scrub.c 109.6 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		ref_count;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114 115
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195 196 197
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

198
struct scrub_fixup_nodatasum {
199
	struct scrub_ctx	*sctx;
200
	struct btrfs_device	*dev;
201 202 203 204 205 206
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

207 208 209 210 211 212 213
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

214 215 216 217 218 219
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
220
	struct list_head	inodes;
221 222 223
	struct btrfs_work	work;
};

224 225 226 227 228 229 230 231 232
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

233 234 235 236
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
237
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
238
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
239
				     struct scrub_block *sblocks_for_recheck);
240 241 242
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
243
				u16 csum_size, int retry_failed_mirror);
244 245 246 247 248 249
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
250
					     struct scrub_block *sblock_good);
251 252 253
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
254 255 256
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
257 258 259 260 261
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
262 263
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
264 265
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
266 267
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
268
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
269
		       u64 physical, struct btrfs_device *dev, u64 flags,
270 271
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
272
static void scrub_bio_end_io(struct bio *bio, int err);
273 274
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
294
				      struct scrub_copy_nocow_ctx *ctx);
295 296 297
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
298
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
299
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
300 301


302 303 304 305 306 307 308 309 310 311 312
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

313
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
314 315 316 317 318 319 320 321 322
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

323 324 325 326 327 328 329 330 331 332 333 334 335
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
357 358 359 360 361 362 363 364 365 366

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

388
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
389
{
390
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
391
		struct btrfs_ordered_sum *sum;
392
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
393 394 395 396 397 398
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

399
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
400 401 402
{
	int i;

403
	if (!sctx)
A
Arne Jansen 已提交
404 405
		return;

406 407
	scrub_free_wr_ctx(&sctx->wr_ctx);

408
	/* this can happen when scrub is cancelled */
409 410
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
411 412

		for (i = 0; i < sbio->page_count; i++) {
413
			WARN_ON(!sbio->pagev[i]->page);
414 415 416 417 418
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

419
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
420
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
421 422 423 424 425 426

		if (!sbio)
			break;
		kfree(sbio);
	}

427 428
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
429 430 431
}

static noinline_for_stack
432
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
433
{
434
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
435 436
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
437 438
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
439

440 441 442 443 444 445 446 447 448 449 450 451
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
452 453
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
454
		goto nomem;
455
	sctx->is_dev_replace = is_dev_replace;
456
	sctx->pages_per_rd_bio = pages_per_rd_bio;
457
	sctx->curr = -1;
458
	sctx->dev_root = dev->dev_root;
459
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
460 461 462 463 464
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
465
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
466 467

		sbio->index = i;
468
		sbio->sctx = sctx;
469
		sbio->page_count = 0;
470 471
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
472

473
		if (i != SCRUB_BIOS_PER_SCTX - 1)
474
			sctx->bios[i]->next_free = i + 1;
475
		else
476 477 478 479 480
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
481 482
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
483 484 485 486 487 488 489
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
490 491 492 493 494 495 496

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
497
	return sctx;
A
Arne Jansen 已提交
498 499

nomem:
500
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
501 502 503
	return ERR_PTR(-ENOMEM);
}

504 505
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
506 507 508 509 510 511 512
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
513
	struct scrub_warning *swarn = warn_ctx;
514 515 516 517
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
518
	struct btrfs_key key;
519 520 521 522 523 524 525 526 527 528

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

529 530 531
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
532 533 534 535 536
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
537 538 539 540 541 542 543 544 545 546 547 548 549
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
550 551 552 553 554
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
555 556 557 558 559 560 561 562 563 564
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
565
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
566 567
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
568
			swarn->logical, rcu_str_deref(swarn->dev->name),
569 570
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
571
			(char *)(unsigned long)ipath->fspath->val[i]);
572 573 574 575 576

	free_ipath(ipath);
	return 0;

err:
577
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
578 579
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
580
		swarn->logical, rcu_str_deref(swarn->dev->name),
581 582 583 584 585 586
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

587
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
588
{
589 590
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
591 592 593 594 595
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
596 597 598
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
599
	u64 ref_root;
600
	u32 item_size;
601
	u8 ref_level;
602
	int ret;
603

604
	WARN_ON(sblock->page_count < 1);
605
	dev = sblock->pagev[0]->dev;
606 607
	fs_info = sblock->sctx->dev_root->fs_info;

608
	path = btrfs_alloc_path();
609 610
	if (!path)
		return;
611

612 613
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
614
	swarn.errstr = errstr;
615
	swarn.dev = NULL;
616

617 618
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
619 620 621
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
622
	extent_item_pos = swarn.logical - found_key.objectid;
623 624 625 626 627 628
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

629
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
630
		do {
631 632 633
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
634
			printk_in_rcu(KERN_WARNING
635
				"BTRFS: %s at logical %llu on dev %s, "
636
				"sector %llu: metadata %s (level %d) in tree "
637 638
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
639 640 641 642 643
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
644
		btrfs_release_path(path);
645
	} else {
646
		btrfs_release_path(path);
647
		swarn.path = path;
648
		swarn.dev = dev;
649 650
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
651 652 653 654 655 656 657
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

