machine.c 49.6 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37
	machine->vdso_info = NULL;
38
	machine->env = NULL;
39

40 41
	machine->pid = pid;

42
	machine->symbol_filter = NULL;
43
	machine->id_hdr_size = 0;
44
	machine->comm_exec = false;
45
	machine->kernel_start = 0;
46

47 48 49 50 51
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
52
		struct thread *thread = machine__findnew_thread(machine, -1,
53
								pid);
54 55 56 57 58 59
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60
		thread__set_comm(thread, comm, 0);
61
		thread__put(thread);
62 63
	}

64 65
	machine->current_tid = NULL;

66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

86
static void dsos__purge(struct dsos *dsos)
87 88 89
{
	struct dso *pos, *n;

90 91
	pthread_rwlock_wrlock(&dsos->lock);

92
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93
		RB_CLEAR_NODE(&pos->rb_node);
94
		pos->root = NULL;
95 96
		list_del_init(&pos->node);
		dso__put(pos);
97
	}
98 99

	pthread_rwlock_unlock(&dsos->lock);
100
}
101

102 103 104
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
105
	pthread_rwlock_destroy(&dsos->lock);
106 107
}

108 109
void machine__delete_threads(struct machine *machine)
{
110
	struct rb_node *nd;
111

112 113
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
114 115 116 117
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
118
		__machine__remove_thread(machine, t, false);
119
	}
120
	pthread_rwlock_unlock(&machine->threads_lock);
121 122
}

123 124
void machine__exit(struct machine *machine)
{
125
	machine__destroy_kernel_maps(machine);
126
	map_groups__exit(&machine->kmaps);
127
	dsos__exit(&machine->dsos);
128
	machine__exit_vdso(machine);
129
	zfree(&machine->root_dir);
130
	zfree(&machine->current_tid);
131
	pthread_rwlock_destroy(&machine->threads_lock);
132 133 134 135 136 137 138 139
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

140 141 142 143
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
144
	machines->symbol_filter = NULL;
145 146 147 148 149 150 151 152 153
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
154 155
			      const char *root_dir)
{
156
	struct rb_node **p = &machines->guests.rb_node;
157 158 159 160 161 162 163 164 165 166 167
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

168 169
	machine->symbol_filter = machines->symbol_filter;

170 171 172 173 174 175 176 177 178 179
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
180
	rb_insert_color(&machine->rb_node, &machines->guests);
181 182 183 184

	return machine;
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

200 201 202 203 204 205 206 207 208 209 210 211 212
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

213
struct machine *machines__find(struct machines *machines, pid_t pid)
214
{
215
	struct rb_node **p = &machines->guests.rb_node;
216 217 218 219
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

220 221 222
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

239
struct machine *machines__findnew(struct machines *machines, pid_t pid)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
256
				seen = strlist__new(NULL, NULL);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

273 274
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
275 276 277
{
	struct rb_node *nd;

278
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

298
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
299 300 301 302
{
	struct rb_node *node;
	struct machine *machine;

303 304 305
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
306 307 308 309 310 311 312
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

313 314 315 316 317 318 319 320 321 322 323 324 325
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

326
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
327 328 329 330
	if (!leader)
		goto out_err;

	if (!leader->mg)
331
		leader->mg = map_groups__new(machine);
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
348
		map_groups__put(th->mg);
349 350 351 352 353 354 355 356 357 358
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

359 360 361
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
362 363 364 365 366 367
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
368
	 * Front-end cache - TID lookups come in blocks,
369 370 371
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
372
	th = machine->last_match;
373 374 375 376 377 378
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

379
		machine->last_match = NULL;
380
	}
381 382 383 384 385

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

386
		if (th->tid == tid) {
387
			machine->last_match = th;
388
			machine__update_thread_pid(machine, th, pid);
389 390 391
			return th;
		}

392
		if (tid < th->tid)
393 394 395 396 397 398 399 400
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

401
	th = thread__new(pid, tid);
402 403 404
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
405 406 407 408 409 410 411 412 413

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
414
		if (thread__init_map_groups(th, machine)) {
415
			rb_erase_init(&th->rb_node, &machine->threads);
416
			RB_CLEAR_NODE(&th->rb_node);
417
			thread__delete(th);
418
			return NULL;
419
		}
420 421 422 423
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
424
		machine->last_match = th;
425 426 427 428 429
	}

	return th;
}

430 431 432 433 434
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

435 436
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
437
{
438 439 440 441 442 443
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
444 445
}

446 447
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
448
{
449 450 451 452 453
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
454
}
455

456 457 458 459 460 461 462 463 464
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

465 466
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
467
{
468 469 470
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
471
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
472
	int err = 0;
473

474 475 476
	if (exec)
		machine->comm_exec = true;

477 478 479
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

480 481
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
482
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
483
		err = -1;
484 485
	}

