blk-mq.c 55.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

45
	for (i = 0; i < hctx->ctx_map.size; i++)
46
		if (hctx->ctx_map.map[i].word)
47 48 49 50 51
			return true;

	return false;
}

52 53 54 55 56 57 58 59 60
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

61 62 63 64 65 66
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
67 68 69 70 71 72 73 74 75 76 77 78
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
79 80
}

81
void blk_mq_freeze_queue_start(struct request_queue *q)
82
{
83
	int freeze_depth;
84

85 86
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
87
		percpu_ref_kill(&q->q_usage_counter);
88
		blk_mq_run_hw_queues(q, false);
89
	}
90
}
91
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
92 93 94

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
95
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
96 97
}

98 99 100 101
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
102
void blk_freeze_queue(struct request_queue *q)
103
{
104 105 106 107 108 109 110
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
111 112 113
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
114 115 116 117 118 119 120 121 122

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
123
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124

125
void blk_mq_unfreeze_queue(struct request_queue *q)
126
{
127
	int freeze_depth;
128

129 130 131
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
132
		percpu_ref_reinit(&q->q_usage_counter);
133
		wake_up_all(&q->mq_freeze_wq);
134
	}
135
}
136
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137

138 139 140 141 142 143 144 145
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
146 147 148 149 150 151 152

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
153 154
}

155 156 157 158 159 160
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

161 162
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
163
{
164 165 166
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

167 168 169
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
170
	rq->mq_ctx = ctx;
171
	rq->cmd_flags |= rw_flags;
172 173 174 175 176 177
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
178
	rq->start_time = jiffies;
179 180
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
181
	set_start_time_ns(rq);
182 183 184 185 186 187 188 189 190 191
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

192 193
	rq->cmd = rq->__cmd;

194 195 196 197 198 199
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
200 201
	rq->timeout = 0;

202 203 204 205
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

206 207 208
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

209
static struct request *
210
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
211 212 213 214
{
	struct request *rq;
	unsigned int tag;

215
	tag = blk_mq_get_tag(data);
216
	if (tag != BLK_MQ_TAG_FAIL) {
217
		rq = data->hctx->tags->rqs[tag];
218

219
		if (blk_mq_tag_busy(data->hctx)) {
220
			rq->cmd_flags = REQ_MQ_INFLIGHT;
221
			atomic_inc(&data->hctx->nr_active);
222 223 224
		}

		rq->tag = tag;
225
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
226 227 228 229 230 231
		return rq;
	}

	return NULL;
}

232 233
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
234
{
235 236
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
237
	struct request *rq;
238
	struct blk_mq_alloc_data alloc_data;
239
	int ret;
240

241
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
242 243
	if (ret)
		return ERR_PTR(ret);
244

245 246
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
247
	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
248

249
	rq = __blk_mq_alloc_request(&alloc_data, rw);
250
	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
251 252 253 254 255
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
256
		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
257 258
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
259 260
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
261
	if (!rq) {
262
		blk_queue_exit(q);
263
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
264
	}
265 266
	return rq;
}
267
EXPORT_SYMBOL(blk_mq_alloc_request);
268 269 270 271 272 273 274

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

275 276
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
277
	rq->cmd_flags = 0;
278

279
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
280
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
281
	blk_queue_exit(q);
282 283
}

284
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
285 286 287 288 289
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
290 291 292 293 294 295 296 297 298 299 300

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
301
}
J
Jens Axboe 已提交
302
EXPORT_SYMBOL_GPL(blk_mq_free_request);
303

304
inline void __blk_mq_end_request(struct request *rq, int error)
305
{
M
Ming Lei 已提交
306 307
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
308
	if (rq->end_io) {
309
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
310 311 312
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
313
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
314
	}
315
}
316
EXPORT_SYMBOL(__blk_mq_end_request);
317

318
void blk_mq_end_request(struct request *rq, int error)
319 320 321
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
322
	__blk_mq_end_request(rq, error);
323
}
324
EXPORT_SYMBOL(blk_mq_end_request);
325

326
static void __blk_mq_complete_request_remote(void *data)
327
{
328
	struct request *rq = data;
329

330
	rq->q->softirq_done_fn(rq);
331 332
}

333
static void blk_mq_ipi_complete_request(struct request *rq)
334 335
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
336
	bool shared = false;
337 338
	int cpu;

