549 550 551

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
552
	unsigned long flags;
553 554
	int res;

555
	raw_spin_lock_irqsave(&devtree_lock, flags);
556
	res = __of_device_is_compatible(device, compat, NULL, NULL);
557
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
558 559
	return res;
}
560
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
561

G
Grant Likely 已提交
562
/**
563
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
564 565 566 567 568
 * @compat: compatible string to look for in root node's compatible property.
 *
 * Returns true if the root node has the given value in its
 * compatible property.
 */
569
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
570 571 572 573 574 575 576 577 578 579 580
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
581
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
582

583
/**
584
 *  __of_device_is_available - check if a device is available for use
585
 *
586
 *  @device: Node to check for availability, with locks already held
587 588 589 590
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
591
static int __of_device_is_available(const struct device_node *device)
592 593 594 595
{
	const char *status;
	int statlen;

596 597 598
	if (!device)
		return 0;

599
	status = __of_get_property(device, "status", &statlen);
600 601 602 603 604 605 606 607 608 609
	if (status == NULL)
		return 1;

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
			return 1;
	}

	return 0;
}
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
int of_device_is_available(const struct device_node *device)
{
	unsigned long flags;
	int res;

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
630 631
EXPORT_SYMBOL(of_device_is_available);

S
Stephen Rothwell 已提交
632 633 634 635 636 637 638 639 640 641
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
642
	unsigned long flags;
S
Stephen Rothwell 已提交
643 644 645 646

	if (!node)
		return NULL;

647
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
648
	np = of_node_get(node->parent);
649
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
650 651 652
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
653

654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
 * 	This is like of_get_parent() except that it drops the
 * 	refcount on the passed node, making it suitable for iterating
 * 	through a node's parents.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
668
	unsigned long flags;
669 670 671 672

	if (!node)
		return NULL;

673
	raw_spin_lock_irqsave(&devtree_lock, flags);
674 675
	parent = of_node_get(node->parent);
	of_node_put(node);
676
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
677 678
	return parent;
}
679
EXPORT_SYMBOL(of_get_next_parent);
680

S
Stephen Rothwell 已提交
681 682 683 684 685 686 687 688 689 690 691 692
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
693
	unsigned long flags;
S
Stephen Rothwell 已提交
694

695
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
696 697 698 699 700
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
701
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
702 703 704
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
705

706 707 708 709 710 711 712 713 714 715 716 717
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
718
	unsigned long flags;
719

720
	raw_spin_lock_irqsave(&devtree_lock, flags);
721 722
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
723
		if (!__of_device_is_available(next))
724 725 726 727 728
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
729
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
730 731 732 733
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

757 758 759 760 761 762 763 764 765
/**
 *	of_find_node_by_path - Find a node matching a full OF path
 *	@path:	The full path to match
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
766
	struct device_node *np = of_allnodes;
767
	unsigned long flags;
768

769
	raw_spin_lock_irqsave(&devtree_lock, flags);
770 771 772 773 774
	for (; np; np = np->allnext) {
		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
		    && of_node_get(np))
			break;
	}
775
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	return np;
}
EXPORT_SYMBOL(of_find_node_by_path);

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
795
	unsigned long flags;
796

797
	raw_spin_lock_irqsave(&devtree_lock, flags);
798
	np = from ? from->allnext : of_allnodes;
799 800 801 802 803
	for (; np; np = np->allnext)
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
804
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
825
	unsigned long flags;
826

827
	raw_spin_lock_irqsave(&devtree_lock, flags);
828
	np = from ? from->allnext : of_allnodes;
829 830 831 832 833
	for (; np; np = np->allnext)
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
834
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
857
	unsigned long flags;
858

859
	raw_spin_lock_irqsave(&devtree_lock, flags);
860
	np = from ? from->allnext : of_allnodes;
861
	for (; np; np = np->allnext) {
862
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
863
		    of_node_get(np))
864 865 866
			break;
	}
	of_node_put(from);
867
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
868 869 870
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
889
	unsigned long flags;
890