658
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
659
{
660
	struct page *page = NULL;
661
	unsigned long index;
662
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
663
	int ret;
664
	int corrected = 0;
665
	struct btrfs_key key;
666
	struct inode *inode = NULL;
667
	struct btrfs_fs_info *fs_info;
668 669
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
670
	int srcu_index;
671 672 673 674

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
675 676 677 678 679 680 681

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
682
		return PTR_ERR(local_root);
683
	}
684 685 686 687

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
688 689
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
690 691 692 693 694 695
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
722
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
723
					fixup->logical, page,
724
					offset - page_offset(page),
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
759 760

	iput(inode);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
780
	struct scrub_ctx *sctx;
781 782 783 784 785
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
786
	sctx = fixup->sctx;
787 788 789

	path = btrfs_alloc_path();
	if (!path) {
790 791 792
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

821 822 823
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
824 825 826 827 828

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
829 830 831
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
832 833 834
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
835 836
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
837
			fixup->logical, rcu_str_deref(fixup->dev->name));
838 839 840 841 842
	}

	btrfs_free_path(path);
	kfree(fixup);

843
	scrub_pending_trans_workers_dec(sctx);
844 845
}

846 847 848 849 850 851 852 853
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
854
		btrfs_put_bbio(recover->bbio);
855 856 857 858
		kfree(recover);
	}
}

A
Arne Jansen 已提交
859
/*
860 861 862 863 864 865
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
866
 */
867
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
868
{
869
	struct scrub_ctx *sctx = sblock_to_check->sctx;
870
	struct btrfs_device *dev;
871 872 873 874 875 876 877 878 879 880 881 882 883 884
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
885
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
886 887 888
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
889
	fs_info = sctx->dev_root->fs_info;
890 891 892 893 894 895 896 897 898 899 900
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
901
	length = sblock_to_check->page_count * PAGE_SIZE;
902 903 904 905 906
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
907
			BTRFS_EXTENT_FLAG_DATA);
908 909 910
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
911

912 913 914 915 916
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
950 951 952 953 954
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
955
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
956
		goto out;
A
Arne Jansen 已提交
957 958
	}

959
	/* setup the context, map the logical blocks and alloc the pages */
960
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
961
	if (ret) {
962 963 964 965
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
966
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
967 968 969 970
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
971

972
	/* build and submit the bios for the failed mirror, check checksums */
973
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
974
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
975

976 977 978 979 980 981 982 983 984 985
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
986 987
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
988
		sblock_to_check->data_corrected = 1;
989
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
990

991 992
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
993
		goto out;
A
Arne Jansen 已提交
994 995
	}

996
	if (!sblock_bad->no_io_error_seen) {
997 998 999
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1000 1001
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1002
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1003
	} else if (sblock_bad->checksum_error) {
1004 1005 1006
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1007 1008
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1009
		btrfs_dev_stat_inc_and_print(dev,
1010
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1011
	} else if (sblock_bad->header_error) {
1012 1013 1014
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1015 1016 1017
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1018
		if (sblock_bad->generation_error)
1019
			btrfs_dev_stat_inc_and_print(dev,
1020 1021
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1022
			btrfs_dev_stat_inc_and_print(dev,
1023
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1024
	}
A
Arne Jansen 已提交
1025

1026 1027 1028 1029
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1030

1031 1032
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1033

1034 1035
		WARN_ON(sctx->is_dev_replace);

1036 1037
nodatasum_case:

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1048
		fixup_nodatasum->sctx = sctx;
1049
		fixup_nodatasum->dev = dev;
1050 1051 1052
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1053
		scrub_pending_trans_workers_inc(sctx);
1054 1055
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1056 1057
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1058
		goto out;
A
Arne Jansen 已提交
1059 1060
	}

1061 1062
	/*
	 * now build and submit the bios for the other mirrors, check
1063 1064
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1080
		struct scrub_block *sblock_other;
1081

1082 1083 1084 1085 1086
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1087 1088
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1089
				    sctx->csum_size, 0);
1090 1091

		if (!sblock_other->header_error &&
1092 1093
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1094 1095
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1096
				goto corrected_error;
1097 1098
			} else {
				ret = scrub_repair_block_from_good_copy(
1099 1100 1101
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1102
			}
1103 1104
		}
	}
A
Arne Jansen 已提交
1105

1106 1107
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1108 1109 1110

	/*
	 * In case of I/O errors in the area that is supposed to be
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1132
	 */
1133
	success = 1;
1134 1135
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1136
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1137
		struct scrub_block *sblock_other = NULL;
1138

1139 1140
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1141
			continue;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1154 1155
				}
			}
1156 1157
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1158
		}
A
Arne Jansen 已提交
1159

