uprobes.c 39.2 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35
#include "../../mm/internal.h"	/* munlock_vma_page */
36

37 38
#include <linux/uprobes.h>

39 40 41
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

42
static struct rb_root uprobes_tree = RB_ROOT;
43

44 45 46
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * We need separate register/unregister and mmap/munmap lock hashes because
 * of mmap_sem nesting.
 *
 * uprobe_register() needs to install probes on (potentially) all processes
 * and thus needs to acquire multiple mmap_sems (consequtively, not
 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
 * for the particular process doing the mmap.
 *
 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
 * because of lock order against i_mmap_mutex. This means there's a hole in
 * the register vma iteration where a mmap() can happen.
 *
 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
 * install a probe where one is already installed.
 */

65 66
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 68

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 70 71

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73 74

/*
75
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 77 78 79 80
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

81 82 83 84 85 86 87 88 89 90 91 92
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

109 110
	if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
				== (VM_READ|VM_EXEC))
111 112 113 114 115
		return true;

	return false;
}

116
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117
{
118
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 120
}

121 122 123 124 125
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

126 127 128 129 130
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
131
 * @addr:     address the old @page is mapped at
132 133 134 135 136
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
137 138
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
139 140
{
	struct mm_struct *mm = vma->vm_mm;
141 142
	spinlock_t *ptl;
	pte_t *ptep;
143
	int err;
144

145
	/* For try_to_free_swap() and munlock_vma_page() below */
146 147 148
	lock_page(page);

	err = -EAGAIN;
149
	ptep = page_check_address(page, mm, addr, &ptl, 0);
150
	if (!ptep)
151
		goto unlock;
152 153 154 155

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

156 157 158 159 160
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

161 162 163 164 165 166 167 168 169
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

170 171 172 173
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

174 175 176 177
	err = 0;
 unlock:
	unlock_page(page);
	return err;
178 179 180
}

/**
181
 * is_swbp_insn - check if instruction is breakpoint instruction.
182
 * @insn: instruction to be checked.
183
 * Default implementation of is_swbp_insn
184 185
 * Returns true if @insn is a breakpoint instruction.
 */
186
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187
{
188
	return *insn == UPROBE_SWBP_INSN;
189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
203
 * @auprobe: arch breakpointing information.
204 205 206 207 208 209 210 211 212 213
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
214
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 216 217 218 219 220
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	int ret;
221

222
retry:
223 224 225 226
	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
227

228 229 230
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
231
		goto put_old;
232 233 234 235 236 237 238 239

	__SetPageUptodate(new_page);

	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240
	memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241 242 243 244 245 246

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
247
		goto put_new;
248

249
	ret = __replace_page(vma, vaddr, old_page, new_page);
250

251
put_new:
252
	page_cache_release(new_page);
253
put_old:
254 255
	put_page(old_page);

256 257
	if (unlikely(ret == -EAGAIN))
		goto retry;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
273
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 275 276 277 278
{
	struct page *page;
	void *vaddr_new;
	int ret;

279
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 281 282 283 284 285
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
286
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
287 288
	kunmap_atomic(vaddr_new);
	unlock_page(page);
289 290 291

	put_page(page);

292 293 294
	return 0;
}

295
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
296 297
{
	uprobe_opcode_t opcode;
298
	int result;
299

300 301 302 303 304 305 306 307 308 309
	if (current->mm == mm) {
		pagefault_disable();
		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
								sizeof(opcode));
		pagefault_enable();

		if (likely(result == 0))
			goto out;
	}

310
	result = read_opcode(mm, vaddr, &opcode);
311 312
	if (result)
		return result;
313
out:
314
	if (is_swbp_insn(&opcode))
315 316 317 318 319 320
		return 1;

	return 0;
}

/**
321
 * set_swbp - store breakpoint at a given address.
322
 * @auprobe: arch specific probepoint information.
323 324 325 326 327 328
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
329
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
330
{
331
	int result;
332 333 334
	/*
	 * See the comment near uprobes_hash().
	 */
335
	result = is_swbp_at_addr(mm, vaddr);
336 337 338 339 340 341
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

342
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
343 344 345 346 347
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
348
 * @auprobe: arch specific probepoint information.
349 350 351 352 353 354
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
355
int __weak
356
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
357 358
{
	if (verify) {
359
		int result;
360