C
Christoph Hellwig 已提交
339
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
340 341 342
		rq->q->softirq_done_fn(rq);
		return;
	}
343 344

	cpu = get_cpu();
C
Christoph Hellwig 已提交
345 346 347 348
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
349
		rq->csd.func = __blk_mq_complete_request_remote;
350 351
		rq->csd.info = rq;
		rq->csd.flags = 0;
352
		smp_call_function_single_async(ctx->cpu, &rq->csd);
353
	} else {
354
		rq->q->softirq_done_fn(rq);
355
	}
356 357
	put_cpu();
}
358

359
static void __blk_mq_complete_request(struct request *rq)
360 361 362 363
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
364
		blk_mq_end_request(rq, rq->errors);
365 366 367 368
	else
		blk_mq_ipi_complete_request(rq);
}

369 370 371 372 373 374 375 376
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
377
void blk_mq_complete_request(struct request *rq, int error)
378
{
379 380 381
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
382
		return;
383 384
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
385
		__blk_mq_complete_request(rq);
386
	}
387 388
}
EXPORT_SYMBOL(blk_mq_complete_request);
389

390 391 392 393 394 395
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

396
void blk_mq_start_request(struct request *rq)
397 398 399 400 401
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
402
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
403 404
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
405

406
	blk_add_timer(rq);
407

408 409 410 411 412 413
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

414 415 416 417 418 419
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
420 421 422 423
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
424 425 426 427 428 429 430 431 432

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
433
}
434
EXPORT_SYMBOL(blk_mq_start_request);
435

436
static void __blk_mq_requeue_request(struct request *rq)
437 438 439 440
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
441

442 443 444 445
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
446 447
}

448 449 450 451 452
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
453
	blk_mq_add_to_requeue_list(rq, true);
454 455 456
}
EXPORT_SYMBOL(blk_mq_requeue_request);

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

484 485 486 487 488
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

513 514 515 516 517 518
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

519 520 521 522 523 524
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

545 546
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
547
	return tags->rqs[tag];
548 549 550
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

551
struct blk_mq_timeout_data {
552 553
	unsigned long next;
	unsigned int next_set;
554 555
};

556
void blk_mq_rq_timed_out(struct request *req, bool reserved)
557
{
558 559
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
560 561 562 563 564 565 566 567 568 569

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
570 571
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
572

573
	if (ops->timeout)
574
		ret = ops->timeout(req, reserved);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
590
}
591

592 593 594 595
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
596

597 598 599 600 601
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
602 603
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
604
		return;
605
	}
606 607
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
608

609 610
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
611
			blk_mq_rq_timed_out(rq, reserved);
612 613 614 615
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
616 617
}

618
static void blk_mq_timeout_work(struct work_struct *work)
619
{
620 621
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
622 623 624 625 626
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
627

628 629 630
	if (blk_queue_enter(q, true))
		return;

631
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
632

633 634 635
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
636
	} else {
637 638
		struct blk_mq_hw_ctx *hctx;

639 640 641 642 643
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
644
	}
645
	blk_queue_exit(q);
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

687 688 689 690 691 692 693 694 695
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

696
	for (i = 0; i < hctx->ctx_map.size; i++) {
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

721 722 723 724 725 726 727 728 729 730 731
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
732 733
	LIST_HEAD(driver_list);
	struct list_head *dptr;
734
	int queued;
735

736
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
737

738
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
739 740 741 742 743 744 745
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
746
	flush_busy_ctxs(hctx, &rq_list);
747 748 749 750 751 752 753 754 755 756 757 758

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

759 760 761 762 763 764
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

765 766 767
	/*
	 * Now process all the entries, sending them to the driver.
	 */
768
	queued = 0;
769
	while (!list_empty(&rq_list)) {
770
		struct blk_mq_queue_data bd;
771 772 773 774 775
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

776 777 778 779 780
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
781 782 783 784 785 786
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
787
			__blk_mq_requeue_request(rq);
788 789 790 791
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
792
			rq->errors = -EIO;
793
			blk_mq_end_request(rq, rq->errors);
794 795 796 797 798
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
799 800 801 802 803 804 805

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
821 822 823 824 825 826 827 828 829 830
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
831 832 833
	}
}

834 835 836 837 838 839 840 841
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
842 843
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
844 845

	if (--hctx->next_cpu_batch <= 0) {
846
		int cpu = hctx->next_cpu, next_cpu;
847 848 849 850 851 852 853