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1187
		}
A
Arne Jansen 已提交
1188 1189
	}

1190
	if (success && !sctx->is_dev_replace) {
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1201 1202
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1203
					    generation, sctx->csum_size, 1);
1204
			if (!sblock_bad->header_error &&
1205 1206 1207 1208 1209 1210 1211
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1212 1213
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1214
			sblock_to_check->data_corrected = 1;
1215
			spin_unlock(&sctx->stat_lock);
1216
			printk_ratelimited_in_rcu(KERN_ERR
1217
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1218
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1219
		}
1220 1221
	} else {
did_not_correct_error:
1222 1223 1224
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1225
		printk_ratelimited_in_rcu(KERN_ERR
1226
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1227
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1228
	}
A
Arne Jansen 已提交
1229

1230 1231 1232 1233 1234 1235
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1236
			struct scrub_recover *recover;
1237 1238
			int page_index;

1239 1240 1241
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1242 1243 1244 1245 1246 1247
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1248 1249
				scrub_page_put(sblock->pagev[page_index]);
			}
1250 1251 1252
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1253

1254 1255
	return 0;
}
A
Arne Jansen 已提交
1256

1257
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1258
{
Z
Zhao Lei 已提交
1259 1260 1261 1262 1263
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1264 1265 1266
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1267 1268
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1269 1270 1271 1272 1273 1274 1275
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

Z
Zhao Lei 已提交
1276
	if (map_type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1297
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1298 1299
				     struct scrub_block *sblocks_for_recheck)
{
1300 1301 1302 1303
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1304 1305 1306 1307 1308 1309
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1310
	int page_index = 0;
1311
	int mirror_index;
1312
	int nmirrors;
1313 1314 1315
	int ret;

	/*
1316
	 * note: the two members ref_count and outstanding_pages
1317 1318 1319 1320 1321
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1322 1323 1324
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1325

1326 1327 1328 1329
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1330
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1331
				       &mapped_length, &bbio, 0, 1);
1332
		if (ret || !bbio || mapped_length < sublen) {
1333
			btrfs_put_bbio(bbio);
1334 1335
			return -EIO;
		}
A
Arne Jansen 已提交
1336

1337 1338
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1339
			btrfs_put_bbio(bbio);
1340 1341 1342 1343 1344 1345 1346
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1347
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1348

1349
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1350

1351
		for (mirror_index = 0; mirror_index < nmirrors;
1352 1353 1354 1355 1356
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1357 1358 1359 1360
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1361 1362 1363
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1364
				scrub_put_recover(recover);
1365 1366
				return -ENOMEM;
			}
1367 1368 1369
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1370

Z
Zhao Lei 已提交
1371 1372 1373
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1374
						      mapped_length,
1375 1376
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1377 1378 1379 1380 1381 1382 1383
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1384 1385 1386 1387
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1388 1389
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1390
			sblock->page_count++;
1391 1392 1393
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1394 1395 1396

			scrub_get_recover(recover);
			page->recover = recover;
1397
		}
1398
		scrub_put_recover(recover);
1399 1400 1401 1402 1403 1404
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1405 1406
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1422 1423 1424
	return page->recover &&
	       (page->recover->bbio->map_type & (BTRFS_BLOCK_GROUP_RAID5 |
	       BTRFS_BLOCK_GROUP_RAID6));
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1442
				    page->mirror_num, 0);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1453 1454 1455 1456 1457 1458 1459
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1460 1461 1462
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1463
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1464
{
1465
	int page_num;
I
Ilya Dryomov 已提交
1466

1467 1468 1469
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1470

1471 1472
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1473
		struct scrub_page *page = sblock->pagev[page_num];
1474

1475
		if (page->dev->bdev == NULL) {
1476 1477 1478 1479 1480
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1481
		WARN_ON(!page->page);
1482
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1483 1484 1485 1486 1487
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1488
		bio->bi_bdev = page->dev->bdev;
1489

1490
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1491 1492 1493 1494 1495 1496 1497 1498 1499
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1500

1501 1502
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1503

1504 1505 1506 1507 1508
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1509
	return;
A
Arne Jansen 已提交
1510 1511
}

M
Miao Xie 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1522 1523 1524 1525 1526
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1527
{
1528 1529 1530 1531 1532
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1533
	WARN_ON(!sblock->pagev[0]->page);
1534 1535 1536
	if (is_metadata) {
		struct btrfs_header *h;

1537
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1538 1539
		h = (struct btrfs_header *)mapped_buffer;

1540
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1541
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1542
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1543
			   BTRFS_UUID_SIZE)) {
1544
			sblock->header_error = 1;
1545
		} else if (generation != btrfs_stack_header_generation(h)) {
1546 1547 1548
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1549 1550 1551 1552
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1553

1554
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1555
	}
A
Arne Jansen 已提交
1556

1557 1558
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1559
			crc = btrfs_csum_data(
1560 1561 1562
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1563
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1564

