scrub.c 88.7 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
A
Arne Jansen 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

45
struct scrub_block;
46
struct scrub_ctx;
A
Arne Jansen 已提交
47

48 49 50 51 52 53 54 55 56
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
57 58 59 60 61 62

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
63
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
64 65

struct scrub_page {
66 67
	struct scrub_block	*sblock;
	struct page		*page;
68
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		ref_count;
75 76 77 78 79
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
80 81 82 83 84
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87 88 89 90
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104 105
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107 108 109 110
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
111
		unsigned int	generation_error:1; /* also sets header_error */
112 113 114
	};
};

115 116 117 118 119 120 121 122
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

123
struct scrub_ctx {
124
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
125
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
126 127
	int			first_free;
	int			curr;
128 129
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
130 131 132 133 134
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
135
	int			readonly;
136
	int			pages_per_rd_bio;
137 138 139
	u32			sectorsize;
	u32			nodesize;
	u32			leafsize;
140 141

	int			is_dev_replace;
142
	struct scrub_wr_ctx	wr_ctx;
143

A
Arne Jansen 已提交
144 145 146 147 148 149 150
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

151
struct scrub_fixup_nodatasum {
152
	struct scrub_ctx	*sctx;
153
	struct btrfs_device	*dev;
154 155 156 157 158 159
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

160 161 162 163 164 165 166 167 168
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
	struct btrfs_work	work;
};

169 170 171 172 173 174 175 176 177 178 179 180 181
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	char			*scratch_buf;
	char			*msg_buf;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
	int			msg_bufsize;
	int			scratch_bufsize;
};

182

183 184 185 186
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
187
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
188
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
189
				     struct btrfs_fs_info *fs_info,
190
				     struct scrub_block *original_sblock,
191
				     u64 length, u64 logical,
192
				     struct scrub_block *sblocks_for_recheck);
193 194 195 196
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size);
197 198 199 200 201 202 203 204 205 206 207 208
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static void scrub_complete_bio_end_io(struct bio *bio, int err);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
209 210 211
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
212 213 214 215 216
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
217 218
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
219 220
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
221
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
222
		       u64 physical, struct btrfs_device *dev, u64 flags,
223 224
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
225
static void scrub_bio_end_io(struct bio *bio, int err);
226 227
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      void *ctx);
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
S
Stefan Behrens 已提交
251 252


253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

306
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
307
{
308
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
309
		struct btrfs_ordered_sum *sum;
310
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
311 312 313 314 315 316
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

317
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
318 319 320
{
	int i;

321
	if (!sctx)
A
Arne Jansen 已提交
322 323
		return;

324 325
	scrub_free_wr_ctx(&sctx->wr_ctx);

326
	/* this can happen when scrub is cancelled */
327 328
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
329 330

		for (i = 0; i < sbio->page_count; i++) {
331
			WARN_ON(!sbio->pagev[i]->page);
332 333 334 335 336
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

337
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
338
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
339 340 341 342 343 344

		if (!sbio)
			break;
		kfree(sbio);
	}

345 346
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
347 348 349
}

static noinline_for_stack
350
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
351
{
352
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
353 354
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
355 356
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
357

358 359 360 361 362 363 364 365 366 367 368 369
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
370 371
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
372
		goto nomem;
373
	sctx->is_dev_replace = is_dev_replace;
374
	sctx->pages_per_rd_bio = pages_per_rd_bio;
375
	sctx->curr = -1;
376
	sctx->dev_root = dev->dev_root;
377
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
378 379 380 381 382
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
383
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
384 385

		sbio->index = i;
386
		sbio->sctx = sctx;
387 388
		sbio->page_count = 0;
		sbio->work.func = scrub_bio_end_io_worker;
A
Arne Jansen 已提交
389

390
		if (i != SCRUB_BIOS_PER_SCTX - 1)
391
			sctx->bios[i]->next_free = i + 1;
392
		else
393 394 395 396 397 398
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->leafsize = dev->dev_root->leafsize;
	sctx->sectorsize = dev->dev_root->sectorsize;
399 400
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
401 402 403 404 405 406 407
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
408 409 410 411 412 413 414

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
415
	return sctx;
A
Arne Jansen 已提交
416 417

nomem:
418
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
419 420 421
	return ERR_PTR(-ENOMEM);
}

422 423
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
424 425 426 427 428 429 430
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
431
	struct scrub_warning *swarn = warn_ctx;
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
460 461 462 463 464
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
465 466 467 468 469 470 471 472 473 474
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
475
		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
476 477
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
478
			swarn->logical, rcu_str_deref(swarn->dev->name),
479 480
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
481
			(char *)(unsigned long)ipath->fspath->val[i]);
482 483 484 485 486

	free_ipath(ipath);
	return 0;

err:
487
	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
488 489
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
490
		swarn->logical, rcu_str_deref(swarn->dev->name),
491 492 493 494 495 496
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

