base.c 63.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20
#include <linux/console.h>
21
#include <linux/ctype.h>
22
#include <linux/cpu.h>
23 24
#include <linux/module.h>
#include <linux/of.h>
25
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
26
#include <linux/spinlock.h>
27
#include <linux/slab.h>
28
#include <linux/string.h>
J
Jeremy Kerr 已提交
29
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
30

31
#include "of_private.h"
32

33
LIST_HEAD(aliases_lookup);
34

35 36
struct device_node *of_allnodes;
EXPORT_SYMBOL(of_allnodes);
37
struct device_node *of_chosen;
38
struct device_node *of_aliases;
39
static struct device_node *of_stdout;
40

41 42 43 44 45 46
static struct kset *of_kset;

/*
 * Used to protect the of_aliases; but also overloaded to hold off addition of
 * nodes to sysfs
 */
47
DEFINE_MUTEX(of_aliases_mutex);
48

S
Stephen Rothwell 已提交
49 50 51
/* use when traversing tree through the allnext, child, sibling,
 * or parent members of struct device_node.
 */
52
DEFINE_RAW_SPINLOCK(devtree_lock);
53 54 55

int of_n_addr_cells(struct device_node *np)
{
56
	const __be32 *ip;
57 58 59 60 61 62

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
63
			return be32_to_cpup(ip);
64 65 66 67 68 69 70 71
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
72
	const __be32 *ip;
73 74 75 76 77 78

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
79
			return be32_to_cpup(ip);
80 81 82 83 84 85
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

86 87 88 89 90 91 92
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
	return numa_node_id();
}
#endif

93
#if defined(CONFIG_OF_DYNAMIC)
94 95 96 97 98 99 100 101 102 103
/**
 *	of_node_get - Increment refcount of a node
 *	@node:	Node to inc refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Returns node.
 */
struct device_node *of_node_get(struct device_node *node)
{
	if (node)
104
		kobject_get(&node->kobj);
105 106 107 108
	return node;
}
EXPORT_SYMBOL(of_node_get);

109
static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
110
{
111
	return container_of(kobj, struct device_node, kobj);
112 113 114 115 116 117 118 119 120
}

/**
 *	of_node_release - release a dynamically allocated node
 *	@kref:  kref element of the node to be released
 *
 *	In of_node_put() this function is passed to kref_put()
 *	as the destructor.
 */
121
static void of_node_release(struct kobject *kobj)
122
{
123
	struct device_node *node = kobj_to_device_node(kobj);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	struct property *prop = node->properties;

	/* We should never be releasing nodes that haven't been detached. */
	if (!of_node_check_flag(node, OF_DETACHED)) {
		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
		dump_stack();
		return;
	}

	if (!of_node_check_flag(node, OF_DYNAMIC))
		return;

	while (prop) {
		struct property *next = prop->next;
		kfree(prop->name);
		kfree(prop->value);
		kfree(prop);
		prop = next;

		if (!prop) {
			prop = node->deadprops;
			node->deadprops = NULL;
		}
	}
	kfree(node->full_name);
	kfree(node->data);
	kfree(node);
}

/**
 *	of_node_put - Decrement refcount of a node
 *	@node:	Node to dec refcount, NULL is supported to
 *		simplify writing of callers
 *
 */
void of_node_put(struct device_node *node)
{
	if (node)
162
		kobject_put(&node->kobj);
163 164
}
EXPORT_SYMBOL(of_node_put);
165 166 167 168 169
#else
static void of_node_release(struct kobject *kobj)
{
	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
}
170
#endif /* CONFIG_OF_DYNAMIC */
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
struct kobj_type of_node_ktype = {
	.release = of_node_release,
};

static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
				struct bin_attribute *bin_attr, char *buf,
				loff_t offset, size_t count)
{
	struct property *pp = container_of(bin_attr, struct property, attr);
	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
}

static const char *safe_name(struct kobject *kobj, const char *orig_name)
{
	const char *name = orig_name;
	struct kernfs_node *kn;
	int i = 0;

	/* don't be a hero. After 16 tries give up */
	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
		sysfs_put(kn);
		if (name != orig_name)
			kfree(name);
		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
	}

	if (name != orig_name)
		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
			kobject_name(kobj), name);
	return name;
}

static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
{
	int rc;

	/* Important: Don't leak passwords */
	bool secure = strncmp(pp->name, "security-", 9) == 0;

	sysfs_bin_attr_init(&pp->attr);
	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
	pp->attr.size = secure ? 0 : pp->length;
	pp->attr.read = of_node_property_read;

	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
	return rc;
}

static int __of_node_add(struct device_node *np)
{
	const char *name;
	struct property *pp;
	int rc;

	np->kobj.kset = of_kset;
	if (!np->parent) {
		/* Nodes without parents are new top level trees */
231 232
		rc = kobject_add(&np->kobj, NULL, "%s",
				 safe_name(&of_kset->kobj, "base"));
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	} else {
		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
		if (!name || !name[0])
			return -EINVAL;