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
854 855

		return cpu;
856 857
	}

858
	return hctx->next_cpu;
859 860
}

861 862
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
863 864
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
865 866
		return;

867
	if (!async) {
868 869
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
870
			__blk_mq_run_hw_queue(hctx);
871
			put_cpu();
872 873
			return;
		}
874

875
		put_cpu();
876
	}
877

878 879
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
880 881
}

882
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
883 884 885 886 887 888 889
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
890
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
891 892
			continue;

893
		blk_mq_run_hw_queue(hctx, async);
894 895
	}
}
896
EXPORT_SYMBOL(blk_mq_run_hw_queues);
897 898 899

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
900 901
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
902 903 904 905
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

906 907 908 909 910 911 912 913 914 915
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

916 917 918
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
919

920
	blk_mq_run_hw_queue(hctx, false);
921 922 923
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

924 925 926 927 928 929 930 931 932 933
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

934
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
935 936 937 938 939 940 941 942 943
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
944
		blk_mq_run_hw_queue(hctx, async);
945 946 947 948
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

949
static void blk_mq_run_work_fn(struct work_struct *work)
950 951 952
{
	struct blk_mq_hw_ctx *hctx;

953
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
954

955 956 957
	__blk_mq_run_hw_queue(hctx);
}

958 959 960 961 962 963 964 965 966 967 968 969
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
970 971
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
972

973 974
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
975 976 977
}
EXPORT_SYMBOL(blk_mq_delay_queue);

978 979 980 981
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct blk_mq_ctx *ctx,
					    struct request *rq,
					    bool at_head)
982
{
983 984
	trace_block_rq_insert(hctx->queue, rq);

985 986 987 988
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
989
}
990

991 992 993 994 995 996
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
				    struct request *rq, bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
997 998 999
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1000 1001
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1002
{
1003
	struct request_queue *q = rq->q;
1004
	struct blk_mq_hw_ctx *hctx;
1005 1006 1007 1008 1009
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1010 1011 1012

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1013 1014 1015
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1016 1017 1018

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1019 1020

	blk_mq_put_ctx(current_ctx);
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1052
		__blk_mq_insert_req_list(hctx, ctx, rq, false);
1053
	}
1054
	blk_mq_hctx_mark_pending(hctx, ctx);
1055 1056 1057
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1058
	blk_mq_put_ctx(current_ctx);
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1121

1122
	if (blk_do_io_stat(rq))
1123
		blk_account_io_start(rq, 1);
1124 1125
}

1126 1127 1128 1129 1130 1131
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1132 1133 1134
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1135
{
1136
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1137 1138 1139 1140 1141 1142 1143
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1144 1145
		struct request_queue *q = hctx->queue;

1146 1147 1148 1149 1150
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1151

1152 1153 1154
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1155
	}
1156
}
1157

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1171
	struct blk_mq_alloc_data alloc_data;
1172

1173
	blk_queue_enter_live(q);
1174 1175 1176
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1177
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1178
		rw |= REQ_SYNC;
1179

1180
	trace_block_getrq(q, bio, rw);
1181
	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1182
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1183
	if (unlikely(!rq)) {
1184
		__blk_mq_run_hw_queue(hctx);
1185 1186
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1187 1188

		ctx = blk_mq_get_ctx(q);
1189
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1190
		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1191 1192 1193
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1194 1195 1196
	}

	hctx->queued++;
1197 1198 1199 1200 1201
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1202
static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1213
	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1214 1215 1216 1217 1218 1219 1220

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1221 1222
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1223
		return 0;
1224
	}
1225

1226 1227 1228 1229 1230 1231 1232
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
		return 0;
1233
	}
1234 1235

	return -1;
1236 1237
}

1238 1239 1240 1241 1242
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1243
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1244 1245 1246 1247 1248
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1249 1250
	unsigned int request_count = 0;
	struct blk_plug *plug;
1251
	struct request *same_queue_rq = NULL;
1252
	blk_qc_t cookie;
1253 1254 1255 1256

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1257
		bio_io_error(bio);
1258
		return BLK_QC_T_NONE;
1259 1260
	}

1261 1262
	blk_queue_split(q, &bio, q->bio_split);

