base.c 56.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 *
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com
 *
 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
 *
12 13
 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
 *  Grant Likely.
14 15 16 17 18 19
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */
20
#include <linux/ctype.h>
21
#include <linux/cpu.h>
22 23
#include <linux/module.h>
#include <linux/of.h>
24
#include <linux/of_graph.h>
S
Stephen Rothwell 已提交
25
#include <linux/spinlock.h>
26
#include <linux/slab.h>
J
Jeremy Kerr 已提交
27
#include <linux/proc_fs.h>
S
Stephen Rothwell 已提交
28

29
#include "of_private.h"
30

31
LIST_HEAD(aliases_lookup);
32

33 34
struct device_node *of_allnodes;
EXPORT_SYMBOL(of_allnodes);
35
struct device_node *of_chosen;
36
struct device_node *of_aliases;
37
static struct device_node *of_stdout;
38

39
DEFINE_MUTEX(of_aliases_mutex);
40

S
Stephen Rothwell 已提交
41 42 43
/* use when traversing tree through the allnext, child, sibling,
 * or parent members of struct device_node.
 */
44
DEFINE_RAW_SPINLOCK(devtree_lock);
45 46 47

int of_n_addr_cells(struct device_node *np)
{
48
	const __be32 *ip;
49 50 51 52 53 54

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#address-cells", NULL);
		if (ip)
55
			return be32_to_cpup(ip);
56 57 58 59 60 61 62 63
	} while (np->parent);
	/* No #address-cells property for the root node */
	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_addr_cells);

int of_n_size_cells(struct device_node *np)
{
64
	const __be32 *ip;
65 66 67 68 69 70

	do {
		if (np->parent)
			np = np->parent;
		ip = of_get_property(np, "#size-cells", NULL);
		if (ip)
71
			return be32_to_cpup(ip);
72 73 74 75 76 77
	} while (np->parent);
	/* No #size-cells property for the root node */
	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
}
EXPORT_SYMBOL(of_n_size_cells);

78 79 80 81 82 83 84
#ifdef CONFIG_NUMA
int __weak of_node_to_nid(struct device_node *np)
{
	return numa_node_id();
}
#endif

85
#if defined(CONFIG_OF_DYNAMIC)
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 *	of_node_get - Increment refcount of a node
 *	@node:	Node to inc refcount, NULL is supported to
 *		simplify writing of callers
 *
 *	Returns node.
 */
struct device_node *of_node_get(struct device_node *node)
{
	if (node)
		kref_get(&node->kref);
	return node;
}
EXPORT_SYMBOL(of_node_get);

static inline struct device_node *kref_to_device_node(struct kref *kref)
{
	return container_of(kref, struct device_node, kref);
}

/**
 *	of_node_release - release a dynamically allocated node
 *	@kref:  kref element of the node to be released
 *
 *	In of_node_put() this function is passed to kref_put()
 *	as the destructor.
 */
static void of_node_release(struct kref *kref)
{
	struct device_node *node = kref_to_device_node(kref);
	struct property *prop = node->properties;

	/* We should never be releasing nodes that haven't been detached. */
	if (!of_node_check_flag(node, OF_DETACHED)) {
		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
		dump_stack();
		kref_init(&node->kref);
		return;
	}

	if (!of_node_check_flag(node, OF_DYNAMIC))
		return;

	while (prop) {
		struct property *next = prop->next;
		kfree(prop->name);
		kfree(prop->value);
		kfree(prop);
		prop = next;

		if (!prop) {
			prop = node->deadprops;
			node->deadprops = NULL;
		}
	}
	kfree(node->full_name);
	kfree(node->data);
	kfree(node);
}

/**
 *	of_node_put - Decrement refcount of a node
 *	@node:	Node to dec refcount, NULL is supported to
 *		simplify writing of callers
 *
 */
void of_node_put(struct device_node *node)
{
	if (node)
		kref_put(&node->kref, of_node_release);
}
EXPORT_SYMBOL(of_node_put);
158
#endif /* CONFIG_OF_DYNAMIC */
159

160 161
static struct property *__of_find_property(const struct device_node *np,
					   const char *name, int *lenp)
S
Stephen Rothwell 已提交
162 163 164
{
	struct property *pp;

165 166 167
	if (!np)
		return NULL;

168
	for (pp = np->properties; pp; pp = pp->next) {
S
Stephen Rothwell 已提交
169
		if (of_prop_cmp(pp->name, name) == 0) {
170
			if (lenp)
S
Stephen Rothwell 已提交
171 172 173 174
				*lenp = pp->length;
			break;
		}
	}
175 176 177 178 179 180 181 182 183

	return pp;
}

struct property *of_find_property(const struct device_node *np,
				  const char *name,
				  int *lenp)
{
	struct property *pp;
184
	unsigned long flags;
185

186
	raw_spin_lock_irqsave(&devtree_lock, flags);
187
	pp = __of_find_property(np, name, lenp);
188
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
189 190 191 192 193

	return pp;
}
EXPORT_SYMBOL(of_find_property);

194 195 196 197 198 199 200 201 202 203 204
/**
 * of_find_all_nodes - Get next node in global list
 * @prev:	Previous node or NULL to start iteration
 *		of_node_put() will be called on it
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_all_nodes(struct device_node *prev)
{
	struct device_node *np;
205
	unsigned long flags;
206

207
	raw_spin_lock_irqsave(&devtree_lock, flags);
208
	np = prev ? prev->allnext : of_allnodes;
209 210 211 212
	for (; np != NULL; np = np->allnext)
		if (of_node_get(np))
			break;
	of_node_put(prev);
213
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
214 215 216 217
	return np;
}
EXPORT_SYMBOL(of_find_all_nodes);

218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
static const void *__of_get_property(const struct device_node *np,
				     const char *name, int *lenp)
{
	struct property *pp = __of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}

230 231 232 233 234
/*
 * Find a property with a given name for a given node
 * and return the value.
 */
const void *of_get_property(const struct device_node *np, const char *name,
235
			    int *lenp)
236 237 238 239 240 241
{
	struct property *pp = of_find_property(np, name, lenp);

	return pp ? pp->value : NULL;
}
EXPORT_SYMBOL(of_get_property);
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/*
 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 *
 * @cpu: logical cpu index of a core/thread
 * @phys_id: physical identifier of a core/thread
 *
 * CPU logical to physical index mapping is architecture specific.
 * However this __weak function provides a default match of physical
 * id to logical cpu index. phys_id provided here is usually values read
 * from the device tree which must match the hardware internal registers.
 *
 * Returns true if the physical identifier and the logical cpu index
 * correspond to the same core/thread, false otherwise.
 */
bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (u32)phys_id == cpu;
}

