machine.c 48.9 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37
	machine->vdso_info = NULL;
38
	machine->env = NULL;
39

40 41
	machine->pid = pid;

42
	machine->symbol_filter = NULL;
43
	machine->id_hdr_size = 0;
44
	machine->comm_exec = false;
45
	machine->kernel_start = 0;
46

47 48 49 50 51
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
52
		struct thread *thread = machine__findnew_thread(machine, -1,
53
								pid);
54 55 56 57 58 59
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60
		thread__set_comm(thread, comm, 0);
61
		thread__put(thread);
62 63
	}

64 65
	machine->current_tid = NULL;

66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

86
static void dsos__purge(struct dsos *dsos)
87 88 89
{
	struct dso *pos, *n;

90 91
	pthread_rwlock_wrlock(&dsos->lock);

92
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93
		RB_CLEAR_NODE(&pos->rb_node);
94
		pos->root = NULL;
95 96
		list_del_init(&pos->node);
		dso__put(pos);
97
	}
98 99

	pthread_rwlock_unlock(&dsos->lock);
100
}
101

102 103 104
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
105
	pthread_rwlock_destroy(&dsos->lock);
106 107
}

108 109
void machine__delete_threads(struct machine *machine)
{
110
	struct rb_node *nd;
111

112 113
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
114 115 116 117
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
118
		__machine__remove_thread(machine, t, false);
119
	}
120
	pthread_rwlock_unlock(&machine->threads_lock);
121 122
}

123 124
void machine__exit(struct machine *machine)
{
125
	machine__destroy_kernel_maps(machine);
126
	map_groups__exit(&machine->kmaps);
127
	dsos__exit(&machine->dsos);
128
	machine__exit_vdso(machine);
129
	zfree(&machine->root_dir);
130
	zfree(&machine->current_tid);
131
	pthread_rwlock_destroy(&machine->threads_lock);
132 133 134 135 136 137 138 139
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

140 141 142 143
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
144
	machines->symbol_filter = NULL;
145 146 147 148 149 150 151 152 153
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
154 155
			      const char *root_dir)
{
156
	struct rb_node **p = &machines->guests.rb_node;
157 158 159 160 161 162 163 164 165 166 167
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

168 169
	machine->symbol_filter = machines->symbol_filter;

170 171 172 173 174 175 176 177 178 179
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
180
	rb_insert_color(&machine->rb_node, &machines->guests);
181 182 183 184

	return machine;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

200 201 202 203 204 205 206 207 208 209 210 211 212
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

213
struct machine *machines__find(struct machines *machines, pid_t pid)
214
{
215
	struct rb_node **p = &machines->guests.rb_node;
216 217 218 219
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

220 221 222
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

239
struct machine *machines__findnew(struct machines *machines, pid_t pid)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
256
				seen = strlist__new(NULL, NULL);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

273 274
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
275 276 277
{
	struct rb_node *nd;

278
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

298
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
299 300 301 302
{
	struct rb_node *node;
	struct machine *machine;

303 304 305
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
306 307 308 309 310 311 312
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

313 314 315 316 317 318 319 320 321 322 323 324 325
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

326
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
327 328 329 330
	if (!leader)
		goto out_err;

	if (!leader->mg)
331
		leader->mg = map_groups__new(machine);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
348
		map_groups__put(th->mg);
349 350 351 352 353 354 355 356 357 358
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

359 360 361
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
362 363 364 365 366 367
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
368
	 * Front-end cache - TID lookups come in blocks,
369 370 371
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
372
	th = machine->last_match;
373 374 375 376 377 378
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

379
		machine->last_match = NULL;
380
	}
381 382 383 384 385

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

386
		if (th->tid == tid) {
387
			machine->last_match = th;
388
			machine__update_thread_pid(machine, th, pid);
389 390 391
			return th;
		}

392
		if (tid < th->tid)
393 394 395 396 397 398 399 400
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

401
	th = thread__new(pid, tid);
402 403 404
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
405 406 407 408 409 410 411 412 413

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
414
		if (thread__init_map_groups(th, machine)) {
415
			rb_erase_init(&th->rb_node, &machine->threads);
416
			RB_CLEAR_NODE(&th->rb_node);
417
			thread__delete(th);
418
			return NULL;
419
		}
420 421 422 423
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
424
		machine->last_match = th;
425 426 427 428 429
	}

	return th;
}

430 431 432 433 434
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

435 436
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
437
{
438 439 440 441 442 443
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
444 445
}

446 447
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
448
{
449 450 451 452 453
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
454
}
455

456 457 458 459 460 461 462 463 464
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

465 466
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
467
{
468 469 470
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
471
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
472
	int err = 0;
473

474 475 476
	if (exec)
		machine->comm_exec = true;

