machine.c 48.7 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37
	machine->vdso_info = NULL;
38
	machine->env = NULL;
39

40 41
	machine->pid = pid;

42
	machine->symbol_filter = NULL;
43
	machine->id_hdr_size = 0;
44
	machine->comm_exec = false;
45
	machine->kernel_start = 0;
46

47 48 49 50 51
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
52
		struct thread *thread = machine__findnew_thread(machine, -1,
53
								pid);
54 55 56 57 58 59
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
60
		thread__set_comm(thread, comm, 0);
61
		thread__put(thread);
62 63
	}

64 65
	machine->current_tid = NULL;

66 67 68
	return 0;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

86
static void dsos__purge(struct dsos *dsos)
87 88 89
{
	struct dso *pos, *n;

90 91
	pthread_rwlock_wrlock(&dsos->lock);

92
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
93
		RB_CLEAR_NODE(&pos->rb_node);
94
		pos->root = NULL;
95 96
		list_del_init(&pos->node);
		dso__put(pos);
97
	}
98 99

	pthread_rwlock_unlock(&dsos->lock);
100
}
101

102 103 104
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
105
	pthread_rwlock_destroy(&dsos->lock);
106 107
}

108 109
void machine__delete_threads(struct machine *machine)
{
110
	struct rb_node *nd;
111

112 113
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
114 115 116 117
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
118
		__machine__remove_thread(machine, t, false);
119
	}
120
	pthread_rwlock_unlock(&machine->threads_lock);
121 122
}

123 124 125
void machine__exit(struct machine *machine)
{
	map_groups__exit(&machine->kmaps);
126
	dsos__exit(&machine->dsos);
127
	machine__exit_vdso(machine);
128
	zfree(&machine->root_dir);
129
	zfree(&machine->current_tid);
130
	pthread_rwlock_destroy(&machine->threads_lock);
131 132 133 134 135 136 137 138
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

139 140 141 142
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
143
	machines->symbol_filter = NULL;
144 145 146 147 148 149 150 151 152
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
153 154
			      const char *root_dir)
{
155
	struct rb_node **p = &machines->guests.rb_node;
156 157 158 159 160 161 162 163 164 165 166
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

167 168
	machine->symbol_filter = machines->symbol_filter;

169 170 171 172 173 174 175 176 177 178
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
179
	rb_insert_color(&machine->rb_node, &machines->guests);
180 181 182 183

	return machine;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

199 200 201 202 203 204 205 206 207 208 209 210 211
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

212
struct machine *machines__find(struct machines *machines, pid_t pid)
213
{
214
	struct rb_node **p = &machines->guests.rb_node;
215 216 217 218
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

219 220 221
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

238
struct machine *machines__findnew(struct machines *machines, pid_t pid)
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
255
				seen = strlist__new(NULL, NULL);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

272 273
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
274 275 276
{
	struct rb_node *nd;

277
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

297
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
298 299 300 301
{
	struct rb_node *node;
	struct machine *machine;

302 303 304
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
305 306 307 308 309 310 311
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

312 313 314 315 316 317 318 319 320 321 322 323 324
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

325
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
326 327 328 329
	if (!leader)
		goto out_err;

	if (!leader->mg)
330
		leader->mg = map_groups__new(machine);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
347
		map_groups__put(th->mg);
348 349 350 351 352 353 354 355 356 357
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

358 359 360
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
361 362 363 364 365 366
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
367
	 * Front-end cache - TID lookups come in blocks,
368 369 370
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
371
	th = machine->last_match;
372 373 374 375 376 377
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

378
		machine->last_match = NULL;
379
	}
380 381 382 383 384

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

385
		if (th->tid == tid) {
386
			machine->last_match = th;
387
			machine__update_thread_pid(machine, th, pid);
388 389 390
			return th;
		}

391
		if (tid < th->tid)
392 393 394 395 396 397 398 399
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

400
	th = thread__new(pid, tid);
401 402 403
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
404 405 406 407 408 409 410 411 412

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
413
		if (thread__init_map_groups(th, machine)) {
414
			rb_erase_init(&th->rb_node, &machine->threads);
415
			RB_CLEAR_NODE(&th->rb_node);
416
			thread__delete(th);
417
			return NULL;
418
		}
419 420 421 422
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
423
		machine->last_match = th;
424 425 426 427 428
	}

	return th;
}

429 430 431 432 433
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

434 435
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
436
{
437 438 439 440 441 442
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
443 444
}

445 446
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
447
{
448 449 450 451 452
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
453
}
454

455 456 457 458 459 460 461 462 463
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

464 465
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
466
{
467 468 469
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
470
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
471
	int err = 0;
472

473 474 475
	if (exec)
		machine->comm_exec = true;