361
		result = is_swbp_at_addr(mm, vaddr);
362 363 364 365 366 367
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
368
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
369 370 371 372 373 374
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
375

376 377 378
	if (l->inode > r->inode)
		return 1;

379 380 381 382 383
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
423

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
449

450 451 452 453 454
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
455

456 457 458 459
	return u;
}

/*
460
 * Acquire uprobes_treelock.
461 462 463 464 465 466 467 468 469 470 471 472 473 474
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
475

476 477 478
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
508
	} else {
509
		atomic_inc(&uprobe_events);
510 511
	}

512 513 514
	return uprobe;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

530
/* Returns the previous consumer */
531
static struct uprobe_consumer *
532
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
533 534
{
	down_write(&uprobe->consumer_rwsem);
535 536
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
537
	up_write(&uprobe->consumer_rwsem);
538

539
	return uc->next;
540 541 542
}

/*
543 544
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
545 546
 * or return false.
 */
547
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
548 549 550 551 552 553
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
554 555
		if (*con == uc) {
			*con = uc->next;
556 557 558 559 560
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
561

562 563 564
	return ret;
}

565
static int
566
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
567
			unsigned long nbytes, loff_t offset)
568 569 570
{
	struct page *page;
	void *vaddr;
571 572
	unsigned long off;
	pgoff_t idx;
573 574 575 576

	if (!filp)
		return -EINVAL;

577 578 579
	if (!mapping->a_ops->readpage)
		return -EIO;

580 581
	idx = offset >> PAGE_CACHE_SHIFT;
	off = offset & ~PAGE_MASK;
582 583 584 585 586 587 588 589 590 591

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
592
	memcpy(insn, vaddr + off, nbytes);
593 594
	kunmap_atomic(vaddr);
	page_cache_release(page);
595

596 597 598
	return 0;
}

599
static int copy_insn(struct uprobe *uprobe, struct file *filp)
600 601 602
{
	struct address_space *mapping;
	unsigned long nbytes;
603
	int bytes;
604

605
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
606 607 608 609 610 611 612 613 614 615
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
616 617 618 619
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
620 621
		bytes = nbytes;
	}
622
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
623 624
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/*
 * How mm->uprobes_state.count gets updated
 * uprobe_mmap() increments the count if
 * 	- it successfully adds a breakpoint.
 * 	- it cannot add a breakpoint, but sees that there is a underlying
 * 	  breakpoint (via a is_swbp_at_addr()).
 *
 * uprobe_munmap() decrements the count if
 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 * 	  dropped just after uprobe_munmap.)
 *
 * uprobe_register increments the count if:
 * 	- it successfully adds a breakpoint.
 *
 * uprobe_unregister decrements the count if:
 * 	- it sees a underlying breakpoint and removes successfully.
 * 	  (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 * 	  since there is no underlying breakpoint after the
 * 	  breakpoint removal.)
 */
648 649
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
650
			struct vm_area_struct *vma, unsigned long vaddr)
651 652 653 654 655 656 657 658 659 660 661 662 663
{
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

664
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
665
		ret = copy_insn(uprobe, vma->vm_file);
666 667 668
		if (ret)
			return ret;

669
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
670
			return -ENOTSUPP;
671

672
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
673 674 675
		if (ret)
			return ret;

676 677 678 679
		/* write_opcode() assumes we don't cross page boundary */
		BUG_ON((uprobe->offset & ~PAGE_MASK) +
				UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

680
		uprobe->flags |= UPROBE_COPY_INSN;
681
	}
682 683 684 685 686 687 688 689 690 691

	/*
	 * Ideally, should be updating the probe count after the breakpoint
	 * has been successfully inserted. However a thread could hit the
	 * breakpoint we just inserted even before the probe count is
	 * incremented. If this is the first breakpoint placed, breakpoint
	 * notifier might ignore uprobes and pass the trap to the thread.
	 * Hence increment before and decrement on failure.
	 */
	atomic_inc(&mm->uprobes_state.count);
692
	ret = set_swbp(&uprobe->arch, mm, vaddr);
693 694
	if (ret)
		atomic_dec(&mm->uprobes_state.count);
695 696 697 698

	return ret;
}

699
static void
700
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
701
{
702
	if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
703
		atomic_dec(&mm->uprobes_state.count);
704 705
}

706
/*
707 708 709
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
710
 */
711 712 713 714 715 716 717 718 719 720 721 722
static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