		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
	}
	if (rc)
		return rc;

	for_each_property_of_node(np, pp)
		__of_add_property_sysfs(np, pp);

	return 0;
}

int of_node_add(struct device_node *np)
{
	int rc = 0;
252 253 254 255 256 257 258

	BUG_ON(!of_node_is_initialized(np));

	/*
	 * Grab the mutex here so that in a race condition between of_init() and
	 * of_node_add(), node addition will still be consistent.
	 */
259 260 261
	mutex_lock(&of_aliases_mutex);
	if (of_kset)
		rc = __of_node_add(np);
262 263 264
	else
		/* This scenario may be perfectly valid, but report it anyway */
		pr_info("of_node_add(%s) before of_init()\n", np->full_name);
265 266 267 268 269 270 271 272 273
	mutex_unlock(&of_aliases_mutex);
	return rc;
}

#if defined(CONFIG_OF_DYNAMIC)
static void of_node_remove(struct device_node *np)
{
	struct property *pp;

274
	BUG_ON(!of_node_is_initialized(np));
275

276 277 278 279 280 281 282 283 284
	/* only remove properties if on sysfs */
	if (of_node_is_attached(np)) {
		for_each_property_of_node(np, pp)
			sysfs_remove_bin_file(&np->kobj, &pp->attr);
		kobject_del(&np->kobj);
	}

	/* finally remove the kobj_init ref */
	of_node_put(np);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
}
#endif

static int __init of_init(void)
{
	struct device_node *np;

	/* Create the kset, and register existing nodes */
	mutex_lock(&of_aliases_mutex);
	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
	if (!of_kset) {
		mutex_unlock(&of_aliases_mutex);
		return -ENOMEM;
	}
	for_each_of_allnodes(np)
		__of_node_add(np);
	mutex_unlock(&of_aliases_mutex);

G
Grant Likely 已提交
303
	/* Symlink in /proc as required by userspace ABI */
304 305 306 307 308 309 310
	if (of_allnodes)
		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");

	return 0;
}
core_initcall(of_init);

311 312
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
313 314 315
{
	struct property *pp;

316 317 318
	if (!np)
		return NULL;

319
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
320
		if (of_prop_cmp(pp->name, name) == 0) {
321
			if (lenp)
S
Stephen Rothwell 已提交
322 323 324 325
				*lenp = pp->length;
			break;
		}
	}
326 327 328 329 330 331 332 333 334

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
335
	unsigned long flags;
336

337
	raw_spin_lock_irqsave(&devtree_lock, flags);
338
	pp = __of_find_property(np, name, lenp);
339
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
340 341 342 343 344

	return pp;
}
EXPORT_SYMBOL(of_find_property);

345 346 347 348 349 350 351 352 353 354 355
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
356
	unsigned long flags;
357

358
	raw_spin_lock_irqsave(&devtree_lock, flags);
359
	np = prev ? prev->allnext : of_allnodes;
360 361 362 363
	for (; np != NULL; np = np->allnext)
		if (of_node_get(np))
			break;
	of_node_put(prev);
364
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
365 366 367 368
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

369 370 371 372 373 374 375 376 377 378 379 380
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
static const void *__of_get_property(const struct device_node *np,
				     const char *name, int *lenp)
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

381 382 383 384 385
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
386
			    int *lenp)
387 388 389 390 391 392
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
427
	if (!cell || !ac)
428
		return false;
429
	prop_len /= sizeof(*cell) * ac;
430 431 432 433 434 435 436 437 438 439 440 441
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
		return true;

	return false;
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
 * Returns a node pointer for the logical cpu if found, else NULL.
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
487
	struct device_node *cpun;
488

489 490
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
491 492 493 494 495 496
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
526
 */
527
static int __of_device_is_compatible(const struct device_node *device,
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
547

548 549 550 551 552
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
553 554
	}

555 556 557 558 559 560 561 562
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
563
}
564 565 566 567 568 569 570

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
571
	unsigned long flags;
572 573
	int res;

574
	raw_spin_lock_irqsave(&devtree_lock, flags);
575
	res = __of_device_is_compatible(device, compat, NULL, NULL);
576
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
577 578
	return res;
}
579
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
580

G
Grant Likely 已提交
581
/**
582
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
583 584 585 586 587
 * @compat: compatible string to look for in root node's compatible property.
 *
 * Returns true if the root node has the given value in its
 * compatible property.
 */
588
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
589 590 591 592 593 594 595 596 597 598 599
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
600
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
601

602
/**
603
 *  __of_device_is_available - check if a device is available for use
604
 *
605
 *  @device: Node to check for availability, with locks already held
606 607 608 609
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
610
static int __of_device_is_available(const struct device_node *device)
611 612 613 614
{
	const char *status;
	int statlen;

