machine.c 49.8 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37
	machine->vdso_info = NULL;
38
	machine->env = NULL;
39

40 41
	machine->pid = pid;

42
	machine->symbol_filter = NULL;
43
	machine->id_hdr_size = 0;
44
	machine->comm_exec = false;
45
	machine->kernel_start = 0;
46

47 48
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

49 50 51 52 53
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
54
		struct thread *thread = machine__findnew_thread(machine, -1,
55
								pid);
56 57 58 59 60 61
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
62
		thread__set_comm(thread, comm, 0);
63
		thread__put(thread);
64 65
	}

66 67
	machine->current_tid = NULL;

68 69 70
	return 0;
}

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

88
static void dsos__purge(struct dsos *dsos)
89 90 91
{
	struct dso *pos, *n;

92 93
	pthread_rwlock_wrlock(&dsos->lock);

94
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
95
		RB_CLEAR_NODE(&pos->rb_node);
96
		pos->root = NULL;
97 98
		list_del_init(&pos->node);
		dso__put(pos);
99
	}
100 101

	pthread_rwlock_unlock(&dsos->lock);
102
}
103

104 105 106
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
107
	pthread_rwlock_destroy(&dsos->lock);
108 109
}

110 111
void machine__delete_threads(struct machine *machine)
{
112
	struct rb_node *nd;
113

114 115
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
116 117 118 119
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
120
		__machine__remove_thread(machine, t, false);
121
	}
122
	pthread_rwlock_unlock(&machine->threads_lock);
123 124
}

125 126
void machine__exit(struct machine *machine)
{
127
	machine__destroy_kernel_maps(machine);
128
	map_groups__exit(&machine->kmaps);
129
	dsos__exit(&machine->dsos);
130
	machine__exit_vdso(machine);
131
	zfree(&machine->root_dir);
132
	zfree(&machine->current_tid);
133
	pthread_rwlock_destroy(&machine->threads_lock);
134 135 136 137 138 139 140 141
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

142 143 144 145
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
146
	machines->symbol_filter = NULL;
147 148 149 150 151 152 153 154 155
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
156 157
			      const char *root_dir)
{
158
	struct rb_node **p = &machines->guests.rb_node;
159 160 161 162 163 164 165 166 167 168 169
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

170 171
	machine->symbol_filter = machines->symbol_filter;

172 173 174 175 176 177 178 179 180 181
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
182
	rb_insert_color(&machine->rb_node, &machines->guests);
183 184 185 186

	return machine;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

202 203 204 205 206 207 208 209 210 211 212 213 214
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

215
struct machine *machines__find(struct machines *machines, pid_t pid)
216
{
217
	struct rb_node **p = &machines->guests.rb_node;
218 219 220 221
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

222 223 224
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

241
struct machine *machines__findnew(struct machines *machines, pid_t pid)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
258
				seen = strlist__new(NULL, NULL);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

275 276
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
277 278 279
{
	struct rb_node *nd;

280
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

300
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
301 302 303 304
{
	struct rb_node *node;
	struct machine *machine;

305 306 307
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
308 309 310 311 312 313 314
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

315 316 317 318 319 320 321 322 323 324 325 326 327
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

328
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
329 330 331 332
	if (!leader)
		goto out_err;

	if (!leader->mg)
333
		leader->mg = map_groups__new(machine);
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
350
		map_groups__put(th->mg);
351 352 353 354 355 356 357 358 359 360
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

361 362 363
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
364 365 366 367 368 369
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
370
	 * Front-end cache - TID lookups come in blocks,
371 372 373
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
374
	th = machine->last_match;
375 376 377 378 379 380
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

381
		machine->last_match = NULL;
382
	}
383 384 385 386 387

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

388
		if (th->tid == tid) {
389
			machine->last_match = th;
390
			machine__update_thread_pid(machine, th, pid);
391 392 393
			return th;
		}

394
		if (tid < th->tid)
395 396 397 398 399 400 401 402
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

403
	th = thread__new(pid, tid);
404 405 406
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
407 408 409 410 411 412 413 414 415

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
416
		if (thread__init_map_groups(th, machine)) {
417
			rb_erase_init(&th->rb_node, &machine->threads);
418
			RB_CLEAR_NODE(&th->rb_node);
419
			thread__delete(th);
420
			return NULL;
421
		}
422 423 424 425
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
426
		machine->last_match = th;
427 428 429 430 431
	}

	return th;
}

432 433 434 435 436
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

437 438
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
439
{
440 441 442 443 444 445
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
446 447
}

448 449
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
450
{
451 452 453 454 455
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
456
}
457

458 459 460 461 462 463 464 465 466
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

467 468
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
469
{
470 471 472
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
473
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
474
	int err = 0;
475

476 477 478
	if (exec)
		machine->comm_exec = true;