/**
 * Checks if the given "prop_name" property holds the physical id of the
 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 * NULL, local thread number within the core is returned in it.
 */
static bool __of_find_n_match_cpu_property(struct device_node *cpun,
			const char *prop_name, int cpu, unsigned int *thread)
{
	const __be32 *cell;
	int ac, prop_len, tid;
	u64 hwid;

	ac = of_n_addr_cells(cpun);
	cell = of_get_property(cpun, prop_name, &prop_len);
276
	if (!cell || !ac)
277
		return false;
278
	prop_len /= sizeof(*cell) * ac;
279 280 281 282 283 284 285 286 287 288 289 290
	for (tid = 0; tid < prop_len; tid++) {
		hwid = of_read_number(cell, ac);
		if (arch_match_cpu_phys_id(cpu, hwid)) {
			if (thread)
				*thread = tid;
			return true;
		}
		cell += ac;
	}
	return false;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
/*
 * arch_find_n_match_cpu_physical_id - See if the given device node is
 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 * else false.  If 'thread' is non-NULL, the local thread number within the
 * core is returned in it.
 */
bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
					      int cpu, unsigned int *thread)
{
	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
	 * for thread ids on PowerPC. If it doesn't exist fallback to
	 * standard "reg" property.
	 */
	if (IS_ENABLED(CONFIG_PPC) &&
	    __of_find_n_match_cpu_property(cpun,
					   "ibm,ppc-interrupt-server#s",
					   cpu, thread))
		return true;

	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
		return true;

	return false;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
/**
 * of_get_cpu_node - Get device node associated with the given logical CPU
 *
 * @cpu: CPU number(logical index) for which device node is required
 * @thread: if not NULL, local thread number within the physical core is
 *          returned
 *
 * The main purpose of this function is to retrieve the device node for the
 * given logical CPU index. It should be used to initialize the of_node in
 * cpu device. Once of_node in cpu device is populated, all the further
 * references can use that instead.
 *
 * CPU logical to physical index mapping is architecture specific and is built
 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 * which can be overridden by architecture specific implementation.
 *
 * Returns a node pointer for the logical cpu if found, else NULL.
 */
struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
{
336
	struct device_node *cpun;
337

338 339
	for_each_node_by_type(cpun, "cpu") {
		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
340 341 342 343 344 345
			return cpun;
	}
	return NULL;
}
EXPORT_SYMBOL(of_get_cpu_node);

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/**
 * __of_device_is_compatible() - Check if the node matches given constraints
 * @device: pointer to node
 * @compat: required compatible string, NULL or "" for any match
 * @type: required device_type value, NULL or "" for any match
 * @name: required node name, NULL or "" for any match
 *
 * Checks if the given @compat, @type and @name strings match the
 * properties of the given @device. A constraints can be skipped by
 * passing NULL or an empty string as the constraint.
 *
 * Returns 0 for no match, and a positive integer on match. The return
 * value is a relative score with larger values indicating better
 * matches. The score is weighted for the most specific compatible value
 * to get the highest score. Matching type is next, followed by matching
 * name. Practically speaking, this results in the following priority
 * order for matches:
 *
 * 1. specific compatible && type && name
 * 2. specific compatible && type
 * 3. specific compatible && name
 * 4. specific compatible
 * 5. general compatible && type && name
 * 6. general compatible && type
 * 7. general compatible && name
 * 8. general compatible
 * 9. type && name
 * 10. type
 * 11. name
375
 */
376
static int __of_device_is_compatible(const struct device_node *device,
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
				     const char *compat, const char *type, const char *name)
{
	struct property *prop;
	const char *cp;
	int index = 0, score = 0;

	/* Compatible match has highest priority */
	if (compat && compat[0]) {
		prop = __of_find_property(device, "compatible", NULL);
		for (cp = of_prop_next_string(prop, NULL); cp;
		     cp = of_prop_next_string(prop, cp), index++) {
			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
				score = INT_MAX/2 - (index << 2);
				break;
			}
		}
		if (!score)
			return 0;
	}
396

397 398 399 400 401
	/* Matching type is better than matching name */
	if (type && type[0]) {
		if (!device->type || of_node_cmp(type, device->type))
			return 0;
		score += 2;
402 403
	}

404 405 406 407 408 409 410 411
	/* Matching name is a bit better than not */
	if (name && name[0]) {
		if (!device->name || of_node_cmp(name, device->name))
			return 0;
		score++;
	}

	return score;
412
}
413 414 415 416 417 418 419

/** Checks if the given "compat" string matches one of the strings in
 * the device's "compatible" property
 */
int of_device_is_compatible(const struct device_node *device,
		const char *compat)
{
420
	unsigned long flags;
421 422
	int res;

423
	raw_spin_lock_irqsave(&devtree_lock, flags);
424
	res = __of_device_is_compatible(device, compat, NULL, NULL);
425
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
426 427
	return res;
}
428
EXPORT_SYMBOL(of_device_is_compatible);
S
Stephen Rothwell 已提交
429

G
Grant Likely 已提交
430
/**
431
 * of_machine_is_compatible - Test root of device tree for a given compatible value
G
Grant Likely 已提交
432 433 434 435 436
 * @compat: compatible string to look for in root node's compatible property.
 *
 * Returns true if the root node has the given value in its
 * compatible property.
 */
437
int of_machine_is_compatible(const char *compat)
G
Grant Likely 已提交
438 439 440 441 442 443 444 445 446 447 448
{
	struct device_node *root;
	int rc = 0;

	root = of_find_node_by_path("/");
	if (root) {
		rc = of_device_is_compatible(root, compat);
		of_node_put(root);
	}
	return rc;
}
449
EXPORT_SYMBOL(of_machine_is_compatible);
G
Grant Likely 已提交
450

451
/**
452
 *  __of_device_is_available - check if a device is available for use
453
 *
454
 *  @device: Node to check for availability, with locks already held
455 456 457 458
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
459
static int __of_device_is_available(const struct device_node *device)
460 461 462 463
{
	const char *status;
	int statlen;

464 465 466
	if (!device)
		return 0;

467
	status = __of_get_property(device, "status", &statlen);
468 469 470 471 472 473 474 475 476 477
	if (status == NULL)
		return 1;

	if (statlen > 0) {
		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
			return 1;
	}

	return 0;
}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

/**
 *  of_device_is_available - check if a device is available for use
 *
 *  @device: Node to check for availability
 *
 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 *  0 otherwise
 */
int of_device_is_available(const struct device_node *device)
{
	unsigned long flags;
	int res;

	raw_spin_lock_irqsave(&devtree_lock, flags);
	res = __of_device_is_available(device);
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
	return res;

}
498 499
EXPORT_SYMBOL(of_device_is_available);

S
Stephen Rothwell 已提交
500 501 502 503 504 505 506 507 508 509
/**
 *	of_get_parent - Get a node's parent if any
 *	@node:	Node to get parent
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_parent(const struct device_node *node)
{
	struct device_node *np;
510
	unsigned long flags;
S
Stephen Rothwell 已提交
511 512 513 514

	if (!node)
		return NULL;