497
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
498
{
499 500
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
501 502 503 504 505
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
506 507 508
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
509
	u64 ref_root;
510
	u32 item_size;
511 512
	u8 ref_level;
	const int bufsize = 4096;
513
	int ret;
514

515
	WARN_ON(sblock->page_count < 1);
516
	dev = sblock->pagev[0]->dev;
517 518
	fs_info = sblock->sctx->dev_root->fs_info;

519 520 521 522
	path = btrfs_alloc_path();

	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
523 524
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
525
	swarn.errstr = errstr;
526
	swarn.dev = NULL;
527 528 529 530 531 532
	swarn.msg_bufsize = bufsize;
	swarn.scratch_bufsize = bufsize;

	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
		goto out;

533 534
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
535 536 537
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
538
	extent_item_pos = swarn.logical - found_key.objectid;
539 540 541 542 543
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);
J
Jan Schmidt 已提交
544
	btrfs_release_path(path);
545

546
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547 548 549
		do {
			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
							&ref_root, &ref_level);
550
			printk_in_rcu(KERN_WARNING
S
Stefan Behrens 已提交
551
				"btrfs: %s at logical %llu on dev %s, "
552
				"sector %llu: metadata %s (level %d) in tree "
553 554
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
555 556 557 558 559 560 561
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
	} else {
		swarn.path = path;
562
		swarn.dev = dev;
563 564
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
565 566 567 568 569 570 571 572 573
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
	kfree(swarn.scratch_buf);
	kfree(swarn.msg_buf);
}

574
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
575
{
576
	struct page *page = NULL;
577
	unsigned long index;
578
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
579
	int ret;
580
	int corrected = 0;
581
	struct btrfs_key key;
582
	struct inode *inode = NULL;
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
	if (IS_ERR(local_root))
		return PTR_ERR(local_root);

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
603 604 605 606 607 608
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
609
		struct btrfs_fs_info *fs_info;
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
630 631
		fs_info = BTRFS_I(inode)->root->fs_info;
		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
					fixup->logical, page,
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
	if (inode)
		iput(inode);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
688
	struct scrub_ctx *sctx;
689 690 691 692 693 694
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
695
	sctx = fixup->sctx;
696 697 698 699
	fs_info = fixup->root->fs_info;

	path = btrfs_alloc_path();
	if (!path) {
700 701 702
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

731 732 733
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
734 735 736 737 738

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
739 740 741
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
742 743 744
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
745
		printk_ratelimited_in_rcu(KERN_ERR
746
			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
747
			(unsigned long long)fixup->logical,
748
			rcu_str_deref(fixup->dev->name));
749 750 751 752 753
	}

	btrfs_free_path(path);
	kfree(fixup);

754
	scrub_pending_trans_workers_dec(sctx);
755 756
}

A
Arne Jansen 已提交
757
/*
758 759 760 761 762 763
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
764
 */
765
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
766
{
767
	struct scrub_ctx *sctx = sblock_to_check->sctx;
768
	struct btrfs_device *dev;
769 770 771 772 773 774 775 776 777 778 779 780 781 782
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
783
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
784 785 786
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
787
	fs_info = sctx->dev_root->fs_info;
788 789 790 791 792 793 794 795 796 797 798
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
799
	length = sblock_to_check->page_count * PAGE_SIZE;
800 801 802 803 804
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
805
			BTRFS_EXTENT_FLAG_DATA);
806 807 808
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
809

810 811 812 813 814
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
848 849 850 851 852
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
853
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
854
		goto out;
A
Arne Jansen 已提交
855 856
	}

857
	/* setup the context, map the logical blocks and alloc the pages */
858
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
859 860
					logical, sblocks_for_recheck);
	if (ret) {
861 862 863 864
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
865
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
866 867 868 869
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
870

871
	/* build and submit the bios for the failed mirror, check checksums */
872 873
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
			    csum, generation, sctx->csum_size);
A
Arne Jansen 已提交
874

875 876 877 878 879 880 881 882 883 884
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
885 886 887
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
888

889 890
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
891
		goto out;
A
Arne Jansen 已提交
892 893
	}

894
	if (!sblock_bad->no_io_error_seen) {
895 896 897
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
898 899
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
900
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
901
	} else if (sblock_bad->checksum_error) {
902 903 904
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
905 906
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
907
		btrfs_dev_stat_inc_and_print(dev,
908
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
909
	} else if (sblock_bad->header_error) {
910 911 912
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
913 914 915
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
916
		if (sblock_bad->generation_error)
917
			btrfs_dev_stat_inc_and_print(dev,
918 919
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
920
			btrfs_dev_stat_inc_and_print(dev,
921
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
922
	}
A
Arne Jansen 已提交
923

924
	if (sctx->readonly && !sctx->is_dev_replace)
925
		goto did_not_correct_error;
A
Arne Jansen 已提交
926