615 616 617
	if (!device)
		return 0;

618
	status = __of_get_property(device, "status", &statlen);
619 620 621 622 623 624 625 626 627 628
	if (status == NULL)
		return 1;

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
			return 1;
	}

	return 0;
}
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
int of_device_is_available(const struct device_node *device)
{
	unsigned long flags;
	int res;

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
649 650
EXPORT_SYMBOL(of_device_is_available);

S
Stephen Rothwell 已提交
651 652 653 654 655 656 657 658 659 660
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
661
	unsigned long flags;
S
Stephen Rothwell 已提交
662 663 664 665

	if (!node)
		return NULL;

666
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
667
	np = of_node_get(node->parent);
668
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
669 670 671
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
 * 	This is like of_get_parent() except that it drops the
 * 	refcount on the passed node, making it suitable for iterating
 * 	through a node's parents.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
687
	unsigned long flags;
688 689 690 691

	if (!node)
		return NULL;

692
	raw_spin_lock_irqsave(&devtree_lock, flags);
693 694
	parent = of_node_get(node->parent);
	of_node_put(node);
695
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
696 697
	return parent;
}
698
EXPORT_SYMBOL(of_get_next_parent);
699

700 701 702 703 704
static struct device_node *__of_get_next_child(const struct device_node *node,
						struct device_node *prev)
{
	struct device_node *next;

705 706 707
	if (!node)
		return NULL;

708 709 710 711 712 713 714 715 716 717 718
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
	return next;
}
#define __for_each_child_of_node(parent, child) \
	for (child = __of_get_next_child(parent, NULL); child != NULL; \
	     child = __of_get_next_child(parent, child))

S
Stephen Rothwell 已提交
719 720 721 722 723 724 725 726 727 728 729 730
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
731
	unsigned long flags;
S
Stephen Rothwell 已提交
732

733
	raw_spin_lock_irqsave(&devtree_lock, flags);
734
	next = __of_get_next_child(node, prev);
735
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
736 737 738
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
739

740 741 742 743 744 745 746 747 748 749 750 751
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
752
	unsigned long flags;
753

754 755 756
	if (!node)
		return NULL;

757
	raw_spin_lock_irqsave(&devtree_lock, flags);
758 759
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
760
		if (!__of_device_is_available(next))
761 762 763 764 765
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
766
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
767 768 769 770
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
static struct device_node *__of_find_node_by_path(struct device_node *parent,
						const char *path)
{
	struct device_node *child;
	int len = strchrnul(path, '/') - path;

	if (!len)
		return NULL;

	__for_each_child_of_node(parent, child) {
		const char *name = strrchr(child->full_name, '/');
		if (WARN(!name, "malformed device_node %s\n", child->full_name))
			continue;
		name++;
		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
			return child;
	}
	return NULL;
}

814 815
/**
 *	of_find_node_by_path - Find a node matching a full OF path
816 817 818 819 820 821 822 823 824
 *	@path: Either the full path to match, or if the path does not
 *	       start with '/', the name of a property of the /aliases
 *	       node (an alias).  In the case of an alias, the node
 *	       matching the alias' value will be returned.
 *
 *	Valid paths:
 *		/foo/bar	Full path
 *		foo		Valid alias
 *		foo/bar		Valid alias + relative path
825 826 827 828 829 830
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
831 832
	struct device_node *np = NULL;
	struct property *pp;
833
	unsigned long flags;
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	if (strcmp(path, "/") == 0)
		return of_node_get(of_allnodes);

	/* The path could begin with an alias */
	if (*path != '/') {
		char *p = strchrnul(path, '/');
		int len = p - path;

		/* of_aliases must not be NULL */
		if (!of_aliases)
			return NULL;

		for_each_property_of_node(of_aliases, pp) {
			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
				np = of_find_node_by_path(pp->value);
				break;
			}
		}
		if (!np)
			return NULL;
		path = p;
	}

	/* Step down the tree matching path components */
859
	raw_spin_lock_irqsave(&devtree_lock, flags);
860 861 862 863 864 865
	if (!np)
		np = of_node_get(of_allnodes);
	while (np && *path == '/') {
		path++; /* Increment past '/' delimiter */
		np = __of_find_node_by_path(np, path);
		path = strchrnul(path, '/');
866
	}
867
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	return np;
}
EXPORT_SYMBOL(of_find_node_by_path);

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
887
	unsigned long flags;
888

889
	raw_spin_lock_irqsave(&devtree_lock, flags);
890
	np = from ? from->allnext : of_allnodes;
891 892 893 894 895
	for (; np; np = np->allnext)
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
896
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
917
	unsigned long flags;
918

919
	raw_spin_lock_irqsave(&devtree_lock, flags);
920
	np = from ? from->allnext : of_allnodes;
921 922 923 924 925
	for (; np; np = np->allnext)
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
926
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
949
	unsigned long flags;
950