486 487 488
	thread__put(thread);

	return err;
489 490 491
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
492
				union perf_event *event, struct perf_sample *sample __maybe_unused)
493 494 495 496 497 498
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

499 500 501 502 503 504 505 506
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

507 508 509
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
510 511 512
{
	struct dso *dso;

513 514 515
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
516
	if (!dso) {
517
		dso = __dsos__addnew(&machine->dsos, m->name);
518
		if (dso == NULL)
519
			goto out_unlock;
520 521 522 523 524 525 526

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
527
		if (m->kmod && m->comp)
528
			dso->symtab_type++;
529 530 531

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
532 533
	}

534
	dso__get(dso);
535 536
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
537 538 539
	return dso;
}

540 541 542 543 544 545 546 547
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

548 549 550 551 552 553 554 555
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

556 557 558 559 560 561 562 563
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

	dso__set_long_name(dso, filename, true);
}

582 583
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
584
{
585
	struct map *map = NULL;
586
	struct dso *dso = NULL;
587
	struct kmod_path m;
588

589
	if (kmod_path__parse_name(&m, filename))
590 591
		return NULL;

592 593
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
594 595 596 597 598 599 600
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
601
		goto out;
602
	}
603

604
	dso = machine__findnew_module_dso(machine, &m, filename);
605 606 607
	if (dso == NULL)
		goto out;

608 609
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
610
		goto out;
611 612

	map_groups__insert(&machine->kmaps, map);
613

614 615
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
616
out:
617 618
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
619
	free(m.name);
620 621 622
	return map;
}

623
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
624 625
{
	struct rb_node *nd;
626
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
627

628
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
629
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
630
		ret += __dsos__fprintf(&pos->dsos.head, fp);
631 632 633 634 635
	}

	return ret;
}

636
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
637 638
				     bool (skip)(struct dso *dso, int parm), int parm)
{
639
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
640 641
}

642
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
643 644 645
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
646
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
647

648
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
649 650 651 652 653 654 655 656 657 658
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
659
	struct dso *kdso = machine__kernel_map(machine)->dso;
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

679 680
	pthread_rwlock_rdlock(&machine->threads_lock);

681 682 683 684 685 686
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

687 688
	pthread_rwlock_unlock(&machine->threads_lock);

689 690 691 692 693 694 695 696 697 698 699 700 701
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

702 703
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
704 705 706 707 708 709 710 711 712
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

713 714 715
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
716 717 718 719 720 721 722 723 724 725 726 727
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

728 729 730 731 732 733 734 735 736
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

737 738 739 740 741 742
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
743 744
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
745
{
746
	char filename[PATH_MAX];
747 748 749
	int i;
	const char *name;
	u64 addr = 0;
750

751
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
752 753 754 755

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

756 757 758 759 760 761 762 763
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
764

765
	return addr;
766 767 768 769 770
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
771
	u64 start = machine__get_running_kernel_start(machine, NULL);
772 773 774

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
775
		struct map *map;
776 777 778 779 780 781 782 783

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
784
		map = __machine__kernel_map(machine, type);
785
		kmap = map__kmap(map);
786 787 788
		if (!kmap)
			return -1;

789
		kmap->kmaps = &machine->kmaps;
790
		map_groups__insert(&machine->kmaps, map);
791 792 793 794 795 796 797 798 799 800 801
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
802
		struct map *map = __machine__kernel_map(machine, type);
803

804
		if (map == NULL)
805 806
			continue;

807 808
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
809
		if (kmap && kmap->ref_reloc_sym) {
810 811 812 813 814
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
815 816 817 818
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
819 820
		}

821
		map__put(machine->vmlinux_maps[type]);
822 823 824 825
		machine->vmlinux_maps[type] = NULL;
	}
}

826
int machines__create_guest_kernel_maps(struct machines *machines)
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

875
void machines__destroy_kernel_maps(struct machines *machines)
876
{
877 878 879
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
880 881 882 883 884

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
885
		rb_erase(&pos->rb_node, &machines->guests);
886 887 888 889
		machine__delete(pos);
	}
}

890
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
891 892 893 894 895 896 897 898 899 900 901 902
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
903
	struct map *map = machine__kernel_map(machine);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
922
	struct map *map = machine__kernel_map(machine);
923 924
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

925
	if (ret > 0)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

998
static int map_groups__set_modules_path_dir(struct map_groups *mg,
999
				const char *dir_name, int depth)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1024 1025 1026 1027 1028 1029 1030 1031 1032
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1033 1034 1035
			if (ret < 0)
				goto out;
		} else {
1036
			struct kmod_path m;
1037

1038 1039 1040
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1041

1042 1043
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1044

1045
			free(m.name);
1046

1047
			if (ret)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1066
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1067 1068 1069
		 machine->root_dir, version);
	free(version);