479 480 481
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

482 483
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
484
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
485
		err = -1;
486 487
	}

488 489 490
	thread__put(thread);

	return err;
491 492 493
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
494
				union perf_event *event, struct perf_sample *sample __maybe_unused)
495 496 497 498 499 500
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

501 502 503 504 505 506 507 508
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

509 510 511
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
512 513 514
{
	struct dso *dso;

515 516 517
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
518
	if (!dso) {
519
		dso = __dsos__addnew(&machine->dsos, m->name);
520
		if (dso == NULL)
521
			goto out_unlock;
522 523 524 525 526 527 528

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
529
		if (m->kmod && m->comp)
530
			dso->symtab_type++;
531 532 533

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
534 535
	}

536
	dso__get(dso);
537 538
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
539 540 541
	return dso;
}

542 543 544 545 546 547 548 549
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

550 551 552 553 554 555 556 557
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

558 559 560 561 562 563 564 565
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

581
	dso__set_long_name(dso, dup_filename, true);
582 583
}

584 585
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
586
{
587
	struct map *map = NULL;
588
	struct dso *dso = NULL;
589
	struct kmod_path m;
590

591
	if (kmod_path__parse_name(&m, filename))
592 593
		return NULL;

594 595
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
596 597 598 599 600 601 602
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
603
		goto out;
604
	}
605

606
	dso = machine__findnew_module_dso(machine, &m, filename);
607 608 609
	if (dso == NULL)
		goto out;

610 611
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
612
		goto out;
613 614

	map_groups__insert(&machine->kmaps, map);
615

616 617
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
618
out:
619 620
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
621
	free(m.name);
622 623 624
	return map;
}

625
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
626 627
{
	struct rb_node *nd;
628
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
629

630
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
631
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
632
		ret += __dsos__fprintf(&pos->dsos.head, fp);
633 634 635 636 637
	}

	return ret;
}

638
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
639 640
				     bool (skip)(struct dso *dso, int parm), int parm)
{
641
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
642 643
}

644
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
645 646 647
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
648
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
649

650
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
651 652 653 654 655 656 657 658 659 660
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
661
	struct dso *kdso = machine__kernel_map(machine)->dso;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

681 682
	pthread_rwlock_rdlock(&machine->threads_lock);

683 684 685 686 687 688
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

689 690
	pthread_rwlock_unlock(&machine->threads_lock);

691 692 693 694 695 696 697 698 699 700 701 702 703
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

704 705
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
706 707 708 709 710 711 712 713 714
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

715 716 717
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
718 719 720 721 722 723 724 725 726 727 728 729
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

730 731 732 733 734 735 736 737 738
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

739 740 741 742 743 744
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
745 746
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
747
{
748
	char filename[PATH_MAX];
749 750 751
	int i;
	const char *name;
	u64 addr = 0;
752

753
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
754 755 756 757

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

758 759 760 761 762 763 764 765
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
766

767
	return addr;
768 769 770 771 772
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
773
	u64 start = machine__get_running_kernel_start(machine, NULL);
774

775 776 777
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

778 779
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
780
		struct map *map;
781 782 783 784 785 786 787 788

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
789
		map = __machine__kernel_map(machine, type);
790
		kmap = map__kmap(map);
791 792 793
		if (!kmap)
			return -1;

794
		kmap->kmaps = &machine->kmaps;
795
		map_groups__insert(&machine->kmaps, map);
796 797 798 799 800 801 802 803 804 805 806
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
807
		struct map *map = __machine__kernel_map(machine, type);
808

809
		if (map == NULL)
810 811
			continue;

812 813
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
814
		if (kmap && kmap->ref_reloc_sym) {
815 816 817 818 819
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
820 821 822 823
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
824 825
		}

826
		map__put(machine->vmlinux_maps[type]);
827 828 829 830
		machine->vmlinux_maps[type] = NULL;
	}
}

831
int machines__create_guest_kernel_maps(struct machines *machines)
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

880
void machines__destroy_kernel_maps(struct machines *machines)
881
{
882 883 884
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
885 886 887 888 889

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
890
		rb_erase(&pos->rb_node, &machines->guests);
891 892 893 894
		machine__delete(pos);
	}
}

895
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
896 897 898 899 900 901 902 903 904 905 906 907
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
908
	struct map *map = machine__kernel_map(machine);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
927
	struct map *map = machine__kernel_map(machine);
928 929
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

930
	if (ret > 0)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1003
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1004
				const char *dir_name, int depth)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1029 1030 1031 1032 1033 1034 1035 1036 1037
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1038 1039 1040
			if (ret < 0)
				goto out;
		} else {
1041
			struct kmod_path m;
1042

1043 1044 1045
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1046

1047 1048
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1049

1050
			free(m.name);
1051

1052
			if (ret)
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1071
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1072 1073 1074
		 machine->root_dir, version);
	free(version);