951
	raw_spin_lock_irqsave(&devtree_lock, flags);
952
	np = from ? from->allnext : of_allnodes;
953
	for (; np; np = np->allnext) {
954
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
955
		    of_node_get(np))
956 957 958
			break;
	}
	of_node_put(from);
959
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
960 961 962
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
981
	unsigned long flags;
982

983
	raw_spin_lock_irqsave(&devtree_lock, flags);
984
	np = from ? from->allnext : of_allnodes;
985
	for (; np; np = np->allnext) {
986
		for (pp = np->properties; pp; pp = pp->next) {
987 988 989 990 991 992 993 994
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
995
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
996 997 998 999
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

1000 1001 1002
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
1003
{
1004 1005 1006
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

1007 1008 1009
	if (!matches)
		return NULL;

1010 1011 1012 1013 1014 1015 1016
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
1017
	}
1018 1019

	return best_match;
1020
}
1021 1022 1023 1024 1025 1026

/**
 * of_match_node - Tell if an device_node has a matching of_match structure
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
1027
 *	Low level utility function used by device matching.
1028 1029 1030 1031 1032
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
1033
	unsigned long flags;
1034

1035
	raw_spin_lock_irqsave(&devtree_lock, flags);
1036
	match = __of_match_node(matches, node);
1037
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1038 1039
	return match;
}
1040 1041 1042
EXPORT_SYMBOL(of_match_node);

/**
1043 1044
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
1045 1046 1047 1048 1049
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
1050
 *	@match		Updated to point at the matches entry which matched
1051 1052 1053 1054
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
1055 1056 1057
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
1058 1059
{
	struct device_node *np;
1060
	const struct of_device_id *m;
1061
	unsigned long flags;
1062

1063 1064 1065
	if (match)
		*match = NULL;

1066
	raw_spin_lock_irqsave(&devtree_lock, flags);
1067
	np = from ? from->allnext : of_allnodes;
1068
	for (; np; np = np->allnext) {
1069
		m = __of_match_node(matches, np);
1070
		if (m && of_node_get(np)) {
1071
			if (match)
1072
				*match = m;
1073
			break;
1074
		}
1075 1076
	}
	of_node_put(from);
1077
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1078 1079
	return np;
}
1080
EXPORT_SYMBOL(of_find_matching_node_and_match);
1081 1082 1083 1084 1085 1086 1087

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
1088 1089 1090 1091
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
1092
 *
1093
 * This routine returns 0 on success, <0 on failure.
1094 1095 1096
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
1097 1098
	const char *compatible, *p;
	int cplen;
1099 1100

	compatible = of_get_property(node, "compatible", &cplen);
1101
	if (!compatible || strlen(compatible) > cplen)
1102 1103
		return -ENODEV;
	p = strchr(compatible, ',');
1104
	strlcpy(modalias, p ? p + 1 : compatible, len);
1105 1106 1107 1108
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
1119
	unsigned long flags;
J
Jeremy Kerr 已提交
1120

1121
	raw_spin_lock_irqsave(&devtree_lock, flags);
1122
	for (np = of_allnodes; np; np = np->allnext)
J
Jeremy Kerr 已提交
1123 1124 1125
		if (np->phandle == handle)
			break;
	of_node_get(np);
1126
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
1127 1128 1129 1130
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/**
 * of_property_count_elems_of_size - Count the number of elements in a property
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @elem_size:	size of the individual element
 *
 * Search for a property in a device node and count the number of elements of
 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
 * property does not exist or its length does not match a multiple of elem_size
 * and -ENODATA if the property does not have a value.
 */
int of_property_count_elems_of_size(const struct device_node *np,
				const char *propname, int elem_size)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	if (prop->length % elem_size != 0) {
		pr_err("size of %s in node %s is not a multiple of %d\n",
		       propname, np->full_name, elem_size);
		return -EINVAL;
	}

	return prop->length / elem_size;
}
EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @len:	requested length of property value
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
			const char *propname, u32 len)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
	if (len > prop->length)
		return ERR_PTR(-EOVERFLOW);

	return prop->value;
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
1210 1211
	const u32 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)));
1212

1213 1214
	if (IS_ERR(val))
		return PTR_ERR(val);
1215

1216
	*out_value = be32_to_cpup(((__be32 *)val) + index);
1217 1218 1219 1220
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

1221 1222 1223 1224 1225
/**
 * of_property_read_u8_array - Find and read an array of u8 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1226
 * @out_values:	pointer to return value, modified only if return value is 0.
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 8-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
1237
 * The out_values is modified only if a valid u8 value can be decoded.
1238 1239 1240 1241
 */
int of_property_read_u8_array(const struct device_node *np,
			const char *propname, u8 *out_values, size_t sz)
{
1242 1243
	const u8 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1244