1070
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1071 1072
}

1073
static int machine__create_module(void *arg, const char *name, u64 start)
1074
{
1075
	struct machine *machine = arg;
1076
	struct map *map;
1077

1078
	map = machine__findnew_module_map(machine, start, name);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1089 1090 1091
	const char *modules;
	char path[PATH_MAX];

1092
	if (machine__is_default_guest(machine)) {
1093
		modules = symbol_conf.default_guest_modules;
1094 1095
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1096 1097 1098
		modules = path;
	}

1099
	if (symbol__restricted_filename(modules, "/proc/modules"))
1100 1101
		return -1;

1102
	if (modules__parse(modules, machine, machine__create_module))
1103 1104
		return -1;

1105 1106
	if (!machine__set_modules_path(machine))
		return 0;
1107

1108
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1109

1110
	return 0;
1111 1112 1113 1114 1115
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1116
	const char *name;
1117
	u64 addr = machine__get_running_kernel_start(machine, &name);
1118 1119 1120
	int ret;

	if (!addr || kernel == NULL)
1121
		return -1;
1122

1123 1124 1125
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1141 1142 1143 1144 1145 1146 1147

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1148 1149 1150
	return 0;
}

1151 1152 1153
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1167 1168
}

1169 1170 1171 1172
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1173
	list_for_each_entry(dso, &machine->dsos.head, node) {
1174 1175 1176 1177 1178 1179 1180
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1181 1182 1183 1184 1185 1186 1187 1188
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1189 1190 1191 1192
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1204 1205
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1217 1218 1219
		struct dso *kernel = NULL;
		struct dso *dso;

1220 1221
		pthread_rwlock_rdlock(&machine->dsos.lock);

1222
		list_for_each_entry(dso, &machine->dsos.head, node) {
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1243 1244
				continue;

1245

1246 1247 1248 1249
			kernel = dso;
			break;
		}

1250 1251
		pthread_rwlock_unlock(&machine->dsos.lock);

1252
		if (kernel == NULL)
1253
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1254 1255 1256 1257
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1258 1259
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1260
			goto out_problem;
1261
		}
1262

1263 1264
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1283
			dso__load(kernel, machine__kernel_map(machine), NULL);
1284 1285 1286 1287 1288 1289 1290
		}
	}
	return 0;
out_problem:
	return -1;
}

1291
int machine__process_mmap2_event(struct machine *machine,
1292 1293
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1313
					event->mmap2.tid);
1314 1315 1316 1317 1318 1319 1320 1321
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1322
	map = map__new(machine, event->mmap2.start,
1323 1324 1325 1326
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1327 1328
			event->mmap2.prot,
			event->mmap2.flags,
1329
			event->mmap2.filename, type, thread);
1330 1331

	if (map == NULL)
1332
		goto out_problem_map;
1333 1334

	thread__insert_map(thread, map);
1335
	thread__put(thread);
1336
	map__put(map);
1337 1338
	return 0;

1339 1340
out_problem_map:
	thread__put(thread);
1341 1342 1343 1344 1345
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1346 1347
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1348 1349 1350 1351
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1352
	enum map_type type;
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1366
	thread = machine__findnew_thread(machine, event->mmap.pid,
1367
					 event->mmap.tid);
1368 1369
	if (thread == NULL)
		goto out_problem;
1370 1371 1372 1373 1374 1375

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1376
	map = map__new(machine, event->mmap.start,
1377
			event->mmap.len, event->mmap.pgoff,
1378
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1379
			event->mmap.filename,
1380
			type, thread);
1381

1382
	if (map == NULL)
1383
		goto out_problem_map;
1384 1385

	thread__insert_map(thread, map);
1386
	thread__put(thread);
1387
	map__put(map);
1388 1389
	return 0;

1390 1391
out_problem_map:
	thread__put(thread);
1392 1393 1394 1395 1396
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1397
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1398
{
1399
	if (machine->last_match == th)
1400
		machine->last_match = NULL;
1401

1402
	BUG_ON(atomic_read(&th->refcnt) == 0);
1403 1404
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1405
	rb_erase_init(&th->rb_node, &machine->threads);
1406
	RB_CLEAR_NODE(&th->rb_node);
1407
	/*
1408 1409 1410
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1411 1412
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1413 1414
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1415
	thread__put(th);
1416 1417
}

1418 1419 1420 1421 1422
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1423 1424
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1425
{
1426 1427 1428
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1429 1430 1431
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1432
	int err = 0;
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1452
	/* if a thread currently exists for the thread id remove it */
1453
	if (thread != NULL) {
1454
		machine__remove_thread(machine, thread);
1455 1456
		thread__put(thread);
	}
1457