477 478 479
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

480 481
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
482
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
483
		err = -1;
484 485
	}

486 487 488
	thread__put(thread);

	return err;
489 490 491
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
492
				union perf_event *event, struct perf_sample *sample __maybe_unused)
493 494 495 496 497 498
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

499 500 501 502 503 504 505 506
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

507 508 509
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
510 511 512
{
	struct dso *dso;

513 514 515
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
516
	if (!dso) {
517
		dso = __dsos__addnew(&machine->dsos, m->name);
518
		if (dso == NULL)
519
			goto out_unlock;
520 521 522 523 524 525 526

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
527
		if (m->kmod && m->comp)
528
			dso->symtab_type++;
529 530 531

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
532 533
	}

534
	dso__get(dso);
535 536
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
537 538 539
	return dso;
}

540 541 542 543 544 545 546 547
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

548 549 550 551 552 553 554 555
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

556 557 558 559 560 561 562 563
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

564 565
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
566
{
567
	struct map *map = NULL;
568
	struct dso *dso = NULL;
569
	struct kmod_path m;
570

571
	if (kmod_path__parse_name(&m, filename))
572 573
		return NULL;

574 575 576 577 578
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
	if (map)
		goto out;

579
	dso = machine__findnew_module_dso(machine, &m, filename);
580 581 582
	if (dso == NULL)
		goto out;

583 584
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
585
		goto out;
586 587

	map_groups__insert(&machine->kmaps, map);
588

589 590
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
591
out:
592 593
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
594
	free(m.name);
595 596 597
	return map;
}

598
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
599 600
{
	struct rb_node *nd;
601
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
602

603
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
604
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
605
		ret += __dsos__fprintf(&pos->dsos.head, fp);
606 607 608 609 610
	}

	return ret;
}

611
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
612 613
				     bool (skip)(struct dso *dso, int parm), int parm)
{
614
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
615 616
}

617
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
618 619 620
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
621
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
622

623
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
624 625 626 627 628 629 630 631 632 633
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
634
	struct dso *kdso = machine__kernel_map(machine)->dso;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

654 655
	pthread_rwlock_rdlock(&machine->threads_lock);

656 657 658 659 660 661
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

662 663
	pthread_rwlock_unlock(&machine->threads_lock);

664 665 666 667 668 669 670 671 672 673 674 675 676
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

677 678
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
679 680 681 682 683 684 685 686 687
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

688 689 690
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
691 692 693 694 695 696 697 698 699 700 701 702
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

703 704 705 706 707 708 709 710 711
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

712 713 714 715 716 717
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
718 719
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
720
{
721
	char filename[PATH_MAX];
722 723 724
	int i;
	const char *name;
	u64 addr = 0;
725

726
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
727 728 729 730

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

731 732 733 734 735 736 737 738
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
739

740
	return addr;
741 742 743 744 745
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
746
	u64 start = machine__get_running_kernel_start(machine, NULL);
747 748 749

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
750
		struct map *map;
751 752 753 754 755 756 757 758

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
759
		map = __machine__kernel_map(machine, type);
760
		kmap = map__kmap(map);
761 762 763
		if (!kmap)
			return -1;

764
		kmap->kmaps = &machine->kmaps;
765
		map_groups__insert(&machine->kmaps, map);
766 767 768 769 770 771 772 773 774 775 776
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
777
		struct map *map = __machine__kernel_map(machine, type);
778

779
		if (map == NULL)
780 781
			continue;

782 783
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
784
		if (kmap && kmap->ref_reloc_sym) {
785 786 787 788 789
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
790 791 792 793
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
794 795
		}

796
		map__put(machine->vmlinux_maps[type]);
797 798 799 800
		machine->vmlinux_maps[type] = NULL;
	}
}

801
int machines__create_guest_kernel_maps(struct machines *machines)
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

850
void machines__destroy_kernel_maps(struct machines *machines)
851
{
852 853 854
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
855 856 857 858 859

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
860
		rb_erase(&pos->rb_node, &machines->guests);
861 862 863 864
		machine__delete(pos);
	}
}

865
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
866 867 868 869 870 871 872 873 874 875 876 877
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
878
	struct map *map = machine__kernel_map(machine);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
897
	struct map *map = machine__kernel_map(machine);
898 899
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

900
	if (ret > 0)
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

973
static int map_groups__set_modules_path_dir(struct map_groups *mg,
974
				const char *dir_name, int depth)
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

999 1000 1001 1002 1003 1004 1005 1006 1007
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1008 1009 1010
			if (ret < 0)
				goto out;
		} else {
1011
			struct kmod_path m;
1012

1013 1014 1015
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1016

1017 1018
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1019

1020
			free(m.name);
1021

1022
			if (ret)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1041
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1042 1043 1044
		 machine->root_dir, version);
	free(version);