515
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
516
	np = of_node_get(node->parent);
517
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
518 519 520
	return np;
}
EXPORT_SYMBOL(of_get_parent);
S
Stephen Rothwell 已提交
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535
/**
 *	of_get_next_parent - Iterate to a node's parent
 *	@node:	Node to get parent of
 *
 * 	This is like of_get_parent() except that it drops the
 * 	refcount on the passed node, making it suitable for iterating
 * 	through a node's parents.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_parent(struct device_node *node)
{
	struct device_node *parent;
536
	unsigned long flags;
537 538 539 540

	if (!node)
		return NULL;

541
	raw_spin_lock_irqsave(&devtree_lock, flags);
542 543
	parent = of_node_get(node->parent);
	of_node_put(node);
544
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
545 546
	return parent;
}
547
EXPORT_SYMBOL(of_get_next_parent);
548

S
Stephen Rothwell 已提交
549 550 551 552 553 554 555 556 557 558 559 560
/**
 *	of_get_next_child - Iterate a node childs
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_get_next_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
561
	unsigned long flags;
S
Stephen Rothwell 已提交
562

563
	raw_spin_lock_irqsave(&devtree_lock, flags);
S
Stephen Rothwell 已提交
564 565 566 567 568
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling)
		if (of_node_get(next))
			break;
	of_node_put(prev);
569
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
S
Stephen Rothwell 已提交
570 571 572
	return next;
}
EXPORT_SYMBOL(of_get_next_child);
573

574 575 576 577 578 579 580 581 582 583 584 585
/**
 *	of_get_next_available_child - Find the next available child node
 *	@node:	parent node
 *	@prev:	previous child of the parent node, or NULL to get first
 *
 *      This function is like of_get_next_child(), except that it
 *      automatically skips any disabled nodes (i.e. status = "disabled").
 */
struct device_node *of_get_next_available_child(const struct device_node *node,
	struct device_node *prev)
{
	struct device_node *next;
586
	unsigned long flags;
587

588
	raw_spin_lock_irqsave(&devtree_lock, flags);
589 590
	next = prev ? prev->sibling : node->child;
	for (; next; next = next->sibling) {
591
		if (!__of_device_is_available(next))
592 593 594 595 596
			continue;
		if (of_node_get(next))
			break;
	}
	of_node_put(prev);
597
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
598 599 600 601
	return next;
}
EXPORT_SYMBOL(of_get_next_available_child);

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
/**
 *	of_get_child_by_name - Find the child node by name for a given parent
 *	@node:	parent node
 *	@name:	child name to look for.
 *
 *      This function looks for child node for given matching name
 *
 *	Returns a node pointer if found, with refcount incremented, use
 *	of_node_put() on it when done.
 *	Returns NULL if node is not found.
 */
struct device_node *of_get_child_by_name(const struct device_node *node,
				const char *name)
{
	struct device_node *child;

	for_each_child_of_node(node, child)
		if (child->name && (of_node_cmp(child->name, name) == 0))
			break;
	return child;
}
EXPORT_SYMBOL(of_get_child_by_name);

625 626 627 628 629 630 631 632 633
/**
 *	of_find_node_by_path - Find a node matching a full OF path
 *	@path:	The full path to match
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_path(const char *path)
{
634
	struct device_node *np = of_allnodes;
635
	unsigned long flags;
636

637
	raw_spin_lock_irqsave(&devtree_lock, flags);
638 639 640 641 642
	for (; np; np = np->allnext) {
		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
		    && of_node_get(np))
			break;
	}
643
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	return np;
}
EXPORT_SYMBOL(of_find_node_by_path);

/**
 *	of_find_node_by_name - Find a node by its "name" property
 *	@from:	The node to start searching from or NULL, the node
 *		you pass will not be searched, only the next one
 *		will; typically, you pass what the previous call
 *		returned. of_node_put() will be called on it
 *	@name:	The name string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_name(struct device_node *from,
	const char *name)
{
	struct device_node *np;
663
	unsigned long flags;
664

665
	raw_spin_lock_irqsave(&devtree_lock, flags);
666
	np = from ? from->allnext : of_allnodes;
667 668 669 670 671
	for (; np; np = np->allnext)
		if (np->name && (of_node_cmp(np->name, name) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
672
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	return np;
}
EXPORT_SYMBOL(of_find_node_by_name);

/**
 *	of_find_node_by_type - Find a node by its "device_type" property
 *	@from:	The node to start searching from, or NULL to start searching
 *		the entire device tree. The node you pass will not be
 *		searched, only the next one will; typically, you pass
 *		what the previous call returned. of_node_put() will be
 *		called on from for you.
 *	@type:	The type string to match against
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_by_type(struct device_node *from,
	const char *type)
{
	struct device_node *np;
693
	unsigned long flags;
694

695
	raw_spin_lock_irqsave(&devtree_lock, flags);
696
	np = from ? from->allnext : of_allnodes;
697 698 699 700 701
	for (; np; np = np->allnext)
		if (np->type && (of_node_cmp(np->type, type) == 0)
		    && of_node_get(np))
			break;
	of_node_put(from);
702
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	return np;
}
EXPORT_SYMBOL(of_find_node_by_type);

/**
 *	of_find_compatible_node - Find a node based on type and one of the
 *                                tokens in its "compatible" property
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@type:		The type string to match "device_type" or NULL to ignore
 *	@compatible:	The string to match to one of the tokens in the device
 *			"compatible" list.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_compatible_node(struct device_node *from,
	const char *type, const char *compatible)
{
	struct device_node *np;
725
	unsigned long flags;
726

727
	raw_spin_lock_irqsave(&devtree_lock, flags);
728
	np = from ? from->allnext : of_allnodes;
729
	for (; np; np = np->allnext) {
730
		if (__of_device_is_compatible(np, compatible, type, NULL) &&
731
		    of_node_get(np))
732 733 734
			break;
	}
	of_node_put(from);
735
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
736 737 738
	return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
/**
 *	of_find_node_with_property - Find a node which has a property with
 *                                   the given name.
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@prop_name:	The name of the property to look for.
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
struct device_node *of_find_node_with_property(struct device_node *from,
	const char *prop_name)
{
	struct device_node *np;
	struct property *pp;
757
	unsigned long flags;
758

759
	raw_spin_lock_irqsave(&devtree_lock, flags);
760
	np = from ? from->allnext : of_allnodes;
761
	for (; np; np = np->allnext) {
762
		for (pp = np->properties; pp; pp = pp->next) {
763 764 765 766 767 768 769 770
			if (of_prop_cmp(pp->name, prop_name) == 0) {
				of_node_get(np);
				goto out;
			}
		}
	}
out:
	of_node_put(from);
771
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
772 773 774 775
	return np;
}
EXPORT_SYMBOL(of_find_node_with_property);

776 777 778
static
const struct of_device_id *__of_match_node(const struct of_device_id *matches,
					   const struct device_node *node)
779
{
780 781 782
	const struct of_device_id *best_match = NULL;
	int score, best_score = 0;

783 784 785
	if (!matches)
		return NULL;