1565
		kunmap_atomic(mapped_buffer);
1566 1567 1568
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1569
		WARN_ON(!sblock->pagev[page_num]->page);
1570

1571
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1572 1573 1574 1575 1576
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1577 1578
}

1579
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1580
					     struct scrub_block *sblock_good)
1581 1582 1583
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1584

1585 1586
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1587

1588 1589
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1590
							   page_num, 1);
1591 1592
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1593
	}
1594 1595 1596 1597 1598 1599 1600 1601

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1602 1603
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1604

1605 1606
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1607 1608 1609 1610 1611
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1612
		if (!page_bad->dev->bdev) {
1613 1614 1615
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1616 1617 1618
			return -EIO;
		}

1619
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1620 1621
		if (!bio)
			return -EIO;
1622
		bio->bi_bdev = page_bad->dev->bdev;
1623
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1624 1625 1626 1627 1628

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1629
		}
1630

1631
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1632 1633
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1634 1635 1636
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1637 1638 1639
			bio_put(bio);
			return -EIO;
		}
1640
		bio_put(bio);
A
Arne Jansen 已提交
1641 1642
	}

1643 1644 1645
	return 0;
}

1646 1647 1648 1649
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1650 1651 1652 1653 1654 1655 1656
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1712
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1723
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1782 1783
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1784
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1816 1817 1818 1819
{
	u64 flags;
	int ret;

1820 1821
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1833 1834

	return ret;
A
Arne Jansen 已提交
1835 1836
}

1837
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1838
{
1839
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1840
	u8 csum[BTRFS_CSUM_SIZE];
1841 1842 1843
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1844 1845
	u32 crc = ~(u32)0;
	int fail = 0;
1846 1847
	u64 len;
	int index;
A
Arne Jansen 已提交
1848

1849
	BUG_ON(sblock->page_count < 1);
1850
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1851 1852
		return 0;

1853 1854
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1855
	buffer = kmap_atomic(page);
1856

1857
	len = sctx->sectorsize;
1858 1859 1860 1861
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1862
		crc = btrfs_csum_data(buffer, crc, l);
1863
		kunmap_atomic(buffer);
1864 1865 1866 1867 1868
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1869 1870
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1871
		buffer = kmap_atomic(page);
1872 1873
	}

A
Arne Jansen 已提交
1874
	btrfs_csum_final(crc, csum);
1875
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1876 1877 1878 1879 1880
		fail = 1;

	return fail;
}

1881
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1882
{
1883
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1884
	struct btrfs_header *h;
1885
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1886
	struct btrfs_fs_info *fs_info = root->fs_info;
1887 1888 1889 1890 1891 1892
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1893 1894 1895
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1896 1897 1898 1899
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1900
	page = sblock->pagev[0]->page;
1901
	mapped_buffer = kmap_atomic(page);
1902
	h = (struct btrfs_header *)mapped_buffer;
1903
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1904 1905 1906 1907 1908 1909 1910

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1911
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1912 1913
		++fail;

1914
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1915 1916
		++fail;

M
Miao Xie 已提交
1917
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1918 1919 1920 1921 1922 1923
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1924
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1925 1926 1927 1928 1929 1930
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1931
		crc = btrfs_csum_data(p, crc, l);
1932
		kunmap_atomic(mapped_buffer);
1933 1934 1935 1936 1937
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1938 1939
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1940
		mapped_buffer = kmap_atomic(page);
1941 1942 1943 1944 1945
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1946
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1947 1948 1949 1950 1951
		++crc_fail;

	return fail || crc_fail;
}

1952
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1953 1954
{
	struct btrfs_super_block *s;
1955
	struct scrub_ctx *sctx = sblock->sctx;
1956 1957 1958 1959 1960 1961
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1962
	u32 crc = ~(u32)0;
1963 1964
	int fail_gen = 0;
	int fail_cor = 0;
1965 1966
	u64 len;
	int index;
A
Arne Jansen 已提交
1967

1968
	BUG_ON(sblock->page_count < 1);
1969
	page = sblock->pagev[0]->page;
1970
	mapped_buffer = kmap_atomic(page);
1971
	s = (struct btrfs_super_block *)mapped_buffer;
1972
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1973

1974
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1975
		++fail_cor;
A
Arne Jansen 已提交
1976

1977
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1978
		++fail_gen;
A
Arne Jansen 已提交
1979

M
Miao Xie 已提交
1980
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1981
		++fail_cor;
A
Arne Jansen 已提交
1982

1983 1984 1985 1986 1987 1988 1989
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1990
		crc = btrfs_csum_data(p, crc, l);
1991
		kunmap_atomic(mapped_buffer);
1992 1993 1994 1995 1996
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1997 1998
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1999
		mapped_buffer = kmap_atomic(page);
2000 2001 2002 2003 2004
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2005
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2006
		++fail_cor;
A
Arne Jansen 已提交
2007