723 724 725
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
726
	unsigned long vaddr;
727 728 729
};

static inline struct map_info *free_map_info(struct map_info *info)
730
{
731 732 733 734 735 736 737 738 739
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
740 741
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
742 743 744 745
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
746

747 748
 again:
	mutex_lock(&mapping->i_mmap_mutex);
749 750 751 752
	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

753 754 755 756 757 758 759 760 761 762
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
763 764 765
		if (!prev) {
			more++;
			continue;
766 767
		}

768 769
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
770

771 772 773 774
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
775

776
		info->mm = vma->vm_mm;
777
		info->vaddr = offset_to_vaddr(vma, offset);
778
	}
779 780
	mutex_unlock(&mapping->i_mmap_mutex);

781 782 783 784 785 786 787 788
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
805 806 807 808
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
809 810
	struct map_info *info;
	int err = 0;
811

812 813 814 815
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
	if (IS_ERR(info))
		return PTR_ERR(info);
816

817 818 819
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
820

821 822
		if (err)
			goto free;
823

824
		down_write(&mm->mmap_sem);
825 826 827
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
		    vma->vm_file->f_mapping->host != uprobe->inode)
828 829
			goto unlock;

830 831
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
832
			goto unlock;
833 834

		if (is_register) {
835
			err = install_breakpoint(uprobe, mm, vma, info->vaddr);
836 837 838 839
			/*
			 * We can race against uprobe_mmap(), see the
			 * comment near uprobe_hash().
			 */
840 841 842 843
			if (err == -EEXIST)
				err = 0;
		} else {
			remove_breakpoint(uprobe, mm, info->vaddr);
844
		}
845 846 847 848 849
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
850
	}
851

852
	return err;
853 854
}

855
static int __uprobe_register(struct uprobe *uprobe)
856 857 858 859
{
	return register_for_each_vma(uprobe, true);
}

860
static void __uprobe_unregister(struct uprobe *uprobe)
861 862 863 864 865 866 867 868
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
869
 * uprobe_register - register a probe
870 871
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
872
 * @uc: information on howto handle the probe..
873
 *
874
 * Apart from the access refcount, uprobe_register() takes a creation
875 876
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
877
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
878
 * @uprobe even before the register operation is complete. Creation
879
 * refcount is released when the last @uc for the @uprobe
880 881 882 883 884
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
885
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
886 887
{
	struct uprobe *uprobe;
888
	int ret;
889

890
	if (!inode || !uc || uc->next)
891
		return -EINVAL;
892 893

	if (offset > i_size_read(inode))
894
		return -EINVAL;
895 896 897 898

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
899

900
	if (uprobe && !consumer_add(uprobe, uc)) {
901
		ret = __uprobe_register(uprobe);
902 903
		if (ret) {
			uprobe->consumers = NULL;
904 905
			__uprobe_unregister(uprobe);
		} else {
906
			uprobe->flags |= UPROBE_RUN_HANDLER;
907
		}
908 909 910 911 912 913 914 915 916
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
917
 * uprobe_unregister - unregister a already registered probe.
918 919
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
920
 * @uc: identify which probe if multiple probes are colocated.
921
 */
922
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
923
{
924
	struct uprobe *uprobe;
925

926
	if (!inode || !uc)
927 928 929 930 931 932 933 934
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

935
	if (consumer_del(uprobe, uc)) {
936 937
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
938
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
939
		}
940 941 942 943 944 945 946
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

947 948
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
949 950 951 952
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
953
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
954

955
		if (inode < u->inode) {
956
			n = n->rb_left;
957
		} else if (inode > u->inode) {
958
			n = n->rb_right;
959 960 961 962 963 964 965 966
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
967
	}
968

969
	return n;
970 971 972
}

/*
973
 * For a given range in vma, build a list of probes that need to be inserted.
974
 */
975 976 977 978
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
979
{
980
	loff_t min, max;
981
	unsigned long flags;
982 983
	struct rb_node *n, *t;
	struct uprobe *u;
984

985
	INIT_LIST_HEAD(head);
986
	min = vaddr_to_offset(vma, start);
987
	max = min + (end - start) - 1;
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	spin_lock_irqsave(&uprobes_treelock, flags);
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	}
	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
1016 1017
 * Return 0 otherwise. i.e:
 *
1018 1019 1020 1021
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
1022
int uprobe_mmap(struct vm_area_struct *vma)
1023 1024
{
	struct list_head tmp_list;
1025
	struct uprobe *uprobe, *u;
1026
	struct inode *inode;
1027
	int ret, count;
1028 1029