786 787 788 789 790 791 792
	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
		score = __of_device_is_compatible(node, matches->compatible,
						  matches->type, matches->name);
		if (score > best_score) {
			best_match = matches;
			best_score = score;
		}
793
	}
794 795

	return best_match;
796
}
797 798 799 800 801 802

/**
 * of_match_node - Tell if an device_node has a matching of_match structure
 *	@matches:	array of of device match structures to search in
 *	@node:		the of device structure to match against
 *
803
 *	Low level utility function used by device matching.
804 805 806 807 808
 */
const struct of_device_id *of_match_node(const struct of_device_id *matches,
					 const struct device_node *node)
{
	const struct of_device_id *match;
809
	unsigned long flags;
810

811
	raw_spin_lock_irqsave(&devtree_lock, flags);
812
	match = __of_match_node(matches, node);
813
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
814 815
	return match;
}
816 817 818
EXPORT_SYMBOL(of_match_node);

/**
819 820
 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 *					  match table.
821 822 823 824 825
 *	@from:		The node to start searching from or NULL, the node
 *			you pass will not be searched, only the next one
 *			will; typically, you pass what the previous call
 *			returned. of_node_put() will be called on it
 *	@matches:	array of of device match structures to search in
826
 *	@match		Updated to point at the matches entry which matched
827 828 829 830
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.
 */
831 832 833
struct device_node *of_find_matching_node_and_match(struct device_node *from,
					const struct of_device_id *matches,
					const struct of_device_id **match)
834 835
{
	struct device_node *np;
836
	const struct of_device_id *m;
837
	unsigned long flags;
838

839 840 841
	if (match)
		*match = NULL;

842
	raw_spin_lock_irqsave(&devtree_lock, flags);
843
	np = from ? from->allnext : of_allnodes;
844
	for (; np; np = np->allnext) {
845
		m = __of_match_node(matches, np);
846
		if (m && of_node_get(np)) {
847
			if (match)
848
				*match = m;
849
			break;
850
		}
851 852
	}
	of_node_put(from);
853
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
854 855
	return np;
}
856
EXPORT_SYMBOL(of_find_matching_node_and_match);
857 858 859 860 861 862 863

/**
 * of_modalias_node - Lookup appropriate modalias for a device node
 * @node:	pointer to a device tree node
 * @modalias:	Pointer to buffer that modalias value will be copied into
 * @len:	Length of modalias value
 *
864 865 866 867
 * Based on the value of the compatible property, this routine will attempt
 * to choose an appropriate modalias value for a particular device tree node.
 * It does this by stripping the manufacturer prefix (as delimited by a ',')
 * from the first entry in the compatible list property.
868
 *
869
 * This routine returns 0 on success, <0 on failure.
870 871 872
 */
int of_modalias_node(struct device_node *node, char *modalias, int len)
{
873 874
	const char *compatible, *p;
	int cplen;
875 876

	compatible = of_get_property(node, "compatible", &cplen);
877
	if (!compatible || strlen(compatible) > cplen)
878 879
		return -ENODEV;
	p = strchr(compatible, ',');
880
	strlcpy(modalias, p ? p + 1 : compatible, len);
881 882 883 884
	return 0;
}
EXPORT_SYMBOL_GPL(of_modalias_node);

J
Jeremy Kerr 已提交
885 886 887 888 889 890 891 892 893 894
/**
 * of_find_node_by_phandle - Find a node given a phandle
 * @handle:	phandle of the node to find
 *
 * Returns a node pointer with refcount incremented, use
 * of_node_put() on it when done.
 */
struct device_node *of_find_node_by_phandle(phandle handle)
{
	struct device_node *np;
895
	unsigned long flags;
J
Jeremy Kerr 已提交
896

897
	raw_spin_lock_irqsave(&devtree_lock, flags);
898
	for (np = of_allnodes; np; np = np->allnext)
J
Jeremy Kerr 已提交
899 900 901
		if (np->phandle == handle)
			break;
	of_node_get(np);
902
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
J
Jeremy Kerr 已提交
903 904 905 906
	return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * of_find_property_value_of_size
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @len:	requested length of property value
 *
 * Search for a property in a device node and valid the requested size.
 * Returns the property value on success, -EINVAL if the property does not
 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 */
static void *of_find_property_value_of_size(const struct device_node *np,
			const char *propname, u32 len)
{
	struct property *prop = of_find_property(np, propname, NULL);

	if (!prop)
		return ERR_PTR(-EINVAL);
	if (!prop->value)
		return ERR_PTR(-ENODATA);
	if (len > prop->length)
		return ERR_PTR(-EOVERFLOW);

	return prop->value;
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
/**
 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the u32 in the list of values
 * @out_value:	pointer to return value, modified only if no error.
 *
 * Search for a property in a device node and read nth 32-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u32 value can be decoded.
 */
int of_property_read_u32_index(const struct device_node *np,
				       const char *propname,
				       u32 index, u32 *out_value)
{
954 955
	const u32 *val = of_find_property_value_of_size(np, propname,
					((index + 1) * sizeof(*out_value)));
956

957 958
	if (IS_ERR(val))
		return PTR_ERR(val);
959

960
	*out_value = be32_to_cpup(((__be32 *)val) + index);
961 962 963 964
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u32_index);

965 966 967 968 969
/**
 * of_property_read_u8_array - Find and read an array of u8 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
970
 * @out_values:	pointer to return value, modified only if return value is 0.
971 972 973 974 975 976 977 978 979 980
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 8-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 8 <0x50 0x60 0x70>;
 *
L
Lad, Prabhakar 已提交
981
 * The out_values is modified only if a valid u8 value can be decoded.
982 983 984 985
 */
int of_property_read_u8_array(const struct device_node *np,
			const char *propname, u8 *out_values, size_t sz)
{
986 987
	const u8 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
988

989 990
	if (IS_ERR(val))
		return PTR_ERR(val);
991 992 993 994 995 996 997 998 999 1000 1001 1002

	while (sz--)
		*out_values++ = *val++;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u8_array);

/**
 * of_property_read_u16_array - Find and read an array of u16 from a property.
 *
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1003
 * @out_values:	pointer to return value, modified only if return value is 0.
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
 * @sz:		number of array elements to read
 *
 * Search for a property in a device node and read 16-bit value(s) from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * dts entry of array should be like:
 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
 *
L
Lad, Prabhakar 已提交
1014
 * The out_values is modified only if a valid u16 value can be decoded.
1015 1016 1017 1018
 */
int of_property_read_u16_array(const struct device_node *np,
			const char *propname, u16 *out_values, size_t sz)
{
1019 1020
	const __be16 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1021

1022 1023
	if (IS_ERR(val))
		return PTR_ERR(val);
1024 1025 1026 1027 1028 1029 1030

	while (sz--)
		*out_values++ = be16_to_cpup(val++);
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u16_array);