2008
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2009 2010 2011 2012 2013
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2014 2015 2016
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2017
		if (fail_cor)
2018
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2019 2020
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2021
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2022
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2023 2024
	}

2025
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2026 2027
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2038 2039 2040
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2041
		for (i = 0; i < sblock->page_count; i++)
2042
			scrub_page_put(sblock->pagev[i]);
2043 2044 2045 2046
		kfree(sblock);
	}
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2061
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2062 2063 2064
{
	struct scrub_bio *sbio;

2065
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2066
		return;
A
Arne Jansen 已提交
2067

2068 2069
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2070
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2081
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2082 2083 2084 2085
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2086 2087
}

2088 2089
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2090
{
2091
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2092
	struct scrub_bio *sbio;
2093
	int ret;
A
Arne Jansen 已提交
2094 2095 2096 2097 2098

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2099 2100 2101 2102 2103 2104 2105 2106
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2107
		} else {
2108 2109
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2110 2111
		}
	}
2112
	sbio = sctx->bios[sctx->curr];
2113
	if (sbio->page_count == 0) {
2114 2115
		struct bio *bio;

2116 2117
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2118
		sbio->dev = spage->dev;
2119 2120
		bio = sbio->bio;
		if (!bio) {
2121
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2122 2123 2124 2125
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2126 2127 2128

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2129
		bio->bi_bdev = sbio->dev->bdev;
2130
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2131
		sbio->err = 0;
2132 2133 2134
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2135 2136
		   spage->logical ||
		   sbio->dev != spage->dev) {
2137
		scrub_submit(sctx);
A
Arne Jansen 已提交
2138 2139
		goto again;
	}
2140

2141 2142 2143 2144 2145 2146 2147 2148
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2149
		scrub_submit(sctx);
2150 2151 2152
		goto again;
	}

2153
	scrub_block_get(sblock); /* one for the page added to the bio */
2154 2155
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2156
	if (sbio->page_count == sctx->pages_per_rd_bio)
2157
		scrub_submit(sctx);
2158 2159 2160 2161

	return 0;
}

2162
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2163
		       u64 physical, struct btrfs_device *dev, u64 flags,
2164 2165
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2166 2167 2168 2169 2170 2171
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2172 2173 2174
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2175
		return -ENOMEM;
A
Arne Jansen 已提交
2176
	}
2177

2178 2179
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2180
	atomic_set(&sblock->ref_count, 1);
2181
	sblock->sctx = sctx;
2182 2183 2184
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2185
		struct scrub_page *spage;
2186 2187
		u64 l = min_t(u64, len, PAGE_SIZE);

2188 2189 2190
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2191 2192 2193
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2194
			scrub_block_put(sblock);
2195 2196
			return -ENOMEM;
		}
2197 2198 2199
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2200
		spage->sblock = sblock;
2201
		spage->dev = dev;
2202 2203 2204 2205
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2206
		spage->physical_for_dev_replace = physical_for_dev_replace;
2207 2208 2209
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2210
			memcpy(spage->csum, csum, sctx->csum_size);
2211 2212 2213 2214
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2215 2216 2217
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2218 2219 2220
		len -= l;
		logical += l;
		physical += l;
2221
		physical_for_dev_replace += l;
2222 2223
	}

2224
	WARN_ON(sblock->page_count == 0);
2225
	for (index = 0; index < sblock->page_count; index++) {
2226
		struct scrub_page *spage = sblock->pagev[index];
2227 2228
		int ret;

2229
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2230 2231
		if (ret) {
			scrub_block_put(sblock);
2232
			return ret;
2233
		}
2234
	}
A
Arne Jansen 已提交
2235

2236
	if (force)
2237
		scrub_submit(sctx);
A
Arne Jansen 已提交
2238

2239 2240
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2241 2242 2243
	return 0;
}

2244 2245 2246
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2247
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2248 2249 2250 2251

	sbio->err = err;
	sbio->bio = bio;

2252
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2253 2254 2255 2256 2257
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2258
	struct scrub_ctx *sctx = sbio->sctx;
2259 2260
	int i;

2261
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2283 2284 2285 2286
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2287 2288 2289 2290 2291 2292 2293 2294

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2295
	scrub_pending_bio_dec(sctx);
2296 2297
}

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2337 2338
static void scrub_block_complete(struct scrub_block *sblock)
{
2339 2340
	int corrupted = 0;

2341
	if (!sblock->no_io_error_seen) {
2342
		corrupted = 1;
2343
		scrub_handle_errored_block(sblock);
2344 2345 2346 2347 2348 2349
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2350 2351
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2352 2353
			scrub_write_block_to_dev_replace(sblock);
	}
2354 2355 2356 2357 2358 2359 2360 2361 2362

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2363 2364
}

2365
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2366 2367 2368
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2369
	unsigned long index;
A
Arne Jansen 已提交
2370 2371
	unsigned long num_sectors;