1045
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1046 1047
}

1048
static int machine__create_module(void *arg, const char *name, u64 start)
1049
{
1050
	struct machine *machine = arg;
1051
	struct map *map;
1052

1053
	map = machine__findnew_module_map(machine, start, name);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1064 1065 1066
	const char *modules;
	char path[PATH_MAX];

1067
	if (machine__is_default_guest(machine)) {
1068
		modules = symbol_conf.default_guest_modules;
1069 1070
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1071 1072 1073
		modules = path;
	}

1074
	if (symbol__restricted_filename(modules, "/proc/modules"))
1075 1076
		return -1;

1077
	if (modules__parse(modules, machine, machine__create_module))
1078 1079
		return -1;

1080 1081
	if (!machine__set_modules_path(machine))
		return 0;
1082

1083
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1084

1085
	return 0;
1086 1087 1088 1089 1090
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1091
	const char *name;
1092
	u64 addr = machine__get_running_kernel_start(machine, &name);
1093 1094 1095
	int ret;

	if (!addr || kernel == NULL)
1096
		return -1;
1097

1098 1099 1100
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1116 1117 1118 1119 1120 1121 1122

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1123 1124 1125
	return 0;
}

1126 1127 1128
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1142 1143
}

1144 1145 1146 1147
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1148
	list_for_each_entry(dso, &machine->dsos.head, node) {
1149 1150 1151 1152 1153 1154 1155
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1156 1157 1158 1159 1160 1161 1162 1163
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1164 1165 1166 1167
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1179 1180
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1192 1193 1194
		struct dso *kernel = NULL;
		struct dso *dso;

1195 1196
		pthread_rwlock_rdlock(&machine->dsos.lock);

1197
		list_for_each_entry(dso, &machine->dsos.head, node) {
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1218 1219
				continue;

1220

1221 1222 1223 1224
			kernel = dso;
			break;
		}

1225 1226
		pthread_rwlock_unlock(&machine->dsos.lock);

1227
		if (kernel == NULL)
1228
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1229 1230 1231 1232
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1233 1234
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1235
			goto out_problem;
1236
		}
1237

1238 1239
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1258
			dso__load(kernel, machine__kernel_map(machine), NULL);
1259 1260 1261 1262 1263 1264 1265
		}
	}
	return 0;
out_problem:
	return -1;
}

1266
int machine__process_mmap2_event(struct machine *machine,
1267 1268
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1288
					event->mmap2.tid);
1289 1290 1291 1292 1293 1294 1295 1296
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1297
	map = map__new(machine, event->mmap2.start,
1298 1299 1300 1301
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1302 1303
			event->mmap2.prot,
			event->mmap2.flags,
1304
			event->mmap2.filename, type, thread);
1305 1306

	if (map == NULL)
1307
		goto out_problem_map;
1308 1309

	thread__insert_map(thread, map);
1310
	thread__put(thread);
1311
	map__put(map);
1312 1313
	return 0;

1314 1315
out_problem_map:
	thread__put(thread);
1316 1317 1318 1319 1320
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1321 1322
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1323 1324 1325 1326
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1327
	enum map_type type;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1341
	thread = machine__findnew_thread(machine, event->mmap.pid,
1342
					 event->mmap.tid);
1343 1344
	if (thread == NULL)
		goto out_problem;
1345 1346 1347 1348 1349 1350

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1351
	map = map__new(machine, event->mmap.start,
1352
			event->mmap.len, event->mmap.pgoff,
1353
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1354
			event->mmap.filename,
1355
			type, thread);
1356

1357
	if (map == NULL)
1358
		goto out_problem_map;
1359 1360

	thread__insert_map(thread, map);
1361
	thread__put(thread);
1362
	map__put(map);
1363 1364
	return 0;

1365 1366
out_problem_map:
	thread__put(thread);
1367 1368 1369 1370 1371
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1372
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1373
{
1374
	if (machine->last_match == th)
1375
		machine->last_match = NULL;
1376

1377
	BUG_ON(atomic_read(&th->refcnt) == 0);
1378 1379
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1380
	rb_erase_init(&th->rb_node, &machine->threads);
1381
	RB_CLEAR_NODE(&th->rb_node);
1382
	/*
1383 1384 1385
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1386 1387
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1388 1389
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1390
	thread__put(th);
1391 1392
}

1393 1394 1395 1396 1397
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1398 1399
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1400
{
1401 1402 1403
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1404 1405 1406
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1407
	int err = 0;
1408

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1427
	/* if a thread currently exists for the thread id remove it */
1428
	if (thread != NULL) {
1429
		machine__remove_thread(machine, thread);
1430 1431
		thread__put(thread);
	}
1432