1263 1264 1265
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count,
					   &same_queue_rq))
1266
			return BLK_QC_T_NONE;
1267 1268
	} else
		request_count = blk_plug_queued_count(q);
1269

1270 1271
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
1272
		return BLK_QC_T_NONE;
1273

1274
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1275 1276 1277 1278 1279 1280 1281

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1282
	plug = current->plug;
1283 1284 1285 1286 1287
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1288 1289 1290
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1291 1292 1293 1294

		blk_mq_bio_to_request(rq, bio);

		/*
1295
		 * We do limited pluging. If the bio can be merged, do that.
1296 1297
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1298
		 */
1299
		if (plug) {
1300 1301
			/*
			 * The plug list might get flushed before this. If that
1302 1303 1304
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1305 1306
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1307
				list_del_init(&old_rq->queuelist);
1308
			}
1309 1310 1311 1312 1313
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1314 1315 1316
			goto done;
		if (!blk_mq_direct_issue_request(old_rq, &cookie))
			goto done;
1317
		blk_mq_insert_request(old_rq, false, true, true);
1318
		goto done;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1332 1333
done:
	return cookie;
1334 1335 1336 1337 1338 1339
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1340
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1341 1342 1343
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1344 1345
	struct blk_plug *plug;
	unsigned int request_count = 0;
1346 1347
	struct blk_map_ctx data;
	struct request *rq;
1348
	blk_qc_t cookie;
1349 1350 1351 1352

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1353
		bio_io_error(bio);
1354
		return BLK_QC_T_NONE;
1355 1356
	}

1357 1358
	blk_queue_split(q, &bio, q->bio_split);

1359
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1360
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1361
		return BLK_QC_T_NONE;
1362 1363

	rq = blk_mq_map_request(q, bio, &data);
1364
	if (unlikely(!rq))
1365
		return BLK_QC_T_NONE;
1366

1367
	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1380 1381 1382
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
M
Ming Lei 已提交
1383
		if (!request_count)
1384
			trace_block_plug(q);
1385 1386 1387 1388

		blk_mq_put_ctx(data.ctx);

		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1389 1390
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1391
		}
1392

1393
		list_add_tail(&rq->queuelist, &plug->mq_list);
1394
		return cookie;
1395 1396
	}

1397 1398 1399 1400 1401 1402 1403 1404 1405
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1406 1407
	}

1408
	blk_mq_put_ctx(data.ctx);
1409
	return cookie;
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1421 1422
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1423
{
1424
	struct page *page;
1425

1426
	if (tags->rqs && set->ops->exit_request) {
1427
		int i;
1428

1429 1430
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1431
				continue;
1432 1433
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1434
			tags->rqs[i] = NULL;
1435
		}
1436 1437
	}

1438 1439
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1440
		list_del_init(&page->lru);
1441 1442 1443 1444 1445
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1446 1447 1448
		__free_pages(page, page->private);
	}

1449
	kfree(tags->rqs);
1450

1451
	blk_mq_free_tags(tags);
1452 1453 1454 1455
}

static size_t order_to_size(unsigned int order)
{
1456
	return (size_t)PAGE_SIZE << order;
1457 1458
}

1459 1460
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1461
{
1462
	struct blk_mq_tags *tags;
1463 1464 1465
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1466
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1467 1468
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1469 1470
	if (!tags)
		return NULL;
1471

1472 1473
	INIT_LIST_HEAD(&tags->page_list);

1474 1475 1476
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1477 1478 1479 1480
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1481 1482 1483 1484 1485

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1486
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1487
				cache_line_size());
1488
	left = rq_size * set->queue_depth;
1489

1490
	for (i = 0; i < set->queue_depth; ) {
1491 1492 1493 1494 1495 1496 1497 1498 1499
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1500
			page = alloc_pages_node(set->numa_node,
1501
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1502
				this_order);
1503 1504 1505 1506 1507 1508 1509 1510 1511
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1512
			goto fail;
1513 1514

		page->private = this_order;
1515
		list_add_tail(&page->lru, &tags->page_list);
1516 1517

		p = page_address(page);
1518 1519 1520 1521 1522
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1523
		entries_per_page = order_to_size(this_order) / rq_size;
1524
		to_do = min(entries_per_page, set->queue_depth - i);
1525 1526
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1527 1528 1529 1530
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1531 1532
						set->numa_node)) {
					tags->rqs[i] = NULL;
1533
					goto fail;
1534
				}
1535 1536
			}