891
	raw_spin_lock_irqsave(&devtree_lock, flags);
892
	np = from ? from->allnext : of_allnodes;
893
	for (; np; np = np->allnext) {
894
		for (pp = np->properties; pp; pp = pp->next) {
895 896 897 898 899 900 901 902
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
903
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
904 905 906 907
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

908 909 910
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
911
{
912 913
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;
914

915 916 917
	if (!matches)
		return NULL;

918 919 920 921 922 923
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
924
		}
925
	}
926

927
	return best_match;
928
}
929 930 931 932 933 934

/**
 * of_match_node - Tell if an device_node has a matching of_match structure
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
935
 *	Low level utility function used by device matching.
936 937 938 939 940
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
941
	unsigned long flags;
942

943
	raw_spin_lock_irqsave(&devtree_lock, flags);
944
	match = __of_match_node(matches, node);
945
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
946 947
	return match;
}
948 949 950
EXPORT_SYMBOL(of_match_node);

/**
951 952
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
953 954 955 956 957
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
958
 *	@match		Updated to point at the matches entry which matched
959 960 961 962
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
963 964 965
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
966 967
{
	struct device_node *np;
968
	const struct of_device_id *m;
969
	unsigned long flags;
970

971 972 973
	if (match)
		*match = NULL;

974
	raw_spin_lock_irqsave(&devtree_lock, flags);
975
	np = from ? from->allnext : of_allnodes;
976
	for (; np; np = np->allnext) {
977
		m = __of_match_node(matches, np);
978
		if (m && of_node_get(np)) {
979
			if (match)
980
				*match = m;
981
			break;
982
		}
983 984
	}
	of_node_put(from);
985
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
986 987
	return np;
}
988
EXPORT_SYMBOL(of_find_matching_node_and_match);
989 990 991 992 993 994 995

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
996 997 998 999
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1000
 *
1001
 * This routine returns 0 on success, <0 on failure.
1002 1003 1004
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1005 1006
	const char *compatible, *p;
	int cplen;
1007 1008

	compatible = of_get_property(node, "compatible", &cplen);
1009
	if (!compatible || strlen(compatible) > cplen)
1010 1011
		return -ENODEV;
	p = strchr(compatible, ',');
1012
	strlcpy(modalias, p ? p + 1 : compatible, len);
1013 1014 1015 1016
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
1027
	unsigned long flags;
J
Jeremy Kerr 已提交
1028

1029
	raw_spin_lock_irqsave(&devtree_lock, flags);
1030
	for (np = of_allnodes; np; np = np->allnext)
J
Jeremy Kerr 已提交
1031 1032 1033
		if (np->phandle == handle)
			break;
	of_node_get(np);
1034
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1035 1036 1037 1038
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @len:	requested length of property value
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
			const char *propname, u32 len)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
	if (len > prop->length)
		return ERR_PTR(-EOVERFLOW);

	return prop->value;
}

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
1086 1087
	const u32 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)));
1088

1089 1090
	if (IS_ERR(val))
		return PTR_ERR(val);
1091

1092
	*out_value = be32_to_cpup(((__be32 *)val) + index);
1093 1094 1095 1096
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

1097 1098 1099 1100 1101
/**
 * of_property_read_u8_array - Find and read an array of u8 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1102
 * @out_values:	pointer to return value, modified only if return value is 0.
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 8-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
1113
 * The out_values is modified only if a valid u8 value can be decoded.
1114 1115 1116 1117
 */
int of_property_read_u8_array(const struct device_node *np,
			const char *propname, u8 *out_values, size_t sz)
{
1118 1119
	const u8 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1120

1121 1122
	if (IS_ERR(val))
		return PTR_ERR(val);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	while (sz--)
		*out_values++ = *val++;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u8_array);