1458 1459
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1460 1461

	if (thread == NULL || parent == NULL ||
1462
	    thread__fork(thread, parent, sample->time) < 0) {
1463
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1464
		err = -1;
1465
	}
1466 1467
	thread__put(thread);
	thread__put(parent);
1468

1469
	return err;
1470 1471
}

1472 1473
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1474
{
1475 1476 1477
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1478 1479 1480 1481

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1482
	if (thread != NULL) {
1483
		thread__exited(thread);
1484 1485
		thread__put(thread);
	}
1486 1487 1488 1489

	return 0;
}

1490 1491
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1492 1493 1494 1495 1496
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1497
		ret = machine__process_comm_event(machine, event, sample); break;
1498
	case PERF_RECORD_MMAP:
1499
		ret = machine__process_mmap_event(machine, event, sample); break;
1500
	case PERF_RECORD_MMAP2:
1501
		ret = machine__process_mmap2_event(machine, event, sample); break;
1502
	case PERF_RECORD_FORK:
1503
		ret = machine__process_fork_event(machine, event, sample); break;
1504
	case PERF_RECORD_EXIT:
1505
		ret = machine__process_exit_event(machine, event, sample); break;
1506
	case PERF_RECORD_LOST:
1507
		ret = machine__process_lost_event(machine, event, sample); break;
1508 1509
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1510
	case PERF_RECORD_ITRACE_START:
1511
		ret = machine__process_itrace_start_event(machine, event); break;
1512 1513
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1514 1515 1516
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1517 1518 1519 1520 1521 1522 1523
	default:
		ret = -1;
		break;
	}

	return ret;
}
1524

1525
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1526
{
1527
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1528 1529 1530 1531
		return 1;
	return 0;
}

1532
static void ip__resolve_ams(struct thread *thread,
1533 1534 1535 1536 1537 1538
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1539 1540 1541 1542 1543 1544 1545
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1546
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1547 1548 1549 1550 1551 1552 1553

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1554
static void ip__resolve_data(struct thread *thread,
1555 1556 1557 1558 1559 1560
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1561
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1562 1563 1564 1565 1566 1567
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1568
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1569 1570
	}

1571 1572 1573 1574 1575 1576
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1577 1578
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1579 1580 1581 1582 1583 1584
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1585 1586
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1587 1588 1589 1590 1591
	mi->data_src.val = sample->data_src;

	return mi;
}

1592 1593 1594
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1595
			    u8 *cpumode,
1596 1597 1598 1599 1600 1601
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1602
	if (!cpumode) {
1603 1604
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1605
	} else {
1606 1607 1608
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1609
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1610 1611
				break;
			case PERF_CONTEXT_KERNEL:
1612
				*cpumode = PERF_RECORD_MISC_KERNEL;
1613 1614
				break;
			case PERF_CONTEXT_USER:
1615
				*cpumode = PERF_RECORD_MISC_USER;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1629 1630
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1631 1632
	}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1646 1647
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1648
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1649 1650
}

1651 1652
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1653 1654
{
	unsigned int i;
1655 1656
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1657 1658 1659 1660 1661

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1662 1663
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1664 1665 1666 1667 1668
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1722
{
K
Kan Liang 已提交
1723 1724
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1725
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1772
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1791
	int chain_nr = min(max_stack, (int)chain->nr);
1792
	u8 cpumode = PERF_RECORD_MISC_USER;
1793
	int i, j, err;
1794 1795 1796
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1806 1807 1808 1809 1810 1811
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1858
					       NULL, be[i].to);
1859 1860
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1861
						       NULL, be[i].from);
1862 1863 1864 1865 1866 1867 1868 1869 1870
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1871
	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1872 1873 1874 1875
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1876
	for (i = first_call; i < chain_nr; i++) {
1877 1878 1879
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1880
			j = i;
1881
		else
1882 1883 1884 1885 1886 1887 1888
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1889

1890
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1891 1892

		if (err)
1893
			return (err < 0) ? err : 0;
1894 1895 1896 1897 1898 1899 1900 1901
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
1902 1903 1904

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
1905 1906 1907 1908
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1909 1910 1911 1912 1913 1914
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1915
{
K
Kan Liang 已提交
1916 1917 1918
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1932
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1933
				   thread, sample, max_stack);
1934 1935

}
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1959

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1981
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1982
				  struct target *target, struct thread_map *threads,
1983 1984
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1985
{
1986
	if (target__has_task(target))
1987
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1988
	else if (target__has_cpu(target))
1989
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1990 1991 1992
	/* command specified */
	return 0;
}
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2033
	thread__put(thread);
2034 2035 2036

	return 0;
}
2037 2038 2039

int machine__get_kernel_start(struct machine *machine)
{
2040
	struct map *map = machine__kernel_map(machine);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2059 2060 2061

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2062
	return dsos__findnew(&machine->dsos, filename);
2063
}
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}