1537 1538 1539 1540
			p += rq_size;
			i++;
		}
	}
1541
	return tags;
1542

1543 1544 1545
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1623 1624 1625 1626 1627

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1628 1629 1630 1631

	return NOTIFY_OK;
}

1632
/* hctx->ctxs will be freed in queue's release handler */
1633 1634 1635 1636
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1637 1638
	unsigned flush_start_tag = set->queue_depth;

1639 1640
	blk_mq_tag_idle(hctx);

1641 1642 1643 1644 1645
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1646 1647 1648 1649
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650
	blk_free_flush_queue(hctx->fq);
1651 1652 1653
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1663
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1673
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1674 1675 1676
		free_cpumask_var(hctx->cpumask);
}

1677 1678 1679
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1680
{
1681
	int node;
1682
	unsigned flush_start_tag = set->queue_depth;
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1694
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1695 1696 1697 1698 1699 1700

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1701 1702

	/*
1703 1704
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1705
	 */
1706 1707 1708 1709
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1710

1711 1712
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1713

1714
	hctx->nr_ctx = 0;
1715

1716 1717 1718
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1719

1720 1721 1722
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1723

1724 1725 1726 1727 1728
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1729

1730
	return 0;
1731

1732 1733 1734 1735 1736
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1737 1738 1739 1740 1741 1742
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1743

1744 1745
	return -1;
}
1746

1747 1748 1749 1750 1751
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1752

1753 1754 1755 1756 1757
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1758 1759 1760 1761 1762 1763 1764 1765 1766
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1767
	blk_mq_exit_hw_queues(q, set, i);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1791 1792
		hctx = q->mq_ops->map_queue(q, i);

1793 1794 1795 1796 1797 1798 1799 1800 1801
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1802 1803
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1804 1805 1806 1807
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1808
	struct blk_mq_tag_set *set = q->tag_set;
1809

1810 1811 1812 1813 1814
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1815
	queue_for_each_hw_ctx(q, hctx, i) {
1816
		cpumask_clear(hctx->cpumask);
1817 1818 1819 1820 1821 1822 1823 1824
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1825
		if (!cpumask_test_cpu(i, online_mask))
1826 1827
			continue;

1828
		hctx = q->mq_ops->map_queue(q, i);
1829
		cpumask_set_cpu(i, hctx->cpumask);
1830 1831 1832
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1833

1834 1835
	mutex_unlock(&q->sysfs_lock);

1836
	queue_for_each_hw_ctx(q, hctx, i) {
1837 1838
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1839
		/*
1840 1841
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1842 1843 1844 1845 1846 1847
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1848
			hctx->tags = NULL;
1849 1850 1851
			continue;
		}

M
Ming Lei 已提交
1852 1853 1854 1855 1856 1857
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1858 1859 1860 1861 1862
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1863
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1864

1865 1866 1867
		/*
		 * Initialize batch roundrobin counts
		 */
1868 1869 1870
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1871 1872

	queue_for_each_ctx(q, ctx, i) {
1873
		if (!cpumask_test_cpu(i, online_mask))
1874 1875 1876 1877 1878
			continue;

		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->tags->cpumask);
	}
1879 1880
}

1881
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1882 1883 1884 1885
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
1897 1898 1899

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
1900
		queue_set_hctx_shared(q, shared);
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
1911 1912 1913 1914 1915 1916
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
1917 1918 1919 1920 1921 1922 1923 1924 1925
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
1926 1927 1928 1929 1930 1931 1932 1933 1934

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
1935
	list_add_tail(&q->tag_set_list, &set->tag_list);
1936

1937 1938 1939
	mutex_unlock(&set->tag_list_lock);
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1952 1953 1954 1955
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1956
		kfree(hctx);
1957
	}
1958

1959 1960 1961
	kfree(q->mq_map);
	q->mq_map = NULL;

1962 1963 1964 1965 1966 1967
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1968
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1986 1987
{
	struct blk_mq_hw_ctx **hctxs;
1988
	struct blk_mq_ctx __percpu *ctx;
1989
	unsigned int *map;
1990 1991 1992 1993 1994 1995
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1996 1997
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1998 1999 2000 2001

	if (!hctxs)
		goto err_percpu;