/**
 * of_property_read_u16_array - Find and read an array of u16 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1135
 * @out_values:	pointer to return value, modified only if return value is 0.
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 16-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1146
 * The out_values is modified only if a valid u16 value can be decoded.
1147 1148 1149 1150
 */
int of_property_read_u16_array(const struct device_node *np,
			const char *propname, u16 *out_values, size_t sz)
{
1151 1152
	const __be16 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1153

1154 1155
	if (IS_ERR(val))
		return PTR_ERR(val);
1156 1157 1158 1159 1160 1161 1162

	while (sz--)
		*out_values++ = be16_to_cpup(val++);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u16_array);

1163
/**
1164 1165 1166
 * of_property_read_u32_array - Find and read an array of 32 bit integers
 * from a property.
 *
1167 1168
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1169
 * @out_values:	pointer to return value, modified only if return value is 0.
1170
 * @sz:		number of array elements to read
1171
 *
1172
 * Search for a property in a device node and read 32-bit value(s) from
1173 1174 1175 1176
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
L
Lad, Prabhakar 已提交
1177
 * The out_values is modified only if a valid u32 value can be decoded.
1178
 */
1179 1180 1181
int of_property_read_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz)
1182
{
1183 1184
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1185

1186 1187
	if (IS_ERR(val))
		return PTR_ERR(val);
1188 1189 1190

	while (sz--)
		*out_values++ = be32_to_cpup(val++);
1191 1192
	return 0;
}
1193
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1211 1212
	const __be32 *val = of_find_property_value_of_size(np, propname,
						sizeof(*out_value));
1213

1214 1215 1216 1217
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1218 1219 1220 1221
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1237
int of_property_read_string(struct device_node *np, const char *propname,
1238
				const char **out_string)
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
{
	struct property *prop = of_find_property(np, propname, NULL);
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * of_property_read_string_index - Find and read a string from a multiple
 * strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the string in the list of strings
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy) in the list of strings
 * contained in that property.
 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
 * property does not have a value, and -EILSEQ if the string is not
 * null-terminated within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
int of_property_read_string_index(struct device_node *np, const char *propname,
				  int index, const char **output)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

	for (i = 0; total < prop->length; total += l, p += l) {
		l = strlen(p) + 1;
1289
		if (i++ == index) {
1290 1291 1292 1293 1294 1295 1296 1297
			*output = p;
			return 0;
		}
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_read_string_index);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
int of_property_match_string(struct device_node *np, const char *propname,
			     const char *string)
{
	struct property *prop = of_find_property(np, propname, NULL);
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
		l = strlen(p) + 1;
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362

/**
 * of_property_count_strings - Find and return the number of strings from a
 * multiple strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 *
 * Search for a property in a device tree node and retrieve the number of null
 * terminated string contain in it. Returns the number of strings on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 */
int of_property_count_strings(struct device_node *np, const char *propname)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

1363
	for (i = 0; total < prop->length; total += l, p += l, i++)
1364
		l = strlen(p) + 1;
1365

1366 1367 1368 1369
	return i;
}
EXPORT_SYMBOL_GPL(of_property_count_strings);

1370 1371 1372 1373 1374 1375 1376 1377 1378
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
	for (i = 0; i < args->args_count; i++)
		printk(i ? ",%08x" : ":%08x", args->args[i]);
	printk("\n");
}

1379 1380
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1381 1382
					const char *cells_name,
					int cell_count, int index,
1383
					struct of_phandle_args *out_args)
1384
{
1385
	const __be32 *list, *list_end;
1386
	int rc = 0, size, cur_index = 0;
1387
	uint32_t count = 0;
1388
	struct device_node *node = NULL;
1389
	phandle phandle;
1390

1391
	/* Retrieve the phandle list property */
1392
	list = of_get_property(np, list_name, &size);
1393
	if (!list)
1394
		return -ENOENT;
1395 1396
	list_end = list + size / sizeof(*list);

1397
	/* Loop over the phandles until all the requested entry is found */
1398
	while (list < list_end) {
1399
		rc = -EINVAL;
1400
		count = 0;
1401

