process.c 13.2 KB
Newer Older
1 2
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

3 4 5 6
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
7
#include <linux/prctl.h>
8 9
#include <linux/slab.h>
#include <linux/sched.h>
10 11
#include <linux/init.h>
#include <linux/export.h>
12
#include <linux/pm.h>
13
#include <linux/tick.h>
A
Amerigo Wang 已提交
14
#include <linux/random.h>
A
Avi Kivity 已提交
15
#include <linux/user-return-notifier.h>
16 17
#include <linux/dmi.h>
#include <linux/utsname.h>
18 19 20
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
21
#include <trace/events/power.h>
22
#include <linux/hw_breakpoint.h>
23
#include <asm/cpu.h>
24
#include <asm/apic.h>
25
#include <asm/syscalls.h>
26 27
#include <asm/idle.h>
#include <asm/uaccess.h>
28
#include <asm/mwait.h>
29
#include <asm/fpu/internal.h>
30
#include <asm/debugreg.h>
31
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
32
#include <asm/tlbflush.h>
33
#include <asm/mce.h>
34
#include <asm/vm86.h>
35

T
Thomas Gleixner 已提交
36 37 38 39 40 41 42
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
43 44
__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
	.x86_tss = {
45
		.sp0 = TOP_OF_INIT_STACK,
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
61 62 63
#ifdef CONFIG_X86_32
	.SYSENTER_stack_canary	= STACK_END_MAGIC,
#endif
64
};
65
EXPORT_PER_CPU_SYMBOL(cpu_tss);
T
Thomas Gleixner 已提交
66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
#ifdef CONFIG_X86_64
static DEFINE_PER_CPU(unsigned char, is_idle);
static ATOMIC_NOTIFIER_HEAD(idle_notifier);

void idle_notifier_register(struct notifier_block *n)
{
	atomic_notifier_chain_register(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_register);

void idle_notifier_unregister(struct notifier_block *n)
{
	atomic_notifier_chain_unregister(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_unregister);
#endif
Z
Zhao Yakui 已提交
83

84 85 86 87
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
88 89
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
90
	memcpy(dst, src, arch_task_struct_size);
91 92 93
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
94

95
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
96
}
97

98 99 100
/*
 * Free current thread data structures etc..
 */
101
void exit_thread(struct task_struct *tsk)
102
{
103
	struct thread_struct *t = &tsk->thread;
104
	unsigned long *bp = t->io_bitmap_ptr;
105
	struct fpu *fpu = &t->fpu;
106

107
	if (bp) {
108
		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
109 110 111 112 113 114 115 116 117

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
118
		kfree(bp);
119
	}
120

121 122
	free_vm86(t);

123
	fpu__drop(fpu);
124 125 126 127 128 129
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

130
	flush_ptrace_hw_breakpoint(tsk);
131
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132

133
	fpu__clear(&tsk->thread.fpu);
134 135 136 137
}

static void hard_disable_TSC(void)
{
A
Andy Lutomirski 已提交
138
	cr4_set_bits(X86_CR4_TSD);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
A
Andy Lutomirski 已提交
155
	cr4_clear_bits(X86_CR4_TSD);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

P
Peter Zijlstra 已提交
202 203 204 205 206 207 208 209 210 211
	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
			debugctl |= DEBUGCTLMSR_BTF;

		update_debugctlmsr(debugctl);
	}
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
A
Avi Kivity 已提交
235
	propagate_user_return_notify(prev_p, next_p);
236 237
}

238 239 240
/*
 * Idle related variables and functions
 */
241
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
242 243
EXPORT_SYMBOL(boot_option_idle_override);

244
static void (*x86_idle)(void);
245

246 247 248 249 250 251 252 253 254 255
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

#ifdef CONFIG_X86_64
void enter_idle(void)
{
256
	this_cpu_write(is_idle, 1);
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
}

static void __exit_idle(void)
{
	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
		return;
	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
}

/* Called from interrupts to signify idle end */
void exit_idle(void)
{
	/* idle loop has pid 0 */
	if (current->pid)
		return;
	__exit_idle();
}
#endif

T
Thomas Gleixner 已提交
277 278 279 280 281
void arch_cpu_idle_enter(void)
{
	local_touch_nmi();
	enter_idle();
}
282

T
Thomas Gleixner 已提交
283 284 285 286
void arch_cpu_idle_exit(void)
{
	__exit_idle();
}
287