2002 2003 2004 2005
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

2006
	for (i = 0; i < set->nr_hw_queues; i++) {
2007 2008
		int node = blk_mq_hw_queue_to_node(map, i);

2009 2010
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2011 2012 2013
		if (!hctxs[i])
			goto err_hctxs;

2014 2015
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
2016 2017
			goto err_hctxs;

2018
		atomic_set(&hctxs[i]->nr_active, 0);
2019
		hctxs[i]->numa_node = node;
2020 2021 2022
		hctxs[i]->queue_num = i;
	}

2023
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2024
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2025 2026

	q->nr_queues = nr_cpu_ids;
2027
	q->nr_hw_queues = set->nr_hw_queues;
2028
	q->mq_map = map;
2029 2030 2031 2032

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2033
	q->mq_ops = set->ops;
2034
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2035

2036 2037 2038
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2039 2040
	q->sg_reserved_size = INT_MAX;

2041 2042 2043 2044
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2045 2046 2047 2048 2049
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2050 2051 2052 2053 2054
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2055 2056
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2057

2058
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2059

2060
	if (blk_mq_init_hw_queues(q, set))
2061
		goto err_hctxs;
2062

2063
	get_online_cpus();
2064 2065
	mutex_lock(&all_q_mutex);

2066
	list_add_tail(&q->all_q_node, &all_q_list);
2067
	blk_mq_add_queue_tag_set(set, q);
2068
	blk_mq_map_swqueue(q, cpu_online_mask);
2069

2070
	mutex_unlock(&all_q_mutex);
2071
	put_online_cpus();
2072

2073
	return q;
2074

2075
err_hctxs:
2076
	kfree(map);
2077
	for (i = 0; i < set->nr_hw_queues; i++) {
2078 2079
		if (!hctxs[i])
			break;
2080
		free_cpumask_var(hctxs[i]->cpumask);
2081
		kfree(hctxs[i]);
2082
	}
2083
err_map:
2084 2085 2086 2087 2088
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2089
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2090 2091 2092

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2093
	struct blk_mq_tag_set	*set = q->tag_set;
2094

2095 2096 2097 2098
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2099 2100
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2101 2102
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2103 2104 2105
}

/* Basically redo blk_mq_init_queue with queue frozen */
2106 2107
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2108
{
2109
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2110

2111 2112
	blk_mq_sysfs_unregister(q);

2113
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2114 2115 2116 2117 2118 2119 2120

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2121
	blk_mq_map_swqueue(q, online_mask);
2122

2123
	blk_mq_sysfs_register(q);
2124 2125
}

2126 2127
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2128 2129
{
	struct request_queue *q;
2130 2131 2132 2133 2134 2135 2136
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2137 2138

	/*
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2154
	 */
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2165
		return NOTIFY_OK;
2166
	}
2167 2168

	mutex_lock(&all_q_mutex);
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2179
	list_for_each_entry(q, &all_q_list, all_q_node) {
2180 2181
		blk_mq_freeze_queue_wait(q);

2182 2183 2184 2185 2186 2187 2188
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2189
	list_for_each_entry(q, &all_q_list, all_q_node)
2190
		blk_mq_queue_reinit(q, &online_new);
2191 2192 2193 2194

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2195 2196 2197 2198
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2253 2254 2255 2256 2257 2258
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2259 2260 2261 2262 2263 2264
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2265 2266
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2267 2268
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2269 2270
	if (!set->nr_hw_queues)
		return -EINVAL;
2271
	if (!set->queue_depth)
2272 2273 2274 2275
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2276
	if (!set->ops->queue_rq || !set->ops->map_queue)
2277 2278
		return -EINVAL;

2279 2280 2281 2282 2283
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2284

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2295 2296
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2297 2298
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2299
		return -ENOMEM;
2300

2301 2302
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2303

2304 2305 2306
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2307
	return 0;
2308
enomem:
2309 2310
	kfree(set->tags);
	set->tags = NULL;
2311 2312 2313 2314 2315 2316 2317 2318
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2319
	for (i = 0; i < set->nr_hw_queues; i++) {
2320
		if (set->tags[i])
2321 2322 2323
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2324
	kfree(set->tags);
2325
	set->tags = NULL;
2326 2327 2328
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2361 2362 2363 2364
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2365
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2366 2367 2368 2369

	return 0;
}
subsys_initcall(blk_mq_init);