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1030
		return 0;
1031 1032 1033

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
1034
		return 0;
1035 1036

	mutex_lock(uprobes_mmap_hash(inode));
1037
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1038 1039

	ret = 0;
1040
	count = 0;
1041

1042
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1043
		if (!ret) {
1044
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1045 1046

			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1047 1048 1049 1050
			/*
			 * We can race against uprobe_register(), see the
			 * comment near uprobe_hash().
			 */
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
			if (ret == -EEXIST) {
				ret = 0;

				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
					continue;

				/*
				 * Unable to insert a breakpoint, but
				 * breakpoint lies underneath. Increment the
				 * probe count.
				 */
				atomic_inc(&vma->vm_mm->uprobes_state.count);
			}

			if (!ret)
				count++;
1067 1068 1069 1070 1071 1072
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

1073 1074 1075
	if (ret)
		atomic_sub(count, &vma->vm_mm->uprobes_state.count);

1076 1077 1078
	return ret;
}

1079 1080 1081
/*
 * Called in context of a munmap of a vma.
 */
1082
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 1084
{
	struct list_head tmp_list;
1085
	struct uprobe *uprobe, *u;
1086 1087 1088 1089 1090
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

1091 1092 1093
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1094 1095 1096 1097 1098 1099 1100 1101
	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
		return;

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
		return;

	mutex_lock(uprobes_mmap_hash(inode));
1102
	build_probe_list(inode, vma, start, end, &tmp_list);
1103

1104
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1105
		unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1106 1107 1108 1109 1110 1111
		/*
		 * An unregister could have removed the probe before
		 * unmap. So check before we decrement the count.
		 */
		if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
			atomic_dec(&vma->vm_mm->uprobes_state.count);
1112 1113 1114 1115 1116
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));
}

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

/*
 * uprobe_reset_state - Free the area allocated for slots.
 */
void uprobe_reset_state(struct mm_struct *mm)
{
	mm->uprobes_state.xol_area = NULL;
1222
	atomic_set(&mm->uprobes_state.count, 0);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
}

/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1350
	xol_free_insn_slot(t);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1387 1388 1389
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
		return true;

	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	return false;
}

1440
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1441
{
1442 1443
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1444 1445 1446 1447
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1448 1449
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
1450 1451
			struct inode *inode = vma->vm_file->f_mapping->host;
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1452

1453 1454
			uprobe = find_uprobe(inode, offset);
		}
1455 1456 1457 1458 1459

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1460 1461 1462
	}
	up_read(&mm->mmap_sem);

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1475
	int uninitialized_var(is_swbp);
1476 1477

	bp_vaddr = uprobe_get_swbp_addr(regs);
1478
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1479

1480
	if (!uprobe) {
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		return;
	}

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
			goto cleanup_ret;
	}
	utask->active_uprobe = uprobe;
	handler_chain(uprobe, regs);
	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
		goto cleanup_ret;

	utask->state = UTASK_SSTEP;
	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
		user_enable_single_step(current);
		return;
	}

cleanup_ret:
	if (utask) {
		utask->active_uprobe = NULL;
		utask->state = UTASK_RUNNING;
	}
	if (uprobe) {
		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))

			/*
			 * cannot singlestep; cannot skip instruction;
			 * re-execute the instruction.
			 */
			instruction_pointer_set(regs, bp_vaddr);

		put_uprobe(uprobe);
	}
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
	user_disable_single_step(current);
1554
	xol_free_insn_slot(current);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
 * allows the thread to return from interrupt.
 *
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
 * interrupt.
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

	utask = current->utask;
	if (!utask || utask->state == UTASK_BP_HIT)
		handle_swbp(regs);
	else
		handle_singlestep(utask, regs);
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1592 1593
	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
		/* task is currently not uprobed */
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
		return 0;

	utask = current->utask;
	if (utask)
		utask->state = UTASK_BP_HIT;

	set_thread_flag(TIF_UPROBE);

	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1627 1628 1629 1630 1631 1632 1633 1634
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1635 1636

	return register_die_notifier(&uprobe_exception_nb);
1637
}
1638
module_init(init_uprobes);
1639 1640 1641 1642 1643

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);