1031
/**
1032 1033 1034
 * of_property_read_u32_array - Find and read an array of 32 bit integers
 * from a property.
 *
1035 1036
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
L
Lad, Prabhakar 已提交
1037
 * @out_values:	pointer to return value, modified only if return value is 0.
1038
 * @sz:		number of array elements to read
1039
 *
1040
 * Search for a property in a device node and read 32-bit value(s) from
1041 1042 1043 1044
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
L
Lad, Prabhakar 已提交
1045
 * The out_values is modified only if a valid u32 value can be decoded.
1046
 */
1047 1048 1049
int of_property_read_u32_array(const struct device_node *np,
			       const char *propname, u32 *out_values,
			       size_t sz)
1050
{
1051 1052
	const __be32 *val = of_find_property_value_of_size(np, propname,
						(sz * sizeof(*out_values)));
1053

1054 1055
	if (IS_ERR(val))
		return PTR_ERR(val);
1056 1057 1058

	while (sz--)
		*out_values++ = be32_to_cpup(val++);
1059 1060
	return 0;
}
1061
EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * of_property_read_u64 - Find and read a 64 bit integer from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_value:	pointer to return value, modified only if return value is 0.
 *
 * Search for a property in a device node and read a 64-bit value from
 * it. Returns 0 on success, -EINVAL if the property does not exist,
 * -ENODATA if property does not have a value, and -EOVERFLOW if the
 * property data isn't large enough.
 *
 * The out_value is modified only if a valid u64 value can be decoded.
 */
int of_property_read_u64(const struct device_node *np, const char *propname,
			 u64 *out_value)
{
1079 1080
	const __be32 *val = of_find_property_value_of_size(np, propname,
						sizeof(*out_value));
1081

1082 1083 1084 1085
	if (IS_ERR(val))
		return PTR_ERR(val);

	*out_value = of_read_number(val, 2);
1086 1087 1088 1089
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_u64);

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * of_property_read_string - Find and read a string from a property
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy). Returns 0 on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
1105
int of_property_read_string(struct device_node *np, const char *propname,
1106
				const char **out_string)
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
{
	struct property *prop = of_find_property(np, propname, NULL);
	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;
	*out_string = prop->value;
	return 0;
}
EXPORT_SYMBOL_GPL(of_property_read_string);

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/**
 * of_property_read_string_index - Find and read a string from a multiple
 * strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 * @index:	index of the string in the list of strings
 * @out_string:	pointer to null terminated return string, modified only if
 *		return value is 0.
 *
 * Search for a property in a device tree node and retrieve a null
 * terminated string value (pointer to data, not a copy) in the list of strings
 * contained in that property.
 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
 * property does not have a value, and -EILSEQ if the string is not
 * null-terminated within the length of the property data.
 *
 * The out_string pointer is modified only if a valid string can be decoded.
 */
int of_property_read_string_index(struct device_node *np, const char *propname,
				  int index, const char **output)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

	for (i = 0; total < prop->length; total += l, p += l) {
		l = strlen(p) + 1;
1157
		if (i++ == index) {
1158 1159 1160 1161 1162 1163 1164 1165
			*output = p;
			return 0;
		}
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_read_string_index);

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * of_property_match_string() - Find string in a list and return index
 * @np: pointer to node containing string list property
 * @propname: string list property name
 * @string: pointer to string to search for in string list
 *
 * This function searches a string list property and returns the index
 * of a specific string value.
 */
int of_property_match_string(struct device_node *np, const char *propname,
			     const char *string)
{
	struct property *prop = of_find_property(np, propname, NULL);
	size_t l;
	int i;
	const char *p, *end;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;

	p = prop->value;
	end = p + prop->length;

	for (i = 0; p < end; i++, p += l) {
		l = strlen(p) + 1;
		if (p + l > end)
			return -EILSEQ;
		pr_debug("comparing %s with %s\n", string, p);
		if (strcmp(string, p) == 0)
			return i; /* Found it; return index */
	}
	return -ENODATA;
}
EXPORT_SYMBOL_GPL(of_property_match_string);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

/**
 * of_property_count_strings - Find and return the number of strings from a
 * multiple strings property.
 * @np:		device node from which the property value is to be read.
 * @propname:	name of the property to be searched.
 *
 * Search for a property in a device tree node and retrieve the number of null
 * terminated string contain in it. Returns the number of strings on
 * success, -EINVAL if the property does not exist, -ENODATA if property
 * does not have a value, and -EILSEQ if the string is not null-terminated
 * within the length of the property data.
 */
int of_property_count_strings(struct device_node *np, const char *propname)
{
	struct property *prop = of_find_property(np, propname, NULL);
	int i = 0;
	size_t l = 0, total = 0;
	const char *p;

	if (!prop)
		return -EINVAL;
	if (!prop->value)
		return -ENODATA;
	if (strnlen(prop->value, prop->length) >= prop->length)
		return -EILSEQ;

	p = prop->value;

1231
	for (i = 0; total < prop->length; total += l, p += l, i++)
1232
		l = strlen(p) + 1;
1233

1234 1235 1236 1237
	return i;
}
EXPORT_SYMBOL_GPL(of_property_count_strings);

1238 1239 1240 1241 1242 1243 1244 1245 1246
void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
{
	int i;
	printk("%s %s", msg, of_node_full_name(args->np));
	for (i = 0; i < args->args_count; i++)
		printk(i ? ",%08x" : ":%08x", args->args[i]);
	printk("\n");
}

1247 1248
static int __of_parse_phandle_with_args(const struct device_node *np,
					const char *list_name,
1249 1250
					const char *cells_name,
					int cell_count, int index,
1251
					struct of_phandle_args *out_args)
1252
{
1253
	const __be32 *list, *list_end;
1254
	int rc = 0, size, cur_index = 0;
1255
	uint32_t count = 0;
1256
	struct device_node *node = NULL;
1257
	phandle phandle;
1258

1259
	/* Retrieve the phandle list property */
1260
	list = of_get_property(np, list_name, &size);
1261
	if (!list)
1262
		return -ENOENT;
1263 1264
	list_end = list + size / sizeof(*list);

1265
	/* Loop over the phandles until all the requested entry is found */
1266
	while (list < list_end) {
1267
		rc = -EINVAL;
1268
		count = 0;
1269

1270 1271 1272 1273
		/*
		 * If phandle is 0, then it is an empty entry with no
		 * arguments.  Skip forward to the next entry.
		 */
G
Grant Likely 已提交
1274
		phandle = be32_to_cpup(list++);
1275 1276 1277
		if (phandle) {
			/*
			 * Find the provider node and parse the #*-cells
1278 1279 1280 1281 1282 1283
			 * property to determine the argument length.
			 *
			 * This is not needed if the cell count is hard-coded
			 * (i.e. cells_name not set, but cell_count is set),
			 * except when we're going to return the found node
			 * below.
1284
			 */
1285 1286 1287 1288 1289 1290 1291
			if (cells_name || cur_index == index) {
				node = of_find_node_by_phandle(phandle);
				if (!node) {
					pr_err("%s: could not find phandle\n",
						np->full_name);
					goto err;
				}
1292
			}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

			if (cells_name) {
				if (of_property_read_u32(node, cells_name,
							 &count)) {
					pr_err("%s: could not get %s for %s\n",
						np->full_name, cells_name,
						node->full_name);
					goto err;
				}
			} else {
				count = cell_count;
1304
			}
1305