2372 2373
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2374 2375 2376 2377 2378 2379
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2380
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2381 2382 2383 2384 2385 2386 2387
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2388
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2389
	num_sectors = sum->len / sctx->sectorsize;
2390 2391
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2392 2393 2394
		list_del(&sum->list);
		kfree(sum);
	}
2395
	return 1;
A
Arne Jansen 已提交
2396 2397 2398
}

/* scrub extent tries to collect up to 64 kB for each bio */
2399
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2400
			u64 physical, struct btrfs_device *dev, u64 flags,
2401
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2402 2403 2404
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2405 2406 2407
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2408 2409 2410 2411 2412
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2413
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2414 2415 2416 2417 2418
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2419
	} else {
2420
		blocksize = sctx->sectorsize;
2421
		WARN_ON(1);
2422
	}
A
Arne Jansen 已提交
2423 2424

	while (len) {
2425
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2426 2427 2428 2429
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2430
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2431
			if (have_csum == 0)
2432
				++sctx->stat.no_csum;
2433 2434 2435 2436 2437 2438
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2439
		}
2440
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2441 2442 2443
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2444 2445 2446 2447 2448
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2449
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2450 2451 2452 2453
	}
	return 0;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2572
skip:
2573 2574 2575 2576 2577 2578 2579
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2580 2581 2582 2583 2584 2585 2586 2587
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2588 2589
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2600 2601 2602
	if (stripe_start)
		*stripe_start = last_offset;

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2615
		stripe_index = rot % map->num_stripes;
2616 2617 2618 2619 2620 2621 2622 2623 2624
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2676
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2677
			       sparity->logic_start,
2678 2679
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2691
					      length, sparity->scrub_dev,
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2708
	btrfs_put_bbio(bbio);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2939
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2940 2941
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2942 2943
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2944
{
2945
	struct btrfs_path *path, *ppath;
2946
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2947 2948 2949
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2950
	struct blk_plug plug;
A
Arne Jansen 已提交
2951 2952 2953 2954 2955 2956 2957 2958
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2959
	u64 logic_end;
2960
	u64 physical_end;
A
Arne Jansen 已提交
2961
	u64 generation;
2962
	int mirror_num;
A
Arne Jansen 已提交
2963 2964 2965 2966
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2967 2968
	u64 increment = map->stripe_len;
	u64 offset;
2969 2970 2971
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2972 2973
	u64 stripe_logical;
	u64 stripe_end;
2974 2975
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2976
	int stop_loop = 0;
D
David Woodhouse 已提交
2977

A
Arne Jansen 已提交
2978
	nstripes = length;
2979
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2980 2981 2982 2983 2984
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2985
		mirror_num = 1;
A
Arne Jansen 已提交
2986 2987 2988 2989
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2990
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2991 2992
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2993
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2994 2995
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2996
		mirror_num = num % map->num_stripes + 1;
2997 2998
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
2999
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3000 3001
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3002 3003
	} else {
		increment = map->stripe_len;
3004
		mirror_num = 1;
A
Arne Jansen 已提交
3005 3006 3007 3008 3009 3010
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3011 3012 3013 3014 3015 3016
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3017 3018 3019 3020 3021
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3022 3023 3024 3025
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3026 3027 3028
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3029 3030
	 */
	logical = base + offset;
3031 3032 3033 3034
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3035
					map, &logic_end, NULL);
3036 3037 3038 3039
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3040
	wait_event(sctx->list_wait,
3041
		   atomic_read(&sctx->bios_in_flight) == 0);
3042
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3043 3044 3045 3046 3047

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3048
	key_end.objectid = logic_end;
3049 3050
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3051 3052 3053 3054 3055 3056 3057
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3058
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3059 3060 3061 3062 3063 3064 3065
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3066 3067 3068 3069 3070

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3071
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3072 3073 3074 3075 3076

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3077 3078 3079 3080 3081
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3082
					map, &logical, &stripe_logical);
3083
			logical += base;
3084 3085 3086 3087 3088 3089 3090 3091
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3092
				goto skip;
3093
			}
3094
		}
A
Arne Jansen 已提交
3095 3096 3097 3098
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3099
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3100 3101 3102 3103 3104 3105 3106 3107
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3108
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3109
			scrub_submit(sctx);
3110 3111 3112
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3113
			wait_event(sctx->list_wait,
3114
				   atomic_read(&sctx->bios_in_flight) == 0);
3115
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3116
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3117 3118
		}

3119 3120 3121 3122
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3123
		key.objectid = logical;
L
Liu Bo 已提交
3124
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3125 3126 3127 3128

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3129

3130
		if (ret > 0) {
3131
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3132 3133
			if (ret < 0)
				goto out;
3134 3135 3136 3137 3138 3139 3140 3141 3142
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3143 3144
		}

L
Liu Bo 已提交
3145
		stop_loop = 0;
A
Arne Jansen 已提交
3146
		while (1) {
3147 3148
			u64 bytes;