T
Thomas Gleixner 已提交
288 289 290 291
void arch_cpu_idle_dead(void)
{
	play_dead();
}
292

T
Thomas Gleixner 已提交
293 294 295 296 297
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
298
	x86_idle();
299 300
}

301
/*
T
Thomas Gleixner 已提交
302
 * We use this if we don't have any better idle routine..
303 304 305
 */
void default_idle(void)
{
306
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
307
	safe_halt();
308
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
309
}
310
#ifdef CONFIG_APM_MODULE
311 312 313
EXPORT_SYMBOL(default_idle);
#endif

314 315
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
316
{
317
	bool ret = !!x86_idle;
318

319
	x86_idle = default_idle;
320 321 322

	return ret;
}
323
#endif
324 325 326 327 328 329
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
330
	set_cpu_online(smp_processor_id(), false);
331
	disable_local_APIC();
332
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
333

334 335
	for (;;)
		halt();
336 337
}

338 339
bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);
340

341
static cpumask_var_t amd_e400_c1e_mask;
342

343
void amd_e400_remove_cpu(int cpu)
344
{
345 346
	if (amd_e400_c1e_mask != NULL)
		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
347 348
}

349
/*
350
 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
351 352 353
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
354
static void amd_e400_idle(void)
355
{
356
	if (!amd_e400_c1e_detected) {
357 358 359
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
360

361
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
362
			amd_e400_c1e_detected = true;
363
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
364
				mark_tsc_unstable("TSC halt in AMD C1E");
365
			pr_info("System has AMD C1E enabled\n");
366 367 368
		}
	}

369
	if (amd_e400_c1e_detected) {
370 371
		int cpu = smp_processor_id();

372 373
		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
374 375
			/* Force broadcast so ACPI can not interfere. */
			tick_broadcast_force();
376
			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
377
		}
378
		tick_broadcast_enter();
379

380
		default_idle();
381 382 383 384 385

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
386
		local_irq_disable();
387
		tick_broadcast_exit();
388
		local_irq_enable();
389 390 391 392
	} else
		default_idle();
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

	if (!cpu_has(c, X86_FEATURE_MWAIT))
		return 0;

	return 1;
}

/*
415 416 417
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
418 419 420
 */
static void mwait_idle(void)
{
421
	if (!current_set_polling_and_test()) {
422
		trace_cpu_idle_rcuidle(1, smp_processor_id());
423
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
424
			mb(); /* quirk */
425
			clflush((void *)&current_thread_info()->flags);
426
			mb(); /* quirk */
427
		}
428 429 430 431 432 433

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
434
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
435
	} else {
436
		local_irq_enable();
437 438
	}
	__current_clr_polling();
439 440
}

441
void select_idle_routine(const struct cpuinfo_x86 *c)
442
{
443
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
444
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
445
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
446
#endif
T
Thomas Gleixner 已提交
447
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
448 449
		return;

450
	if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
451
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
452
		pr_info("using AMD E400 aware idle routine\n");
453
		x86_idle = amd_e400_idle;
454 455 456
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
457
	} else
458
		x86_idle = default_idle;
459 460
}

461
void __init init_amd_e400_c1e_mask(void)
462
{
463
	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
464
	if (x86_idle == amd_e400_idle)
465
		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
466 467
}

468 469
static int __init idle_setup(char *str)
{
470 471 472
	if (!str)
		return -EINVAL;

473
	if (!strcmp(str, "poll")) {
474
		pr_info("using polling idle threads\n");
475
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
476
		cpu_idle_poll_ctrl(true);
477
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
478 479 480 481 482 483 484
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
485
		x86_idle = default_idle;
486
		boot_option_idle_override = IDLE_HALT;
487 488 489 490 491 492 493
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
494
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
495
	} else
496 497 498 499 500 501
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long start, bottom, top, sp, fp, ip;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	start = (unsigned long)task_stack_page(p);
	if (!start)
		return 0;

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
	 * ----------- bottom = start + sizeof(thread_info)
	 * thread_info
	 * ----------- start
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
	bottom = start + sizeof(struct thread_info);

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
		return 0;

559
	fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
560 561 562
	do {
		if (fp < bottom || fp > top)
			return 0;
563
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
564 565
		if (!in_sched_functions(ip))
			return ip;
566
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
567 568 569
	} while (count++ < 16 && p->state != TASK_RUNNING);
	return 0;
}