1306 1307 1308 1309 1310 1311 1312
			/*
			 * Make sure that the arguments actually fit in the
			 * remaining property data length
			 */
			if (list + count > list_end) {
				pr_err("%s: arguments longer than property\n",
					 np->full_name);
1313
				goto err;
1314
			}
1315 1316
		}

1317 1318 1319 1320 1321 1322
		/*
		 * All of the error cases above bail out of the loop, so at
		 * this point, the parsing is successful. If the requested
		 * index matches, then fill the out_args structure and return,
		 * or return -ENOENT for an empty entry.
		 */
1323
		rc = -ENOENT;
1324 1325
		if (cur_index == index) {
			if (!phandle)
1326
				goto err;
1327 1328 1329 1330 1331 1332 1333 1334 1335

			if (out_args) {
				int i;
				if (WARN_ON(count > MAX_PHANDLE_ARGS))
					count = MAX_PHANDLE_ARGS;
				out_args->np = node;
				out_args->args_count = count;
				for (i = 0; i < count; i++)
					out_args->args[i] = be32_to_cpup(list++);
1336 1337
			} else {
				of_node_put(node);
1338
			}
1339 1340

			/* Found it! return success */
1341
			return 0;
1342 1343 1344 1345
		}

		of_node_put(node);
		node = NULL;
1346
		list += count;
1347 1348 1349
		cur_index++;
	}

1350 1351 1352 1353
	/*
	 * Unlock node before returning result; will be one of:
	 * -ENOENT : index is for empty phandle
	 * -EINVAL : parsing error on data
1354
	 * [1..n]  : Number of phandle (count mode; when index = -1)
1355
	 */
1356
	rc = index < 0 ? cur_index : -ENOENT;
1357
 err:
1358 1359
	if (node)
		of_node_put(node);
1360
	return rc;
1361
}
1362

S
Stephen Warren 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/**
 * of_parse_phandle - Resolve a phandle property to a device_node pointer
 * @np: Pointer to device node holding phandle property
 * @phandle_name: Name of property holding a phandle value
 * @index: For properties holding a table of phandles, this is the index into
 *         the table
 *
 * Returns the device_node pointer with refcount incremented.  Use
 * of_node_put() on it when done.
 */
struct device_node *of_parse_phandle(const struct device_node *np,
				     const char *phandle_name, int index)
{
1376 1377 1378 1379
	struct of_phandle_args args;

	if (index < 0)
		return NULL;
S
Stephen Warren 已提交
1380

1381 1382
	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
					 index, &args))
S
Stephen Warren 已提交
1383 1384
		return NULL;

1385
	return args.np;
S
Stephen Warren 已提交
1386 1387 1388
}
EXPORT_SYMBOL(of_parse_phandle);

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
/**
 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * 	#list-cells = <2>;
 * }
 *
 * phandle2: node2 {
 * 	#list-cells = <1>;
 * }
 *
 * node3 {
 * 	list = <&phandle1 1 2 &phandle2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
 */
1421 1422 1423 1424 1425 1426
int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name, int index,
				struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
1427 1428
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
					    index, out_args);
1429
}
1430
EXPORT_SYMBOL(of_parse_phandle_with_args);
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
/**
 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cell_count: number of argument cells following the phandle
 * @index:	index of a phandle to parse out
 * @out_args:	optional pointer to output arguments structure (will be filled)
 *
 * This function is useful to parse lists of phandles and their arguments.
 * Returns 0 on success and fills out_args, on error returns appropriate
 * errno value.
 *
 * Caller is responsible to call of_node_put() on the returned out_args->node
 * pointer.
 *
 * Example:
 *
 * phandle1: node1 {
 * }
 *
 * phandle2: node2 {
 * }
 *
 * node3 {
 * 	list = <&phandle1 0 2 &phandle2 2 3>;
 * }
 *
 * To get a device_node of the `node2' node you may call this:
 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
 */
int of_parse_phandle_with_fixed_args(const struct device_node *np,
				const char *list_name, int cell_count,
				int index, struct of_phandle_args *out_args)
{
	if (index < 0)
		return -EINVAL;
	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
					   index, out_args);
}
EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/**
 * of_count_phandle_with_args() - Find the number of phandles references in a property
 * @np:		pointer to a device tree node containing a list
 * @list_name:	property name that contains a list
 * @cells_name:	property name that specifies phandles' arguments count
 *
 * Returns the number of phandle + argument tuples within a property. It
 * is a typical pattern to encode a list of phandle and variable
 * arguments into a single property. The number of arguments is encoded
 * by a property in the phandle-target node. For example, a gpios
 * property would contain a list of GPIO specifies consisting of a
 * phandle and 1 or more arguments. The number of arguments are
 * determined by the #gpio-cells property in the node pointed to by the
 * phandle.
 */
int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
				const char *cells_name)
{
1491 1492
	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
					    NULL);
1493 1494 1495
}
EXPORT_SYMBOL(of_count_phandle_with_args);

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
#if defined(CONFIG_OF_DYNAMIC)
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	struct of_prop_reconfig pr;

	pr.dn = np;
	pr.prop = prop;
	return of_reconfig_notify(action, &pr);
}
#else
static int of_property_notify(int action, struct device_node *np,
			      struct property *prop)
{
	return 0;
}
#endif

1514
/**
1515
 * of_add_property - Add a property to a node
1516
 */
1517
int of_add_property(struct device_node *np, struct property *prop)
1518 1519 1520
{
	struct property **next;
	unsigned long flags;
1521 1522 1523 1524 1525
	int rc;

	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
	if (rc)
		return rc;
1526 1527

	prop->next = NULL;
1528
	raw_spin_lock_irqsave(&devtree_lock, flags);
1529 1530 1531 1532
	next = &np->properties;
	while (*next) {
		if (strcmp(prop->name, (*next)->name) == 0) {
			/* duplicate ! don't insert it */
1533
			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1534 1535 1536 1537 1538
			return -1;
		}
		next = &(*next)->next;
	}
	*next = prop;
1539
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

#ifdef CONFIG_PROC_DEVICETREE
	/* try to add to proc as well if it was initialized */
	if (np->pde)
		proc_device_tree_add_prop(np->pde, prop);
#endif /* CONFIG_PROC_DEVICETREE */

	return 0;
}

/**
1551
 * of_remove_property - Remove a property from a node.
1552 1553 1554 1555 1556 1557
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties"
 * list, so it won't be found any more.
 */
1558
int of_remove_property(struct device_node *np, struct property *prop)
1559 1560 1561 1562
{
	struct property **next;
	unsigned long flags;
	int found = 0;
1563 1564 1565 1566 1567
	int rc;