1075
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1076 1077
}

1078
static int machine__create_module(void *arg, const char *name, u64 start)
1079
{
1080
	struct machine *machine = arg;
1081
	struct map *map;
1082

1083
	map = machine__findnew_module_map(machine, start, name);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1094 1095 1096
	const char *modules;
	char path[PATH_MAX];

1097
	if (machine__is_default_guest(machine)) {
1098
		modules = symbol_conf.default_guest_modules;
1099 1100
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1101 1102 1103
		modules = path;
	}

1104
	if (symbol__restricted_filename(modules, "/proc/modules"))
1105 1106
		return -1;

1107
	if (modules__parse(modules, machine, machine__create_module))
1108 1109
		return -1;

1110 1111
	if (!machine__set_modules_path(machine))
		return 0;
1112

1113
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1114

1115
	return 0;
1116 1117 1118 1119 1120
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1121
	const char *name;
1122
	u64 addr = machine__get_running_kernel_start(machine, &name);
1123 1124 1125
	int ret;

	if (!addr || kernel == NULL)
1126
		return -1;
1127

1128 1129 1130
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1146 1147 1148 1149 1150 1151 1152

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1153 1154 1155
	return 0;
}

1156 1157 1158
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1172 1173
}

1174 1175 1176 1177
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1178
	list_for_each_entry(dso, &machine->dsos.head, node) {
1179 1180 1181 1182 1183 1184 1185
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1186 1187 1188 1189 1190 1191 1192 1193
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1194 1195 1196 1197
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1209 1210
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1222 1223 1224
		struct dso *kernel = NULL;
		struct dso *dso;

1225 1226
		pthread_rwlock_rdlock(&machine->dsos.lock);

1227
		list_for_each_entry(dso, &machine->dsos.head, node) {
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1248 1249
				continue;

1250

1251 1252 1253 1254
			kernel = dso;
			break;
		}

1255 1256
		pthread_rwlock_unlock(&machine->dsos.lock);

1257
		if (kernel == NULL)
1258
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1259 1260 1261 1262
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1263 1264
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1265
			goto out_problem;
1266
		}
1267

1268 1269
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1288
			dso__load(kernel, machine__kernel_map(machine), NULL);
1289 1290 1291 1292 1293 1294 1295
		}
	}
	return 0;
out_problem:
	return -1;
}

1296
int machine__process_mmap2_event(struct machine *machine,
1297 1298
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1318
					event->mmap2.tid);
1319 1320 1321 1322 1323 1324 1325 1326
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1327
	map = map__new(machine, event->mmap2.start,
1328 1329 1330 1331
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1332 1333
			event->mmap2.prot,
			event->mmap2.flags,
1334
			event->mmap2.filename, type, thread);
1335 1336

	if (map == NULL)
1337
		goto out_problem_map;
1338 1339

	thread__insert_map(thread, map);
1340
	thread__put(thread);
1341
	map__put(map);
1342 1343
	return 0;

1344 1345
out_problem_map:
	thread__put(thread);
1346 1347 1348 1349 1350
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1351 1352
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1353 1354 1355 1356
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1357
	enum map_type type;
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1371
	thread = machine__findnew_thread(machine, event->mmap.pid,
1372
					 event->mmap.tid);
1373 1374
	if (thread == NULL)
		goto out_problem;
1375 1376 1377 1378 1379 1380

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1381
	map = map__new(machine, event->mmap.start,
1382
			event->mmap.len, event->mmap.pgoff,
1383
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1384
			event->mmap.filename,
1385
			type, thread);
1386

1387
	if (map == NULL)
1388
		goto out_problem_map;
1389 1390

	thread__insert_map(thread, map);
1391
	thread__put(thread);
1392
	map__put(map);
1393 1394
	return 0;

1395 1396
out_problem_map:
	thread__put(thread);
1397 1398 1399 1400 1401
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1402
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1403
{
1404
	if (machine->last_match == th)
1405
		machine->last_match = NULL;
1406

1407
	BUG_ON(atomic_read(&th->refcnt) == 0);
1408 1409
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1410
	rb_erase_init(&th->rb_node, &machine->threads);
1411
	RB_CLEAR_NODE(&th->rb_node);
1412
	/*
1413 1414 1415
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1416 1417
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1418 1419
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1420
	thread__put(th);
1421 1422
}

1423 1424 1425 1426 1427
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1428 1429
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1430
{
1431 1432 1433
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1434 1435 1436
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1437
	int err = 0;
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1457
	/* if a thread currently exists for the thread id remove it */
1458
	if (thread != NULL) {
1459
		machine__remove_thread(machine, thread);
1460 1461
		thread__put(thread);
	}
1462