A
Arne Jansen 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3158
				stop_loop = 1;
A
Arne Jansen 已提交
3159 3160 3161 3162
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3163
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3164
				bytes = root->nodesize;
3165 3166 3167 3168
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3169 3170
				goto next;

L
Liu Bo 已提交
3171 3172 3173
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3174

L
Liu Bo 已提交
3175 3176 3177 3178 3179 3180
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3181 3182 3183 3184 3185 3186 3187 3188

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3189 3190 3191
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3192
				       key.objectid, logical);
A
Arne Jansen 已提交
3193 3194 3195
				goto next;
			}

L
Liu Bo 已提交
3196 3197 3198 3199
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3200 3201 3202
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3203 3204 3205
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3206
			}
L
Liu Bo 已提交
3207
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3208
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3209 3210
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3211 3212
			}

L
Liu Bo 已提交
3213
			extent_physical = extent_logical - logical + physical;
3214 3215 3216 3217 3218 3219 3220
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3221 3222 3223 3224 3225 3226 3227

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3228 3229 3230
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3231
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3232 3233 3234
			if (ret)
				goto out;

3235
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3236 3237
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3238 3239 3240 3241 3242 3243
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3263 3264 3265 3266
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3267 3268 3269 3270 3271
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3272
				if (physical >= physical_end) {
L
Liu Bo 已提交
3273 3274 3275 3276
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3277 3278 3279
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3280
		btrfs_release_path(path);
3281
skip:
A
Arne Jansen 已提交
3282 3283
		logical += increment;
		physical += map->stripe_len;
3284
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3285 3286 3287 3288 3289
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3290
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3291 3292
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3293
	}
3294
out:
A
Arne Jansen 已提交
3295
	/* push queued extents */
3296
	scrub_submit(sctx);
3297 3298 3299
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3300

3301
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3302
	btrfs_free_path(path);
3303
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3304 3305 3306
	return ret < 0 ? ret : 0;
}

3307
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3308 3309 3310
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3311
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3312 3313
{
	struct btrfs_mapping_tree *map_tree =
3314
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3315 3316 3317
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3318
	int ret = 0;
A
Arne Jansen 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3335
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3336
		    map->stripes[i].physical == dev_offset) {
3337
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3338 3339
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3351
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3352 3353
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3354 3355 3356
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3357
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3369
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3379
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3380 3381 3382 3383 3384 3385
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3386 3387 3388 3389 3390 3391 3392 3393 3394
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3395 3396 3397 3398 3399 3400

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3401
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3402 3403
			break;

3404
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3416 3417
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3428 3429 3430 3431 3432 3433

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3434 3435 3436
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3437
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3459 3460 3461 3462 3463 3464 3465 3466
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3467 3468
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3469 3470 3471 3472 3473 3474 3475
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3476

A
Arne Jansen 已提交
3477 3478 3479
		btrfs_put_block_group(cache);
		if (ret)
			break;
3480 3481
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3482 3483 3484 3485 3486 3487 3488
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3489

3490 3491
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3492
skip:
A
Arne Jansen 已提交
3493
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3494
		btrfs_release_path(path);
A
Arne Jansen 已提交
3495 3496 3497
	}

	btrfs_free_path(path);
3498 3499 3500 3501 3502 3503

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3504 3505
}

3506 3507
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3508 3509 3510 3511 3512
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3513
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3514

3515
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3516 3517
		return -EIO;

3518 3519 3520 3521 3522
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3523 3524 3525

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3526 3527
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3528 3529
			break;

3530
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3531
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3532
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3533 3534 3535
		if (ret)
			return ret;
	}
3536
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3537 3538 3539 3540 3541 3542 3543

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3544 3545
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3546
{
3547
	int ret = 0;
3548 3549
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3550

A
Arne Jansen 已提交
3551
	if (fs_info->scrub_workers_refcnt == 0) {
3552
		if (is_dev_replace)
3553 3554 3555
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3556
		else
3557 3558 3559 3560 3561
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3562
			goto out;
3563 3564 3565 3566 3567 3568
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3569
			goto out;
3570 3571 3572 3573 3574
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3575
			goto out;
3576
		}
A
Arne Jansen 已提交
3577
	}
A
Arne Jansen 已提交
3578
	++fs_info->scrub_workers_refcnt;
3579 3580
out:
	return ret;
A
Arne Jansen 已提交
3581 3582
}

3583
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3584
{
3585
	if (--fs_info->scrub_workers_refcnt == 0) {
3586 3587 3588
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3589
	}
A
Arne Jansen 已提交
3590 3591 3592
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3593 3594
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3595
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3596
{
3597
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3598 3599
	int ret;
	struct btrfs_device *dev;
3600
	struct rcu_string *name;
A
Arne Jansen 已提交
3601

3602
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3603 3604
		return -EINVAL;

3605
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3606 3607 3608 3609 3610
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3611 3612
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3613
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3614 3615 3616
		return -EINVAL;
	}