476 477 478
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

479 480
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
481
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
482
		err = -1;
483 484
	}

485 486 487
	thread__put(thread);

	return err;
488 489 490
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
491
				union perf_event *event, struct perf_sample *sample __maybe_unused)
492 493 494 495 496 497
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

498 499 500 501 502 503 504 505
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

506 507 508
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
509 510 511
{
	struct dso *dso;

512 513 514
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
515
	if (!dso) {
516
		dso = __dsos__addnew(&machine->dsos, m->name);
517
		if (dso == NULL)
518
			goto out_unlock;
519 520 521 522 523 524 525

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
526
		if (m->kmod && m->comp)
527
			dso->symtab_type++;
528 529 530

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
531 532
	}

533
	dso__get(dso);
534 535
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
536 537 538
	return dso;
}

539 540 541 542 543 544 545 546
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

547 548 549 550 551 552 553 554
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

555 556 557 558 559 560 561 562
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

563 564
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
565
{
566 567 568
	struct map *map = NULL;
	struct dso *dso;
	struct kmod_path m;
569

570
	if (kmod_path__parse_name(&m, filename))
571 572
		return NULL;

573 574 575 576 577
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
	if (map)
		goto out;

578
	dso = machine__findnew_module_dso(machine, &m, filename);
579 580 581
	if (dso == NULL)
		goto out;

582 583
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
584
		goto out;
585 586

	map_groups__insert(&machine->kmaps, map);
587

588 589
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
590 591
out:
	free(m.name);
592 593 594
	return map;
}

595
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
596 597
{
	struct rb_node *nd;
598
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
599

600
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
601
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
602
		ret += __dsos__fprintf(&pos->dsos.head, fp);
603 604 605 606 607
	}

	return ret;
}

608
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
609 610
				     bool (skip)(struct dso *dso, int parm), int parm)
{
611
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
612 613
}

614
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
615 616 617
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
618
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
619

620
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
621 622 623 624 625 626 627 628 629 630
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
631
	struct dso *kdso = machine__kernel_map(machine)->dso;
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

651 652
	pthread_rwlock_rdlock(&machine->threads_lock);

653 654 655 656 657 658
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

659 660
	pthread_rwlock_unlock(&machine->threads_lock);

661 662 663 664 665 666 667 668 669 670 671 672 673
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

674 675
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
676 677 678 679 680 681 682 683 684
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

685 686 687
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
688 689 690 691 692 693 694 695 696 697 698 699
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

700 701 702 703 704 705 706 707 708
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

709 710 711 712 713 714
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
715 716
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
717
{
718
	char filename[PATH_MAX];
719 720 721
	int i;
	const char *name;
	u64 addr = 0;
722

723
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
724 725 726 727

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

728 729 730 731 732 733 734 735
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
736

737
	return addr;
738 739 740 741 742
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
743
	u64 start = machine__get_running_kernel_start(machine, NULL);
744 745 746

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
747
		struct map *map;
748 749 750 751 752 753 754 755

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
756
		map = __machine__kernel_map(machine, type);
757
		kmap = map__kmap(map);
758 759 760
		if (!kmap)
			return -1;

761
		kmap->kmaps = &machine->kmaps;
762
		map_groups__insert(&machine->kmaps, map);
763 764 765 766 767 768 769 770 771 772 773
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
774
		struct map *map = __machine__kernel_map(machine, type);
775

776
		if (map == NULL)
777 778
			continue;

779 780
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
781
		if (kmap && kmap->ref_reloc_sym) {
782 783 784 785 786
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
787 788 789 790
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
791 792 793 794 795 796
		}

		machine->vmlinux_maps[type] = NULL;
	}
}

797
int machines__create_guest_kernel_maps(struct machines *machines)
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

846
void machines__destroy_kernel_maps(struct machines *machines)
847
{
848 849 850
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
851 852 853 854 855

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
856
		rb_erase(&pos->rb_node, &machines->guests);
857 858 859 860
		machine__delete(pos);
	}
}

861
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
862 863 864 865 866 867 868 869 870 871 872 873
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
874
	struct map *map = machine__kernel_map(machine);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
893
	struct map *map = machine__kernel_map(machine);
894 895
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

896
	if (ret > 0)
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

969
static int map_groups__set_modules_path_dir(struct map_groups *mg,
970
				const char *dir_name, int depth)
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

995 996 997 998 999 1000 1001 1002 1003
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1004 1005 1006
			if (ret < 0)
				goto out;
		} else {
1007
			struct kmod_path m;
1008

1009 1010 1011
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1012

1013 1014
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1015

1016
			free(m.name);
1017

1018
			if (ret)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1037
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1038 1039 1040
		 machine->root_dir, version);
	free(version);