1245 1246
	if (IS_ERR(val))
		return PTR_ERR(val);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	while (sz--)
		*out_values++ = *val++;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u8_array);

/**
 * of_property_read_u16_array - Find and read an array of u16 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1259
 * @out_values:	pointer to return value, modified only if return value is 0.
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 16-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1270
 * The out_values is modified only if a valid u16 value can be decoded.
1271 1272 1273 1274
 */
int of_property_read_u16_array(const struct device_node *np,
			const char *propname, u16 *out_values, size_t sz)
{
1275 1276
	const __be16 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1277

1278 1279
	if (IS_ERR(val))
		return PTR_ERR(val);
1280 1281 1282 1283 1284 1285 1286

	while (sz--)
		*out_values++ = be16_to_cpup(val++);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u16_array);

1287
/**
1288 1289 1290
 * of_property_read_u32_array - Find and read an array of 32 bit integers
 * from a property.
 *
1291 1292
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1293
 * @out_values:	pointer to return value, modified only if return value is 0.
1294
 * @sz:		number of array elements to read
1295
 *
1296
 * Search for a property in a device node and read 32-bit value(s) from
1297 1298 1299 1300
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
L
Lad, Prabhakar 已提交
1301
 * The out_values is modified only if a valid u32 value can be decoded.
1302
 */
1303 1304 1305
int of_property_read_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz)
1306
{
1307 1308
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1309

1310 1311
	if (IS_ERR(val))
		return PTR_ERR(val);
1312 1313 1314

	while (sz--)
		*out_values++ = be32_to_cpup(val++);
1315 1316
	return 0;
}
1317
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1335 1336
	const __be32 *val = of_find_property_value_of_size(np, propname,
						sizeof(*out_value));
1337

1338 1339 1340 1341
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1342 1343 1344 1345
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1361
int of_property_read_string(struct device_node *np, const char *propname,
1362
				const char **out_string)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
{
	struct property *prop = of_find_property(np, propname, NULL);
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/**
 * of_property_read_string_index - Find and read a string from a multiple
 * strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the string in the list of strings
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy) in the list of strings
 * contained in that property.
 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
 * property does not have a value, and -EILSEQ if the string is not
 * null-terminated within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
int of_property_read_string_index(struct device_node *np, const char *propname,
				  int index, const char **output)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

	for (i = 0; total < prop->length; total += l, p += l) {
		l = strlen(p) + 1;
1413
		if (i++ == index) {
1414 1415 1416 1417 1418 1419 1420 1421
			*output = p;
			return 0;
		}
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_read_string_index);

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
int of_property_match_string(struct device_node *np, const char *propname,
			     const char *string)
{
	struct property *prop = of_find_property(np, propname, NULL);
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
		l = strlen(p) + 1;
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

/**
 * of_property_count_strings - Find and return the number of strings from a
 * multiple strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 *
 * Search for a property in a device tree node and retrieve the number of null
 * terminated string contain in it. Returns the number of strings on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 */
int of_property_count_strings(struct device_node *np, const char *propname)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

1487
	for (i = 0; total < prop->length; total += l, p += l, i++)
1488
		l = strlen(p) + 1;
1489

1490 1491 1492 1493
	return i;
}
EXPORT_SYMBOL_GPL(of_property_count_strings);

1494 1495 1496 1497 1498 1499 1500 1501 1502
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
	for (i = 0; i < args->args_count; i++)
		printk(i ? ",%08x" : ":%08x", args->args[i]);
	printk("\n");
}

1503 1504
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1505 1506
					const char *cells_name,
					int cell_count, int index,
1507
					struct of_phandle_args *out_args)
1508
{
1509
	const __be32 *list, *list_end;
1510
	int rc = 0, size, cur_index = 0;
1511
	uint32_t count = 0;
1512
	struct device_node *node = NULL;
1513
	phandle phandle;
1514

1515
	/* Retrieve the phandle list property */
1516
	list = of_get_property(np, list_name, &size);
1517
	if (!list)
1518
		return -ENOENT;
1519 1520
	list_end = list + size / sizeof(*list);

1521
	/* Loop over the phandles until all the requested entry is found */
1522
	while (list < list_end) {
1523
		rc = -EINVAL;
1524
		count = 0;
1525

1526 1527 1528 1529
		/*
		 * If phandle is 0, then it is an empty entry with no
		 * arguments.  Skip forward to the next entry.
		 */
G
Grant Likely 已提交
1530
		phandle = be32_to_cpup(list++);
1531 1532 1533
		if (phandle) {
			/*
			 * Find the provider node and parse the #*-cells
1534 1535 1536 1537 1538 1539
			 * property to determine the argument length.
			 *
			 * This is not needed if the cell count is hard-coded
			 * (i.e. cells_name not set, but cell_count is set),
			 * except when we're going to return the found node
			 * below.
1540
			 */
1541 1542 1543 1544 1545 1546 1547
			if (cells_name || cur_index == index) {
				node = of_find_node_by_phandle(phandle);
				if (!node) {
					pr_err("%s: could not find phandle\n",
						np->full_name);
					goto err;
				}
1548
			}
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

			if (cells_name) {
				if (of_property_read_u32(node, cells_name,
							 &count)) {
					pr_err("%s: could not get %s for %s\n",
						np->full_name, cells_name,
						node->full_name);
					goto err;
				}
			} else {
				count = cell_count;
1560
			}
1561