1402 1403 1404 1405
		/*
		 * If phandle is 0, then it is an empty entry with no
		 * arguments.  Skip forward to the next entry.
		 */
G
Grant Likely 已提交
1406
		phandle = be32_to_cpup(list++);
1407 1408 1409
		if (phandle) {
			/*
			 * Find the provider node and parse the #*-cells
1410 1411 1412 1413 1414 1415
			 * property to determine the argument length.
			 *
			 * This is not needed if the cell count is hard-coded
			 * (i.e. cells_name not set, but cell_count is set),
			 * except when we're going to return the found node
			 * below.
1416
			 */
1417 1418 1419 1420 1421 1422 1423
			if (cells_name || cur_index == index) {
				node = of_find_node_by_phandle(phandle);
				if (!node) {
					pr_err("%s: could not find phandle\n",
						np->full_name);
					goto err;
				}
1424
			}
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

			if (cells_name) {
				if (of_property_read_u32(node, cells_name,
							 &count)) {
					pr_err("%s: could not get %s for %s\n",
						np->full_name, cells_name,
						node->full_name);
					goto err;
				}
			} else {
				count = cell_count;
1436
			}
1437

1438 1439 1440 1441 1442 1443 1444
			/*
			 * Make sure that the arguments actually fit in the
			 * remaining property data length
			 */
			if (list + count > list_end) {
				pr_err("%s: arguments longer than property\n",
					 np->full_name);
1445
				goto err;
1446
			}
1447 1448
		}

1449 1450 1451 1452 1453 1454
		/*
		 * All of the error cases above bail out of the loop, so at
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1455
		rc = -ENOENT;
1456 1457
		if (cur_index == index) {
			if (!phandle)
1458
				goto err;
1459 1460 1461 1462 1463 1464 1465 1466 1467

			if (out_args) {
				int i;
				if (WARN_ON(count > MAX_PHANDLE_ARGS))
					count = MAX_PHANDLE_ARGS;
				out_args->np = node;
				out_args->args_count = count;
				for (i = 0; i < count; i++)
					out_args->args[i] = be32_to_cpup(list++);
1468 1469
			} else {
				of_node_put(node);
1470
			}
1471 1472

			/* Found it! return success */
1473
			return 0;
1474 1475 1476 1477
		}

		of_node_put(node);
		node = NULL;
1478
		list += count;
1479 1480 1481
		cur_index++;
	}

1482 1483 1484 1485
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
1486
	 * [1..n]  : Number of phandle (count mode; when index = -1)
1487
	 */
1488
	rc = index < 0 ? cur_index : -ENOENT;
1489
 err:
1490 1491
	if (node)
		of_node_put(node);
1492
	return rc;
1493
}
1494

S
Stephen Warren 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1508 1509 1510 1511
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1512

1513 1514
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1515 1516
		return NULL;

1517
	return args.np;
S
Stephen Warren 已提交
1518 1519 1520
}
EXPORT_SYMBOL(of_parse_phandle);

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * 	#list-cells = <2>;
 * }
 *
 * phandle2: node2 {
 * 	#list-cells = <1>;
 * }
 *
 * node3 {
 * 	list = <&phandle1 1 2 &phandle2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1553 1554 1555 1556 1557 1558
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1559 1560
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1561
}
1562
EXPORT_SYMBOL(of_parse_phandle_with_args);
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
 * 	list = <&phandle1 0 2 &phandle2 2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1623 1624
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
					    NULL);
1625 1626 1627
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
#if defined(CONFIG_OF_DYNAMIC)
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	struct of_prop_reconfig pr;

	pr.dn = np;
	pr.prop = prop;
	return of_reconfig_notify(action, &pr);
}
#else
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	return 0;
}
#endif