1041
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1042 1043
}

1044
static int machine__create_module(void *arg, const char *name, u64 start)
1045
{
1046
	struct machine *machine = arg;
1047
	struct map *map;
1048

1049
	map = machine__findnew_module_map(machine, start, name);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1060 1061 1062
	const char *modules;
	char path[PATH_MAX];

1063
	if (machine__is_default_guest(machine)) {
1064
		modules = symbol_conf.default_guest_modules;
1065 1066
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1067 1068 1069
		modules = path;
	}

1070
	if (symbol__restricted_filename(modules, "/proc/modules"))
1071 1072
		return -1;

1073
	if (modules__parse(modules, machine, machine__create_module))
1074 1075
		return -1;

1076 1077
	if (!machine__set_modules_path(machine))
		return 0;
1078

1079
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1080

1081
	return 0;
1082 1083 1084 1085 1086
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1087
	const char *name;
1088
	u64 addr = machine__get_running_kernel_start(machine, &name);
1089 1090
	if (!addr)
		return -1;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	if (kernel == NULL ||
	    __machine__create_kernel_maps(machine, kernel) < 0)
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1109 1110 1111 1112 1113 1114 1115

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1116 1117 1118
	return 0;
}

1119 1120 1121
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1135 1136
}

1137 1138 1139 1140
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1141
	list_for_each_entry(dso, &machine->dsos.head, node) {
1142 1143 1144 1145 1146 1147 1148
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1149 1150 1151 1152 1153 1154 1155 1156
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1157 1158 1159 1160
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1172 1173
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1185 1186 1187
		struct dso *kernel = NULL;
		struct dso *dso;

1188 1189
		pthread_rwlock_rdlock(&machine->dsos.lock);

1190
		list_for_each_entry(dso, &machine->dsos.head, node) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1211 1212
				continue;

1213

1214 1215 1216 1217
			kernel = dso;
			break;
		}

1218 1219
		pthread_rwlock_unlock(&machine->dsos.lock);

1220
		if (kernel == NULL)
1221
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1222 1223 1224 1225
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1226 1227
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1228
			goto out_problem;
1229
		}
1230

1231 1232
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1251
			dso__load(kernel, machine__kernel_map(machine), NULL);
1252 1253 1254 1255 1256 1257 1258
		}
	}
	return 0;
out_problem:
	return -1;
}

1259
int machine__process_mmap2_event(struct machine *machine,
1260 1261
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1281
					event->mmap2.tid);
1282 1283 1284 1285 1286 1287 1288 1289
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1290
	map = map__new(machine, event->mmap2.start,
1291 1292 1293 1294
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1295 1296
			event->mmap2.prot,
			event->mmap2.flags,
1297
			event->mmap2.filename, type, thread);
1298 1299

	if (map == NULL)
1300
		goto out_problem_map;
1301 1302

	thread__insert_map(thread, map);
1303
	thread__put(thread);
1304
	map__put(map);
1305 1306
	return 0;

1307 1308
out_problem_map:
	thread__put(thread);
1309 1310 1311 1312 1313
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1314 1315
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1316 1317 1318 1319
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1320
	enum map_type type;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1334
	thread = machine__findnew_thread(machine, event->mmap.pid,
1335
					 event->mmap.tid);
1336 1337
	if (thread == NULL)
		goto out_problem;
1338 1339 1340 1341 1342 1343

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1344
	map = map__new(machine, event->mmap.start,
1345
			event->mmap.len, event->mmap.pgoff,
1346
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1347
			event->mmap.filename,
1348
			type, thread);
1349

1350
	if (map == NULL)
1351
		goto out_problem_map;
1352 1353

	thread__insert_map(thread, map);
1354
	thread__put(thread);
1355
	map__put(map);
1356 1357
	return 0;

1358 1359
out_problem_map:
	thread__put(thread);
1360 1361 1362 1363 1364
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1365
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1366
{
1367
	if (machine->last_match == th)
1368
		machine->last_match = NULL;
1369

1370
	BUG_ON(atomic_read(&th->refcnt) == 0);
1371 1372
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1373
	rb_erase_init(&th->rb_node, &machine->threads);
1374
	RB_CLEAR_NODE(&th->rb_node);
1375
	/*
1376 1377 1378
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1379 1380
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1381 1382
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1383
	thread__put(th);
1384 1385
}

1386 1387 1388 1389 1390
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1391 1392
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1393
{
1394 1395 1396
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1397 1398 1399
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1400
	int err = 0;
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1420
	/* if a thread currently exists for the thread id remove it */
1421
	if (thread != NULL) {
1422
		machine__remove_thread(machine, thread);
1423 1424
		thread__put(thread);
	}
1425