1562 1563 1564 1565 1566 1567 1568
			/*
			 * Make sure that the arguments actually fit in the
			 * remaining property data length
			 */
			if (list + count > list_end) {
				pr_err("%s: arguments longer than property\n",
					 np->full_name);
1569
				goto err;
1570
			}
1571 1572
		}

1573 1574 1575 1576 1577 1578
		/*
		 * All of the error cases above bail out of the loop, so at
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1579
		rc = -ENOENT;
1580 1581
		if (cur_index == index) {
			if (!phandle)
1582
				goto err;
1583 1584 1585 1586 1587 1588 1589 1590 1591

			if (out_args) {
				int i;
				if (WARN_ON(count > MAX_PHANDLE_ARGS))
					count = MAX_PHANDLE_ARGS;
				out_args->np = node;
				out_args->args_count = count;
				for (i = 0; i < count; i++)
					out_args->args[i] = be32_to_cpup(list++);
1592 1593
			} else {
				of_node_put(node);
1594
			}
1595 1596

			/* Found it! return success */
1597
			return 0;
1598 1599 1600 1601
		}

		of_node_put(node);
		node = NULL;
1602
		list += count;
1603 1604 1605
		cur_index++;
	}

1606 1607 1608 1609
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
1610
	 * [1..n]  : Number of phandle (count mode; when index = -1)
1611
	 */
1612
	rc = index < 0 ? cur_index : -ENOENT;
1613
 err:
1614 1615
	if (node)
		of_node_put(node);
1616
	return rc;
1617
}
1618

S
Stephen Warren 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1632 1633 1634 1635
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1636

1637 1638
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1639 1640
		return NULL;

1641
	return args.np;
S
Stephen Warren 已提交
1642 1643 1644
}
EXPORT_SYMBOL(of_parse_phandle);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * 	#list-cells = <2>;
 * }
 *
 * phandle2: node2 {
 * 	#list-cells = <1>;
 * }
 *
 * node3 {
 * 	list = <&phandle1 1 2 &phandle2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1677 1678 1679 1680 1681 1682
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1683 1684
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1685
}
1686
EXPORT_SYMBOL(of_parse_phandle_with_args);
1687

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
 * 	list = <&phandle1 0 2 &phandle2 2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1747 1748
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
					    NULL);
1749 1750 1751
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1752 1753 1754 1755 1756 1757
#if defined(CONFIG_OF_DYNAMIC)
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	struct of_prop_reconfig pr;

1758 1759 1760 1761
	/* only call notifiers if the node is attached */
	if (!of_node_is_attached(np))
		return 0;

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	pr.dn = np;
	pr.prop = prop;
	return of_reconfig_notify(action, &pr);
}
#else
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	return 0;
}
#endif

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
/**
 * __of_add_property - Add a property to a node without lock operations
 */
static int __of_add_property(struct device_node *np, struct property *prop)
{
	struct property **next;

	prop->next = NULL;
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0)
			/* duplicate ! don't insert it */
			return -EEXIST;

		next = &(*next)->next;
	}
	*next = prop;

	return 0;
}

1795
/**
1796
 * of_add_property - Add a property to a node
1797
 */
1798
int of_add_property(struct device_node *np, struct property *prop)
1799 1800
{
	unsigned long flags;
1801 1802 1803 1804 1805
	int rc;

	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
	if (rc)
		return rc;
1806

1807
	raw_spin_lock_irqsave(&devtree_lock, flags);
1808
	rc = __of_add_property(np, prop);
1809
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1810 1811
	if (rc)
		return rc;
1812

1813 1814
	if (of_node_is_attached(np))
		__of_add_property_sysfs(np, prop);
1815

1816
	return rc;
1817 1818 1819
}

/**
1820
 * of_remove_property - Remove a property from a node.
1821 1822 1823 1824 1825 1826
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1827
int of_remove_property(struct device_node *np, struct property *prop)
1828 1829 1830 1831
{
	struct property **next;
	unsigned long flags;
	int found = 0;
1832 1833 1834 1835 1836
	int rc;