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/**
 * __of_add_property - Add a property to a node without lock operations
 */
static int __of_add_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1667
/**
1668
 * of_add_property - Add a property to a node
1669
 */
1670
int of_add_property(struct device_node *np, struct property *prop)
1671 1672
{
	unsigned long flags;
1673 1674 1675 1676 1677
	int rc;

	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
	if (rc)
		return rc;
1678

1679
	raw_spin_lock_irqsave(&devtree_lock, flags);
1680
	rc = __of_add_property(np, prop);
1681
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1682 1683 1684 1685 1686 1687 1688 1689
	if (rc)
		return rc;

	/* at early boot, bail hear and defer setup to of_init() */
	if (!of_kset)
		return 0;

	__of_add_property_sysfs(np, prop);
1690

1691
	return rc;
1692 1693 1694
}

/**
1695
 * of_remove_property - Remove a property from a node.
1696 1697 1698 1699 1700 1701
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1702
int of_remove_property(struct device_node *np, struct property *prop)
1703 1704 1705 1706
{
	struct property **next;
	unsigned long flags;
	int found = 0;
1707 1708 1709 1710 1711
	int rc;

	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
	if (rc)
		return rc;
1712

1713
	raw_spin_lock_irqsave(&devtree_lock, flags);
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	next = &np->properties;
	while (*next) {
		if (*next == prop) {
			/* found the node */
			*next = prop->next;
			prop->next = np->deadprops;
			np->deadprops = prop;
			found = 1;
			break;
		}
		next = &(*next)->next;
	}
1726
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1727 1728 1729 1730

	if (!found)
		return -ENODEV;

1731 1732 1733 1734 1735 1736
	/* at early boot, bail hear and defer setup to of_init() */
	if (!of_kset)
		return 0;

	sysfs_remove_bin_file(&np->kobj, &prop->attr);

1737 1738 1739 1740
	return 0;
}

/*
1741
 * of_update_property - Update a property in a node, if the property does
1742
 * not exist, add it.
1743 1744 1745 1746 1747 1748
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
 */
1749
int of_update_property(struct device_node *np, struct property *newprop)
1750
{
1751
	struct property **next, *oldprop;
1752
	unsigned long flags;
1753
	int rc, found = 0;
1754 1755 1756 1757

	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
	if (rc)
		return rc;
1758

1759 1760 1761
	if (!newprop->name)
		return -EINVAL;

1762 1763 1764 1765
	oldprop = of_find_property(np, newprop->name, NULL);
	if (!oldprop)
		return of_add_property(np, newprop);

1766
	raw_spin_lock_irqsave(&devtree_lock, flags);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	next = &np->properties;
	while (*next) {
		if (*next == oldprop) {
			/* found the node */
			newprop->next = oldprop->next;
			*next = newprop;
			oldprop->next = np->deadprops;
			np->deadprops = oldprop;
			found = 1;
			break;
		}
		next = &(*next)->next;
1779
	}
1780
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1781 1782 1783 1784 1785 1786 1787
	if (rc)
		return rc;

	/* Update the sysfs attribute */
	if (oldprop)
		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
	__of_add_property_sysfs(np, newprop);
1788

1789 1790 1791 1792
	if (!found)
		return -ENODEV;

	return 0;
1793
}
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

#if defined(CONFIG_OF_DYNAMIC)
/*
 * Support for dynamic device trees.
 *
 * On some platforms, the device tree can be manipulated at runtime.
 * The routines in this section support adding, removing and changing
 * device tree nodes.
 */

1804 1805 1806 1807 1808 1809
static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);

int of_reconfig_notifier_register(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
}
1810
EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1811 1812 1813 1814 1815

int of_reconfig_notifier_unregister(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
}
1816
EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1817 1818 1819 1820 1821 1822 1823 1824 1825

int of_reconfig_notify(unsigned long action, void *p)
{
	int rc;

	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
	return notifier_to_errno(rc);
}

1826 1827 1828
/**
 * of_attach_node - Plug a device node into the tree and global list.
 */
1829
int of_attach_node(struct device_node *np)
1830 1831
{
	unsigned long flags;
1832 1833 1834 1835 1836
	int rc;