1433 1434
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1435 1436

	if (thread == NULL || parent == NULL ||
1437
	    thread__fork(thread, parent, sample->time) < 0) {
1438
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1439
		err = -1;
1440
	}
1441 1442
	thread__put(thread);
	thread__put(parent);
1443

1444
	return err;
1445 1446
}

1447 1448
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1449
{
1450 1451 1452
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1453 1454 1455 1456

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1457
	if (thread != NULL) {
1458
		thread__exited(thread);
1459 1460
		thread__put(thread);
	}
1461 1462 1463 1464

	return 0;
}

1465 1466
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1467 1468 1469 1470 1471
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1472
		ret = machine__process_comm_event(machine, event, sample); break;
1473
	case PERF_RECORD_MMAP:
1474
		ret = machine__process_mmap_event(machine, event, sample); break;
1475
	case PERF_RECORD_MMAP2:
1476
		ret = machine__process_mmap2_event(machine, event, sample); break;
1477
	case PERF_RECORD_FORK:
1478
		ret = machine__process_fork_event(machine, event, sample); break;
1479
	case PERF_RECORD_EXIT:
1480
		ret = machine__process_exit_event(machine, event, sample); break;
1481
	case PERF_RECORD_LOST:
1482
		ret = machine__process_lost_event(machine, event, sample); break;
1483 1484
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1485
	case PERF_RECORD_ITRACE_START:
1486
		ret = machine__process_itrace_start_event(machine, event); break;
1487 1488
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1489 1490 1491
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1492 1493 1494 1495 1496 1497 1498
	default:
		ret = -1;
		break;
	}

	return ret;
}
1499

1500
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1501
{
1502
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1503 1504 1505 1506
		return 1;
	return 0;
}

1507
static void ip__resolve_ams(struct thread *thread,
1508 1509 1510 1511 1512 1513
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1514 1515 1516 1517 1518 1519 1520
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1521
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1522 1523 1524 1525 1526 1527 1528

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1529
static void ip__resolve_data(struct thread *thread,
1530 1531 1532 1533 1534 1535
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1536
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1537 1538 1539 1540 1541 1542
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1543
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1544 1545
	}

1546 1547 1548 1549 1550 1551
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1552 1553
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1554 1555 1556 1557 1558 1559
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1560 1561
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1562 1563 1564 1565 1566
	mi->data_src.val = sample->data_src;

	return mi;
}

1567 1568 1569
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1570
			    u8 *cpumode,
1571 1572 1573 1574 1575 1576
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1577
	if (!cpumode) {
1578 1579
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1580
	} else {
1581 1582 1583
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1584
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1585 1586
				break;
			case PERF_CONTEXT_KERNEL:
1587
				*cpumode = PERF_RECORD_MISC_KERNEL;
1588 1589
				break;
			case PERF_CONTEXT_USER:
1590
				*cpumode = PERF_RECORD_MISC_USER;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1604 1605
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1606 1607
	}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1621
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1622 1623
}

1624 1625
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1626 1627
{
	unsigned int i;
1628 1629
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1630 1631 1632 1633 1634

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1635 1636
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1637 1638 1639 1640 1641
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1695
{
K
Kan Liang 已提交
1696 1697
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1698
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1745
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1764
	int chain_nr = min(max_stack, (int)chain->nr);
1765
	u8 cpumode = PERF_RECORD_MISC_USER;
1766
	int i, j, err;
1767 1768 1769
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1779 1780 1781 1782 1783 1784
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1831
					       NULL, be[i].to);
1832 1833
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1834
						       NULL, be[i].from);
1835 1836 1837 1838 1839 1840 1841 1842 1843
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1844
	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1845 1846 1847 1848
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1849
	for (i = first_call; i < chain_nr; i++) {
1850 1851 1852
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1853
			j = i;
1854
		else
1855 1856 1857 1858 1859 1860 1861
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1862

1863
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1864 1865

		if (err)
1866
			return (err < 0) ? err : 0;
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1879 1880 1881 1882 1883 1884
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1885
{
K
Kan Liang 已提交
1886 1887 1888
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1902
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1903
				   thread, sample, max_stack);
1904 1905

}
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1929

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1951
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1952
				  struct target *target, struct thread_map *threads,
1953 1954
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1955
{
1956
	if (target__has_task(target))
1957
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1958
	else if (target__has_cpu(target))
1959
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1960 1961 1962
	/* command specified */
	return 0;
}
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2003
	thread__put(thread);
2004 2005 2006

	return 0;
}
2007 2008 2009

int machine__get_kernel_start(struct machine *machine)
{
2010
	struct map *map = machine__kernel_map(machine);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2029 2030 2031

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2032
	return dsos__findnew(&machine->dsos, filename);
2033
}
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}