	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
	if (rc)
		return rc;
1837

1838
	raw_spin_lock_irqsave(&devtree_lock, flags);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	next = &np->properties;
	while (*next) {
		if (*next == prop) {
			/* found the node */
			*next = prop->next;
			prop->next = np->deadprops;
			np->deadprops = prop;
			found = 1;
			break;
		}
		next = &(*next)->next;
	}
1851
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1852 1853 1854 1855

	if (!found)
		return -ENODEV;

1856 1857 1858 1859 1860
	/* at early boot, bail hear and defer setup to of_init() */
	if (!of_kset)
		return 0;

	sysfs_remove_bin_file(&np->kobj, &prop->attr);
1861 1862 1863 1864 1865

	return 0;
}

/*
1866
 * of_update_property - Update a property in a node, if the property does
1867
 * not exist, add it.
1868 1869 1870 1871 1872 1873
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
 */
1874
int of_update_property(struct device_node *np, struct property *newprop)
1875
{
1876
	struct property **next, *oldprop;
1877
	unsigned long flags;
1878
	int rc;
1879 1880 1881 1882

	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
	if (rc)
		return rc;
1883

1884 1885 1886
	if (!newprop->name)
		return -EINVAL;

1887
	raw_spin_lock_irqsave(&devtree_lock, flags);
1888
	next = &np->properties;
1889 1890 1891 1892 1893 1894
	oldprop = __of_find_property(np, newprop->name, NULL);
	if (!oldprop) {
		/* add the new node */
		rc = __of_add_property(np, newprop);
	} else while (*next) {
		/* replace the node */
1895 1896 1897 1898 1899 1900 1901 1902 1903
		if (*next == oldprop) {
			newprop->next = oldprop->next;
			*next = newprop;
			oldprop->next = np->deadprops;
			np->deadprops = oldprop;
			break;
		}
		next = &(*next)->next;
	}
1904
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1905 1906
	if (rc)
		return rc;
1907

1908 1909
	/* At early boot, bail out and defer setup to of_init() */
	if (!of_kset)
1910
		return 0;
1911

1912
	/* Update the sysfs attribute */
1913 1914
	if (oldprop)
		sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1915
	__of_add_property_sysfs(np, newprop);
1916 1917 1918

	return 0;
}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

#if defined(CONFIG_OF_DYNAMIC)
/*
 * Support for dynamic device trees.
 *
 * On some platforms, the device tree can be manipulated at runtime.
 * The routines in this section support adding, removing and changing
 * device tree nodes.
 */

1929 1930 1931 1932 1933 1934
static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);

int of_reconfig_notifier_register(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
}
1935
EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1936 1937 1938 1939 1940

int of_reconfig_notifier_unregister(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
}
1941
EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1942 1943 1944 1945 1946 1947 1948 1949 1950

int of_reconfig_notify(unsigned long action, void *p)
{
	int rc;

	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
	return notifier_to_errno(rc);
}

1951 1952 1953
/**
 * of_attach_node - Plug a device node into the tree and global list.
 */
1954
int of_attach_node(struct device_node *np)
1955 1956
{
	unsigned long flags;
1957 1958 1959 1960 1961
	int rc;

	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
	if (rc)
		return rc;
1962

1963
	raw_spin_lock_irqsave(&devtree_lock, flags);
1964
	np->sibling = np->parent->child;
1965 1966
	np->allnext = np->parent->allnext;
	np->parent->allnext = np;
1967
	np->parent->child = np;
1968
	of_node_clear_flag(np, OF_DETACHED);
1969
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1970

1971
	of_node_add(np);
1972
	return 0;
1973 1974 1975 1976 1977 1978 1979 1980
}

/**
 * of_detach_node - "Unplug" a node from the device tree.
 *
 * The caller must hold a reference to the node.  The memory associated with
 * the node is not freed until its refcount goes to zero.
 */
1981
int of_detach_node(struct device_node *np)
1982 1983 1984
{
	struct device_node *parent;
	unsigned long flags;
1985 1986 1987 1988 1989
	int rc = 0;

	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
	if (rc)
		return rc;
1990

1991
	raw_spin_lock_irqsave(&devtree_lock, flags);
1992

1993 1994
	if (of_node_check_flag(np, OF_DETACHED)) {
		/* someone already detached it */
1995
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1996
		return rc;
1997 1998
	}

1999
	parent = np->parent;
2000
	if (!parent) {
2001
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
2002
		return rc;
2003
	}
2004

2005 2006
	if (of_allnodes == np)
		of_allnodes = np->allnext;
2007 2008
	else {
		struct device_node *prev;
2009
		for (prev = of_allnodes;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		     prev->allnext != np;
		     prev = prev->allnext)
			;
		prev->allnext = np->allnext;
	}

	if (parent->child == np)
		parent->child = np->sibling;
	else {
		struct device_node *prevsib;
		for (prevsib = np->parent->child;
		     prevsib->sibling != np;
		     prevsib = prevsib->sibling)
			;
		prevsib->sibling = np->sibling;
	}

	of_node_set_flag(np, OF_DETACHED);
2028
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2029