1426 1427
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1428 1429

	if (thread == NULL || parent == NULL ||
1430
	    thread__fork(thread, parent, sample->time) < 0) {
1431
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1432
		err = -1;
1433
	}
1434 1435
	thread__put(thread);
	thread__put(parent);
1436

1437
	return err;
1438 1439
}

1440 1441
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1442
{
1443 1444 1445
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1446 1447 1448 1449

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1450
	if (thread != NULL) {
1451
		thread__exited(thread);
1452 1453
		thread__put(thread);
	}
1454 1455 1456 1457

	return 0;
}

1458 1459
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1460 1461 1462 1463 1464
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1465
		ret = machine__process_comm_event(machine, event, sample); break;
1466
	case PERF_RECORD_MMAP:
1467
		ret = machine__process_mmap_event(machine, event, sample); break;
1468
	case PERF_RECORD_MMAP2:
1469
		ret = machine__process_mmap2_event(machine, event, sample); break;
1470
	case PERF_RECORD_FORK:
1471
		ret = machine__process_fork_event(machine, event, sample); break;
1472
	case PERF_RECORD_EXIT:
1473
		ret = machine__process_exit_event(machine, event, sample); break;
1474
	case PERF_RECORD_LOST:
1475
		ret = machine__process_lost_event(machine, event, sample); break;
1476 1477
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1478
	case PERF_RECORD_ITRACE_START:
1479
		ret = machine__process_itrace_start_event(machine, event); break;
1480 1481
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1482 1483 1484
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1485 1486 1487 1488 1489 1490 1491
	default:
		ret = -1;
		break;
	}

	return ret;
}
1492

1493
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1494
{
1495
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1496 1497 1498 1499
		return 1;
	return 0;
}

1500
static void ip__resolve_ams(struct thread *thread,
1501 1502 1503 1504 1505 1506
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1507 1508 1509 1510 1511 1512 1513
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1514
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1515 1516 1517 1518 1519 1520 1521

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1522
static void ip__resolve_data(struct thread *thread,
1523 1524 1525 1526 1527 1528
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1529
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1530 1531 1532 1533 1534 1535
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1536
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1537 1538
	}

1539 1540 1541 1542 1543 1544
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1545 1546
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1547 1548 1549 1550 1551 1552
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1553 1554
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1555 1556 1557 1558 1559
	mi->data_src.val = sample->data_src;

	return mi;
}

1560 1561 1562
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1563
			    u8 *cpumode,
1564 1565 1566 1567 1568 1569
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1570
	if (!cpumode) {
1571 1572
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1573
	} else {
1574 1575 1576
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1577
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1578 1579
				break;
			case PERF_CONTEXT_KERNEL:
1580
				*cpumode = PERF_RECORD_MISC_KERNEL;
1581 1582
				break;
			case PERF_CONTEXT_USER:
1583
				*cpumode = PERF_RECORD_MISC_USER;
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1597 1598
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1599 1600
	}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1614
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1615 1616
}

1617 1618
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1619 1620
{
	unsigned int i;
1621 1622
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1623 1624 1625 1626 1627

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1628 1629
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1630 1631 1632 1633 1634
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1688
{
K
Kan Liang 已提交
1689 1690
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1691
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1738
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1757
	int chain_nr = min(max_stack, (int)chain->nr);
1758
	u8 cpumode = PERF_RECORD_MISC_USER;
1759
	int i, j, err;
1760 1761 1762
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1772 1773 1774 1775 1776 1777
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1778

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1824
					       NULL, be[i].to);
1825 1826
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1827
						       NULL, be[i].from);
1828 1829 1830 1831 1832 1833 1834 1835 1836
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1837
	if (chain->nr > PERF_MAX_STACK_DEPTH && (int)chain->nr > max_stack) {
1838 1839 1840 1841
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1842
	for (i = first_call; i < chain_nr; i++) {
1843 1844 1845
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1846
			j = i;
1847
		else
1848 1849 1850 1851 1852 1853 1854
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1855

1856
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1857 1858

		if (err)
1859
			return (err < 0) ? err : 0;
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1872 1873 1874 1875 1876 1877
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1878
{
K
Kan Liang 已提交
1879 1880 1881
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1895
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1896
				   thread, sample, max_stack);
1897 1898

}
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1944
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1945
				  struct target *target, struct thread_map *threads,
1946 1947
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1948
{
1949
	if (target__has_task(target))
1950
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1951
	else if (target__has_cpu(target))
1952
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1953 1954 1955
	/* command specified */
	return 0;
}
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
1996
	thread__put(thread);
1997 1998 1999

	return 0;
}
2000 2001 2002

int machine__get_kernel_start(struct machine *machine)
{
2003
	struct map *map = machine__kernel_map(machine);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2022 2023 2024

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2025
	return dsos__findnew(&machine->dsos, filename);
2026
}
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}