1463 1464
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1465 1466

	if (thread == NULL || parent == NULL ||
1467
	    thread__fork(thread, parent, sample->time) < 0) {
1468
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1469
		err = -1;
1470
	}
1471 1472
	thread__put(thread);
	thread__put(parent);
1473

1474
	return err;
1475 1476
}

1477 1478
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1479
{
1480 1481 1482
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1483 1484 1485 1486

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1487
	if (thread != NULL) {
1488
		thread__exited(thread);
1489 1490
		thread__put(thread);
	}
1491 1492 1493 1494

	return 0;
}

1495 1496
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1497 1498 1499 1500 1501
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1502
		ret = machine__process_comm_event(machine, event, sample); break;
1503
	case PERF_RECORD_MMAP:
1504
		ret = machine__process_mmap_event(machine, event, sample); break;
1505
	case PERF_RECORD_MMAP2:
1506
		ret = machine__process_mmap2_event(machine, event, sample); break;
1507
	case PERF_RECORD_FORK:
1508
		ret = machine__process_fork_event(machine, event, sample); break;
1509
	case PERF_RECORD_EXIT:
1510
		ret = machine__process_exit_event(machine, event, sample); break;
1511
	case PERF_RECORD_LOST:
1512
		ret = machine__process_lost_event(machine, event, sample); break;
1513 1514
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1515
	case PERF_RECORD_ITRACE_START:
1516
		ret = machine__process_itrace_start_event(machine, event); break;
1517 1518
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1519 1520 1521
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1522 1523 1524 1525 1526 1527 1528
	default:
		ret = -1;
		break;
	}

	return ret;
}
1529

1530
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1531
{
1532
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1533 1534 1535 1536
		return 1;
	return 0;
}

1537
static void ip__resolve_ams(struct thread *thread,
1538 1539 1540 1541 1542 1543
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1544 1545 1546 1547 1548 1549 1550
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1551
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1552 1553 1554 1555 1556 1557 1558

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1559
static void ip__resolve_data(struct thread *thread,
1560 1561 1562 1563 1564 1565
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1566
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1567 1568 1569 1570 1571 1572
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1573
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1574 1575
	}

1576 1577 1578 1579 1580 1581
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1582 1583
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1584 1585 1586 1587 1588 1589
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1590 1591
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1592 1593 1594 1595 1596
	mi->data_src.val = sample->data_src;

	return mi;
}

1597 1598 1599
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1600
			    u8 *cpumode,
1601 1602 1603 1604 1605 1606
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1607
	if (!cpumode) {
1608 1609
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1610
	} else {
1611 1612 1613
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1614
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1615 1616
				break;
			case PERF_CONTEXT_KERNEL:
1617
				*cpumode = PERF_RECORD_MISC_KERNEL;
1618 1619
				break;
			case PERF_CONTEXT_USER:
1620
				*cpumode = PERF_RECORD_MISC_USER;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1634 1635
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1636 1637
	}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1651 1652
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1653
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1654 1655
}

1656 1657
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1658 1659
{
	unsigned int i;
1660 1661
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1662 1663 1664 1665 1666

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1667 1668
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1669 1670 1671 1672 1673
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1727
{
K
Kan Liang 已提交
1728 1729
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1730
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1777
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1796
	int chain_nr = min(max_stack, (int)chain->nr);
1797
	u8 cpumode = PERF_RECORD_MISC_USER;
1798
	int i, j, err;
1799 1800 1801
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1811 1812 1813 1814 1815 1816
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1863
					       NULL, be[i].to);
1864 1865
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1866
						       NULL, be[i].from);
1867 1868 1869 1870 1871 1872 1873 1874 1875
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1876
	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1877 1878 1879 1880
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1881
	for (i = first_call; i < chain_nr; i++) {
1882 1883 1884
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1885
			j = i;
1886
		else
1887 1888 1889 1890 1891 1892 1893
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1894

1895
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1896 1897

		if (err)
1898
			return (err < 0) ? err : 0;
1899 1900 1901 1902 1903 1904 1905 1906
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
1907 1908 1909

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
1910 1911 1912 1913
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1914 1915 1916 1917 1918 1919
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1920
{
K
Kan Liang 已提交
1921 1922 1923
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1937
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1938
				   thread, sample, max_stack);
1939 1940

}
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1986
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1987
				  struct target *target, struct thread_map *threads,
1988 1989
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1990
{
1991
	if (target__has_task(target))
1992
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1993
	else if (target__has_cpu(target))
1994
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1995 1996 1997
	/* command specified */
	return 0;
}
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2038
	thread__put(thread);
2039 2040 2041

	return 0;
}
2042 2043 2044

int machine__get_kernel_start(struct machine *machine)
{
2045
	struct map *map = machine__kernel_map(machine);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2064 2065 2066

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2067
	return dsos__findnew(&machine->dsos, filename);
2068
}
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}