	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
	if (rc)
		return rc;
1568

1569
	raw_spin_lock_irqsave(&devtree_lock, flags);
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	next = &np->properties;
	while (*next) {
		if (*next == prop) {
			/* found the node */
			*next = prop->next;
			prop->next = np->deadprops;
			np->deadprops = prop;
			found = 1;
			break;
		}
		next = &(*next)->next;
	}
1582
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	if (!found)
		return -ENODEV;

#ifdef CONFIG_PROC_DEVICETREE
	/* try to remove the proc node as well */
	if (np->pde)
		proc_device_tree_remove_prop(np->pde, prop);
#endif /* CONFIG_PROC_DEVICETREE */

	return 0;
}

/*
1597
 * of_update_property - Update a property in a node, if the property does
1598
 * not exist, add it.
1599 1600 1601 1602 1603 1604
 *
 * Note that we don't actually remove it, since we have given out
 * who-knows-how-many pointers to the data using get-property.
 * Instead we just move the property to the "dead properties" list,
 * and add the new property to the property list
 */
1605
int of_update_property(struct device_node *np, struct property *newprop)
1606
{
1607
	struct property **next, *oldprop;
1608
	unsigned long flags;
1609 1610 1611 1612 1613
	int rc, found = 0;

	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
	if (rc)
		return rc;
1614

1615 1616 1617 1618 1619
	if (!newprop->name)
		return -EINVAL;

	oldprop = of_find_property(np, newprop->name, NULL);
	if (!oldprop)
1620
		return of_add_property(np, newprop);
1621

1622
	raw_spin_lock_irqsave(&devtree_lock, flags);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	next = &np->properties;
	while (*next) {
		if (*next == oldprop) {
			/* found the node */
			newprop->next = oldprop->next;
			*next = newprop;
			oldprop->next = np->deadprops;
			np->deadprops = oldprop;
			found = 1;
			break;
		}
		next = &(*next)->next;
	}
1636
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

	if (!found)
		return -ENODEV;

#ifdef CONFIG_PROC_DEVICETREE
	/* try to add to proc as well if it was initialized */
	if (np->pde)
		proc_device_tree_update_prop(np->pde, newprop, oldprop);
#endif /* CONFIG_PROC_DEVICETREE */

	return 0;
}
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

#if defined(CONFIG_OF_DYNAMIC)
/*
 * Support for dynamic device trees.
 *
 * On some platforms, the device tree can be manipulated at runtime.
 * The routines in this section support adding, removing and changing
 * device tree nodes.
 */

1659 1660 1661 1662 1663 1664
static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);

int of_reconfig_notifier_register(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
}
1665
EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1666 1667 1668 1669 1670

int of_reconfig_notifier_unregister(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
}
1671
EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1672 1673 1674 1675 1676 1677 1678 1679 1680

int of_reconfig_notify(unsigned long action, void *p)
{
	int rc;

	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
	return notifier_to_errno(rc);
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
#ifdef CONFIG_PROC_DEVICETREE
static void of_add_proc_dt_entry(struct device_node *dn)
{
	struct proc_dir_entry *ent;

	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
	if (ent)
		proc_device_tree_add_node(dn, ent);
}
#else
static void of_add_proc_dt_entry(struct device_node *dn)
{
	return;
}
#endif

1697 1698 1699
/**
 * of_attach_node - Plug a device node into the tree and global list.
 */
1700
int of_attach_node(struct device_node *np)
1701 1702
{
	unsigned long flags;
1703 1704 1705 1706 1707
	int rc;

	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
	if (rc)
		return rc;
1708

1709
	raw_spin_lock_irqsave(&devtree_lock, flags);
1710
	np->sibling = np->parent->child;
1711
	np->allnext = of_allnodes;
1712
	np->parent->child = np;
1713
	of_allnodes = np;
1714
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1715 1716

	of_add_proc_dt_entry(np);
1717
	return 0;
1718 1719
}

1720 1721 1722
#ifdef CONFIG_PROC_DEVICETREE
static void of_remove_proc_dt_entry(struct device_node *dn)
{
1723
	proc_remove(dn->pde);
1724 1725 1726 1727 1728 1729 1730 1731
}
#else
static void of_remove_proc_dt_entry(struct device_node *dn)
{
	return;
}
#endif

1732 1733 1734 1735 1736 1737
/**
 * of_detach_node - "Unplug" a node from the device tree.
 *
 * The caller must hold a reference to the node.  The memory associated with
 * the node is not freed until its refcount goes to zero.
 */
1738
int of_detach_node(struct device_node *np)
1739 1740 1741
{
	struct device_node *parent;
	unsigned long flags;
1742 1743 1744 1745 1746
	int rc = 0;

	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
	if (rc)
		return rc;
1747

1748
	raw_spin_lock_irqsave(&devtree_lock, flags);
1749

1750 1751
	if (of_node_check_flag(np, OF_DETACHED)) {
		/* someone already detached it */
1752
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1753
		return rc;
1754 1755
	}

1756
	parent = np->parent;
1757
	if (!parent) {
1758
		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1759
		return rc;
1760
	}
1761

1762 1763
	if (of_allnodes == np)
		of_allnodes = np->allnext;
1764 1765
	else {
		struct device_node *prev;
1766
		for (prev = of_allnodes;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		     prev->allnext != np;
		     prev = prev->allnext)
			;
		prev->allnext = np->allnext;
	}

	if (parent->child == np)
		parent->child = np->sibling;
	else {
		struct device_node *prevsib;
		for (prevsib = np->parent->child;
		     prevsib->sibling != np;
		     prevsib = prevsib->sibling)
			;
		prevsib->sibling = np->sibling;
	}

	of_node_set_flag(np, OF_DETACHED);
1785
	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1786 1787

	of_remove_proc_dt_entry(np);
1788
	return rc;
1789 1790 1791
}
#endif /* defined(CONFIG_OF_DYNAMIC) */

1792 1793 1794 1795 1796 1797 1798 1799 1800
static void of_alias_add(struct alias_prop *ap, struct device_node *np,
			 int id, const char *stem, int stem_len)
{
	ap->np = np;
	ap->id = id;
	strncpy(ap->stem, stem, stem_len);
	ap->stem[stem_len] = 0;
	list_add_tail(&ap->link, &aliases_lookup);
	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1801
		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
}

/**
 * of_alias_scan - Scan all properties of 'aliases' node
 *
 * The function scans all the properties of 'aliases' node and populate
 * the the global lookup table with the properties.  It returns the
 * number of alias_prop found, or error code in error case.
 *
 * @dt_alloc:	An allocator that provides a virtual address to memory
 *		for the resulting tree
 */
void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
{
	struct property *pp;

	of_chosen = of_find_node_by_path("/chosen");
	if (of_chosen == NULL)
		of_chosen = of_find_node_by_path("/chosen@0");
1821 1822 1823 1824 1825 1826 1827 1828 1829

	if (of_chosen) {
		const char *name;

		name = of_get_property(of_chosen, "linux,stdout-path", NULL);
		if (name)
			of_stdout = of_find_node_by_path(name);
	}