	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
	if (rc)
		return rc;
1837

1838
	raw_spin_lock_irqsave(&devtree_lock, flags);
1839
	np->sibling = np->parent->child;
1840
	np->allnext = of_allnodes;
1841
	np->parent->child = np;
1842
	of_allnodes = np;
1843
	of_node_clear_flag(np, OF_DETACHED);
1844
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1845

1846
	of_node_add(np);
1847
	return 0;
1848 1849 1850 1851 1852 1853 1854 1855
}

/**
 * of_detach_node - "Unplug" a node from the device tree.
 *
 * The caller must hold a reference to the node.  The memory associated with
 * the node is not freed until its refcount goes to zero.
 */
1856
int of_detach_node(struct device_node *np)
1857 1858 1859
{
	struct device_node *parent;
	unsigned long flags;
1860 1861 1862 1863 1864
	int rc = 0;

	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
	if (rc)
		return rc;
1865

1866
	raw_spin_lock_irqsave(&devtree_lock, flags);
1867

1868 1869
	if (of_node_check_flag(np, OF_DETACHED)) {
		/* someone already detached it */
1870
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1871
		return rc;
1872 1873
	}

1874
	parent = np->parent;
1875
	if (!parent) {
1876
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1877
		return rc;
1878
	}
1879

1880 1881
	if (of_allnodes == np)
		of_allnodes = np->allnext;
1882 1883
	else {
		struct device_node *prev;
1884
		for (prev = of_allnodes;
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		     prev->allnext != np;
		     prev = prev->allnext)
			;
		prev->allnext = np->allnext;
	}

	if (parent->child == np)
		parent->child = np->sibling;
	else {
		struct device_node *prevsib;
		for (prevsib = np->parent->child;
		     prevsib->sibling != np;
		     prevsib = prevsib->sibling)
			;
		prevsib->sibling = np->sibling;
	}

	of_node_set_flag(np, OF_DETACHED);
1903
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1904

1905
	of_node_remove(np);
1906
	return rc;
1907 1908 1909
}
#endif /* defined(CONFIG_OF_DYNAMIC) */

1910 1911 1912 1913 1914 1915 1916 1917 1918
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1919
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
}

/**
 * of_alias_scan - Scan all properties of 'aliases' node
 *
 * The function scans all the properties of 'aliases' node and populate
 * the the global lookup table with the properties.  It returns the
 * number of alias_prop found, or error code in error case.
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for the resulting tree
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
1939 1940 1941 1942 1943 1944 1945 1946 1947

	if (of_chosen) {
		const char *name;

		name = of_get_property(of_chosen, "linux,stdout-path", NULL);
		if (name)
			of_stdout = of_find_node_by_path(name);
	}

1948 1949 1950 1951
	of_aliases = of_find_node_by_path("/aliases");
	if (!of_aliases)
		return;

1952
	for_each_property_of_node(of_aliases, pp) {
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
		if (!ap)
			continue;
1982
		memset(ap, 0, sizeof(*ap) + len + 1);
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
 * The function travels the lookup table to get alias id for the given
 * device_node and alias stem.  It returns the alias id if find it.
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_aliases_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
	mutex_unlock(&of_aliases_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

/**
 * of_device_is_stdout_path - check if a device node matches the
 *                            linux,stdout-path property
 *
 * Check if this device node matches the linux,stdout-path property
 * in the chosen node. return true if yes, false otherwise.
 */
int of_device_is_stdout_path(struct device_node *dn)
{
	if (!of_stdout)
		return false;

	return of_stdout == dn;
}
EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
	struct device_node *child;
	const phandle *handle;

	handle = of_get_property(np, "l2-cache", NULL);
	if (!handle)
		handle = of_get_property(np, "next-level-cache", NULL);

	if (handle)
		return of_find_node_by_phandle(be32_to_cpup(handle));

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}