2030
	of_node_remove(np);
2031
	return rc;
2032 2033 2034
}
#endif /* defined(CONFIG_OF_DYNAMIC) */

2035 2036 2037 2038 2039 2040 2041 2042 2043
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
2044
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
}

/**
 * of_alias_scan - Scan all properties of 'aliases' node
 *
 * The function scans all the properties of 'aliases' node and populate
 * the the global lookup table with the properties.  It returns the
 * number of alias_prop found, or error code in error case.
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for the resulting tree
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
2064 2065

	if (of_chosen) {
2066 2067 2068
		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
		if (!name)
			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
2069 2070 2071 2072
		if (name)
			of_stdout = of_find_node_by_path(name);
	}

2073 2074 2075 2076
	of_aliases = of_find_node_by_path("/aliases");
	if (!of_aliases)
		return;

2077
	for_each_property_of_node(of_aliases, pp) {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
		if (!ap)
			continue;
2107
		memset(ap, 0, sizeof(*ap) + len + 1);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
2118 2119
 * The function travels the lookup table to get the alias id for the given
 * device_node and alias stem.  It returns the alias id if found.
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_aliases_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
	mutex_unlock(&of_aliases_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181

const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
2182 2183

/**
2184 2185 2186 2187 2188 2189 2190 2191
 * of_console_check() - Test and setup console for DT setup
 * @dn - Pointer to device node
 * @name - Name to use for preferred console without index. ex. "ttyS"
 * @index - Index to use for preferred console.
 *
 * Check if the given device node matches the stdout-path property in the
 * /chosen node. If it does then register it as the preferred console and return
 * TRUE. Otherwise return FALSE.
2192
 */
2193
bool of_console_check(struct device_node *dn, char *name, int index)
2194
{
2195
	if (!dn || dn != of_stdout || console_set_on_cmdline)
2196
		return false;
2197
	return add_preferred_console(name, index, NULL);
2198
}
2199
EXPORT_SYMBOL_GPL(of_console_check);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
	struct device_node *child;
	const phandle *handle;

	handle = of_get_property(np, "l2-cache", NULL);
	if (!handle)
		handle = of_get_property(np, "next-level-cache", NULL);

	if (handle)
		return of_find_node_by_phandle(be32_to_cpup(handle));

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/**
 * of_graph_parse_endpoint() - parse common endpoint node properties
 * @node: pointer to endpoint device_node
 * @endpoint: pointer to the OF endpoint data structure
 *
 * The caller should hold a reference to @node.
 */
int of_graph_parse_endpoint(const struct device_node *node,
			    struct of_endpoint *endpoint)
{
	struct device_node *port_node = of_get_parent(node);

2244 2245 2246
	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
		  __func__, node->full_name);

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	memset(endpoint, 0, sizeof(*endpoint));

	endpoint->local_node = node;
	/*
	 * It doesn't matter whether the two calls below succeed.
	 * If they don't then the default value 0 is used.
	 */
	of_property_read_u32(port_node, "reg", &endpoint->port);
	of_property_read_u32(node, "reg", &endpoint->id);

	of_node_put(port_node);

	return 0;
}
EXPORT_SYMBOL(of_graph_parse_endpoint);

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 * of the passed @prev node is not decremented, the caller have to use
 * of_node_put() on it when done.
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
2276
	struct device_node *port;
2277 2278 2279 2280

	if (!parent)
		return NULL;

2281 2282 2283 2284 2285
	/*
	 * Start by locating the port node. If no previous endpoint is specified
	 * search for the first port node, otherwise get the previous endpoint
	 * parent port node.
	 */
2286 2287
	if (!prev) {
		struct device_node *node;
2288

2289 2290 2291 2292 2293 2294 2295
		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");
		of_node_put(node);

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
		if (!port) {
			pr_err("%s(): no port node found in %s\n",
			       __func__, parent->full_name);
			return NULL;
		}
	} else {
		port = of_get_parent(prev);
		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
			      __func__, prev->full_name))
			return NULL;
2306

2307 2308 2309 2310 2311
		/*
		 * Avoid dropping prev node refcount to 0 when getting the next
		 * child below.
		 */
		of_node_get(prev);
2312 2313
	}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	while (1) {
		/*
		 * Now that we have a port node, get the next endpoint by
		 * getting the next child. If the previous endpoint is NULL this
		 * will return the first child.
		 */
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}
2325

2326 2327
		/* No more endpoints under this port, try the next one. */
		prev = NULL;
2328

2329 2330 2331 2332 2333 2334
		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
		} while (of_node_cmp(port->name, "port"));
	}
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
	struct device_node *np;
	unsigned int depth;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);

	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && np; depth--) {
		np = of_get_next_parent(np);
		if (depth == 2 && of_node_cmp(np->name, "ports"))
			break;
	}
	return np;
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);