1830 1831 1832 1833
	of_aliases = of_find_node_by_path("/aliases");
	if (!of_aliases)
		return;

1834
	for_each_property_of_node(of_aliases, pp) {
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		const char *start = pp->name;
		const char *end = start + strlen(start);
		struct device_node *np;
		struct alias_prop *ap;
		int id, len;

		/* Skip those we do not want to proceed */
		if (!strcmp(pp->name, "name") ||
		    !strcmp(pp->name, "phandle") ||
		    !strcmp(pp->name, "linux,phandle"))
			continue;

		np = of_find_node_by_path(pp->value);
		if (!np)
			continue;

		/* walk the alias backwards to extract the id and work out
		 * the 'stem' string */
		while (isdigit(*(end-1)) && end > start)
			end--;
		len = end - start;

		if (kstrtoint(end, 10, &id) < 0)
			continue;

		/* Allocate an alias_prop with enough space for the stem */
		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
		if (!ap)
			continue;
1864
		memset(ap, 0, sizeof(*ap) + len + 1);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
		ap->alias = start;
		of_alias_add(ap, np, id, start, len);
	}
}

/**
 * of_alias_get_id - Get alias id for the given device_node
 * @np:		Pointer to the given device_node
 * @stem:	Alias stem of the given device_node
 *
 * The function travels the lookup table to get alias id for the given
 * device_node and alias stem.  It returns the alias id if find it.
 */
int of_alias_get_id(struct device_node *np, const char *stem)
{
	struct alias_prop *app;
	int id = -ENODEV;

	mutex_lock(&of_aliases_mutex);
	list_for_each_entry(app, &aliases_lookup, link) {
		if (strcmp(app->stem, stem) != 0)
			continue;

		if (np == app->np) {
			id = app->id;
			break;
		}
	}
	mutex_unlock(&of_aliases_mutex);

	return id;
}
EXPORT_SYMBOL_GPL(of_alias_get_id);
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
			       u32 *pu)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur) {
		curv = prop->value;
		goto out_val;
	}

	curv += sizeof(*cur);
	if (curv >= prop->value + prop->length)
		return NULL;

out_val:
	*pu = be32_to_cpup(curv);
	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_u32);

const char *of_prop_next_string(struct property *prop, const char *cur)
{
	const void *curv = cur;

	if (!prop)
		return NULL;

	if (!cur)
		return prop->value;

	curv += strlen(cur) + 1;
	if (curv >= prop->value + prop->length)
		return NULL;

	return curv;
}
EXPORT_SYMBOL_GPL(of_prop_next_string);
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

/**
 * of_device_is_stdout_path - check if a device node matches the
 *                            linux,stdout-path property
 *
 * Check if this device node matches the linux,stdout-path property
 * in the chosen node. return true if yes, false otherwise.
 */
int of_device_is_stdout_path(struct device_node *dn)
{
	if (!of_stdout)
		return false;

	return of_stdout == dn;
}
EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

/**
 *	of_find_next_cache_node - Find a node's subsidiary cache
 *	@np:	node of type "cpu" or "cache"
 *
 *	Returns a node pointer with refcount incremented, use
 *	of_node_put() on it when done.  Caller should hold a reference
 *	to np.
 */
struct device_node *of_find_next_cache_node(const struct device_node *np)
{
	struct device_node *child;
	const phandle *handle;

	handle = of_get_property(np, "l2-cache", NULL);
	if (!handle)
		handle = of_get_property(np, "next-level-cache", NULL);

	if (handle)
		return of_find_node_by_phandle(be32_to_cpup(handle));

	/* OF on pmac has nodes instead of properties named "l2-cache"
	 * beneath CPU nodes.
	 */
	if (!strcmp(np->type, "cpu"))
		for_each_child_of_node(np, child)
			if (!strcmp(child->type, "cache"))
				return child;

	return NULL;
}
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

/**
 * of_graph_get_next_endpoint() - get next endpoint node
 * @parent: pointer to the parent device node
 * @prev: previous endpoint node, or NULL to get first
 *
 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
 * of the passed @prev node is not decremented, the caller have to use
 * of_node_put() on it when done.
 */
struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
					struct device_node *prev)
{
	struct device_node *endpoint;
	struct device_node *port = NULL;

	if (!parent)
		return NULL;

	if (!prev) {
		struct device_node *node;
		/*
		 * It's the first call, we have to find a port subnode
		 * within this node or within an optional 'ports' node.
		 */
		node = of_get_child_by_name(parent, "ports");
		if (node)
			parent = node;

		port = of_get_child_by_name(parent, "port");

		if (port) {
			/* Found a port, get an endpoint. */
			endpoint = of_get_next_child(port, NULL);
			of_node_put(port);
		} else {
			endpoint = NULL;
		}

		if (!endpoint)
			pr_err("%s(): no endpoint nodes specified for %s\n",
			       __func__, parent->full_name);
		of_node_put(node);
	} else {
		port = of_get_parent(prev);
2031 2032
		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
			      __func__, prev->full_name))
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
			return NULL;

		/* Avoid dropping prev node refcount to 0. */
		of_node_get(prev);
		endpoint = of_get_next_child(port, prev);
		if (endpoint) {
			of_node_put(port);
			return endpoint;
		}

		/* No more endpoints under this port, try the next one. */
		do {
			port = of_get_next_child(parent, port);
			if (!port)
				return NULL;
		} while (of_node_cmp(port->name, "port"));

		/* Pick up the first endpoint in this port. */
		endpoint = of_get_next_child(port, NULL);
		of_node_put(port);
	}

	return endpoint;
}
EXPORT_SYMBOL(of_graph_get_next_endpoint);

/**
 * of_graph_get_remote_port_parent() - get remote port's parent node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote device node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port_parent(
			       const struct device_node *node)
{
	struct device_node *np;
	unsigned int depth;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);

	/* Walk 3 levels up only if there is 'ports' node. */
	for (depth = 3; depth && np; depth--) {
		np = of_get_next_parent(np);
		if (depth == 2 && of_node_cmp(np->name, "ports"))
			break;
	}
	return np;
}
EXPORT_SYMBOL(of_graph_get_remote_port_parent);

/**
 * of_graph_get_remote_port() - get remote port node
 * @node: pointer to a local endpoint device_node
 *
 * Return: Remote port node associated with remote endpoint node linked
 *	   to @node. Use of_node_put() on it when done.
 */
struct device_node *of_graph_get_remote_port(const struct device_node *node)
{
	struct device_node *np;

	/* Get remote endpoint node. */
	np = of_parse_phandle(node, "remote-endpoint", 0);
	if (!np)
		return NULL;
	return of_get_next_parent(np);
}
EXPORT_SYMBOL(of_graph_get_remote_port);