3617
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3618
		/* not supported for data w/o checksums */
3619 3620 3621
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3622
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3623 3624 3625
		return -EINVAL;
	}

3626 3627 3628 3629 3630 3631 3632 3633
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3634 3635
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3636 3637 3638 3639 3640 3641 3642
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3643

3644 3645
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3646
	if (!dev || (dev->missing && !is_dev_replace)) {
3647
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3648 3649 3650
		return -ENODEV;
	}

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3661
	mutex_lock(&fs_info->scrub_lock);
3662
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3663
		mutex_unlock(&fs_info->scrub_lock);
3664 3665
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3666 3667
	}

3668 3669 3670 3671 3672
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3673
		mutex_unlock(&fs_info->scrub_lock);
3674
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3675 3676
		return -EINPROGRESS;
	}
3677
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3678 3679 3680 3681 3682 3683 3684 3685

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3686
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3687
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3688
		mutex_unlock(&fs_info->scrub_lock);
3689 3690
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3691
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3692
	}
3693 3694
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3695
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3696

3697 3698 3699 3700
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3701
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3702 3703 3704
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3705
	if (!is_dev_replace) {
3706 3707 3708 3709
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3710
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3711
		ret = scrub_supers(sctx, dev);
3712
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3713
	}
A
Arne Jansen 已提交
3714 3715

	if (!ret)
3716 3717
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3718

3719
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3720 3721 3722
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3723
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3724

A
Arne Jansen 已提交
3725
	if (progress)
3726
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3727 3728 3729

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3730
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3731 3732
	mutex_unlock(&fs_info->scrub_lock);

3733
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3734 3735 3736 3737

	return ret;
}

3738
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3755
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3756 3757 3758 3759 3760 3761 3762
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3763
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3784 3785
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3786
{
3787
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3788 3789

	mutex_lock(&fs_info->scrub_lock);
3790 3791
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3792 3793 3794
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3795
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3806

A
Arne Jansen 已提交
3807 3808 3809 3810
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3811
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3812 3813

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3814
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3815
	if (dev)
3816 3817 3818
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3819 3820
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3821
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3822
}
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3839
		btrfs_put_bbio(bbio);
3840 3841 3842 3843 3844 3845
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3846
	btrfs_put_bbio(bbio);
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3899 3900
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3901
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3902 3903
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3904 3905 3906 3907

	return 0;
}

3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3960
					  record_inode_for_nocow, nocow_ctx);
3961
	if (ret != 0 && ret != -ENOENT) {
3962 3963
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3964 3965
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3966 3967 3968 3969
		not_written = 1;
		goto out;
	}

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3988
out:
3989 3990 3991 3992 3993 3994 3995 3996
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4053 4054
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4055
{
4056
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4057
	struct btrfs_key key;
4058 4059
	struct inode *inode;
	struct page *page;
4060
	struct btrfs_root *local_root;
4061
	struct extent_io_tree *io_tree;
4062
	u64 physical_for_dev_replace;
4063
	u64 nocow_ctx_logical;
4064
	u64 len = nocow_ctx->len;
4065
	unsigned long index;
4066
	int srcu_index;
4067 4068
	int ret = 0;
	int err = 0;
4069 4070 4071 4072

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4073 4074 4075

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4076
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4077 4078
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4079
		return PTR_ERR(local_root);
4080
	}
4081 4082 4083 4084 4085

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4086
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4087 4088 4089
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4090 4091 4092 4093
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4094
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4095
	io_tree = &BTRFS_I(inode)->io_tree;
4096
	nocow_ctx_logical = nocow_ctx->logical;
4097

4098 4099 4100 4101
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4102 4103
	}

4104 4105
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4106
again:
4107 4108
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4109
			btrfs_err(fs_info, "find_or_create_page() failed");
4110
			ret = -ENOMEM;
4111
			goto out;
4112 4113 4114 4115 4116 4117 4118
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4119
			err = extent_read_full_page(io_tree, page,
4120 4121
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4122 4123
			if (err) {
				ret = err;
4124 4125
				goto next_page;
			}
4126

4127
			lock_page(page);
4128 4129 4130 4131 4132 4133 4134
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4135
				unlock_page(page);
4136 4137 4138
				page_cache_release(page);
				goto again;
			}
4139 4140 4141 4142 4143
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4144 4145 4146 4147 4148 4149 4150 4151

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4152 4153 4154 4155
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4156
next_page:
4157 4158 4159 4160 4161 4162
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4163 4164
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4165
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4166 4167
		len -= PAGE_CACHE_SIZE;
	}
4168
	ret = COPY_COMPLETE;
4169
out:
4170
	mutex_unlock(&inode->i_mutex);
4171
	iput(inode);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4187
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4188 4189
		return -EIO;
	}
4190
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4191 4192 4193 4194 4195 4196
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4197 4198
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4199 4200 4201 4202 4203 4204 4205 4206 4207
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4208
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4209 4210 4211 4212 4213
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}