927 928
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
929

930 931 932
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

933 934 935 936 937 938 939 940 941 942
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
943
		fixup_nodatasum->sctx = sctx;
944
		fixup_nodatasum->dev = dev;
945 946 947
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
948
		scrub_pending_trans_workers_inc(sctx);
949 950 951 952
		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
		btrfs_queue_worker(&fs_info->scrub_workers,
				   &fixup_nodatasum->work);
		goto out;
A
Arne Jansen 已提交
953 954
	}

955 956
	/*
	 * now build and submit the bios for the other mirrors, check
957 958
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
974
		struct scrub_block *sblock_other;
975

976 977 978 979 980
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
981 982 983 984 985
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
				    sctx->csum_size);

		if (!sblock_other->header_error &&
986 987
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
988 989 990 991 992 993 994 995 996
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
997 998 999 1000
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1001 1002

	/*
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1082 1083
	 */

1084 1085 1086 1087 1088 1089
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1090
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1091 1092

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1093
			continue;
1094 1095 1096 1097 1098 1099 1100

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1101 1102
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1103 1104 1105 1106 1107 1108 1109 1110 1111

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1112
		}
A
Arne Jansen 已提交
1113

1114 1115 1116 1117
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1118 1119
	}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1131 1132 1133 1134
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
					    generation, sctx->csum_size);
			if (!sblock_bad->header_error &&
1135 1136 1137 1138 1139 1140 1141
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1142 1143 1144
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
			spin_unlock(&sctx->stat_lock);
1145
			printk_ratelimited_in_rcu(KERN_ERR
1146
				"btrfs: fixed up error at logical %llu on dev %s\n",
1147
				(unsigned long long)logical,
1148
				rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1149
		}
1150 1151
	} else {
did_not_correct_error:
1152 1153 1154
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1155
		printk_ratelimited_in_rcu(KERN_ERR
1156
			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1157
			(unsigned long long)logical,
1158
			rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1159
	}
A
Arne Jansen 已提交
1160

1161 1162 1163 1164 1165 1166 1167 1168
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

1169 1170 1171 1172 1173
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
				scrub_page_put(sblock->pagev[page_index]);
			}
1174 1175 1176
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1177

1178 1179
	return 0;
}
A
Arne Jansen 已提交
1180

1181
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1182
				     struct btrfs_fs_info *fs_info,
1183
				     struct scrub_block *original_sblock,
1184 1185 1186 1187 1188 1189 1190 1191
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
1192
	 * note: the two members ref_count and outstanding_pages
1193 1194 1195 1196 1197 1198 1199 1200 1201
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;
A
Arne Jansen 已提交
1202

1203 1204 1205 1206
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1207 1208
		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
				      &mapped_length, &bbio, 0);
1209 1210 1211 1212
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}
A
Arne Jansen 已提交
1213

1214
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1215 1216 1217 1218 1219 1220 1221 1222 1223
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1224 1225 1226 1227
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1228 1229 1230
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1231
				kfree(bbio);
1232 1233
				return -ENOMEM;
			}
1234 1235 1236 1237
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
1238 1239 1240 1241
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1242 1243 1244
			/* for missing devices, dev->bdev is NULL */
			page->dev = bbio->stripes[mirror_index].dev;
			page->mirror_num = mirror_index + 1;
1245
			sblock->page_count++;
1246 1247 1248
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1249 1250 1251 1252 1253 1254 1255 1256
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1257 1258
}

1259 1260 1261 1262 1263 1264 1265
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1266 1267 1268 1269
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size)
I
Ilya Dryomov 已提交
1270
{
1271
	int page_num;
I
Ilya Dryomov 已提交
1272

1273 1274 1275
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1276

1277 1278
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1279
		struct scrub_page *page = sblock->pagev[page_num];
1280 1281
		DECLARE_COMPLETION_ONSTACK(complete);

1282
		if (page->dev->bdev == NULL) {
1283 1284 1285 1286 1287
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1288
		WARN_ON(!page->page);
1289
		bio = bio_alloc(GFP_NOFS, 1);
1290 1291 1292 1293 1294
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1295
		bio->bi_bdev = page->dev->bdev;
1296 1297 1298 1299
		bio->bi_sector = page->physical >> 9;
		bio->bi_end_io = scrub_complete_bio_end_io;
		bio->bi_private = &complete;

1300
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1301
		btrfsic_submit_bio(READ, bio);
I
Ilya Dryomov 已提交
1302

1303 1304
		/* this will also unplug the queue */
		wait_for_completion(&complete);
I
Ilya Dryomov 已提交
1305

1306 1307 1308 1309 1310
		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
			sblock->no_io_error_seen = 0;
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1311

1312 1313 1314 1315 1316
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1317
	return;
A
Arne Jansen 已提交
1318 1319
}

1320 1321 1322 1323 1324
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1325
{
1326 1327 1328 1329 1330 1331
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	struct btrfs_root *root = fs_info->extent_root;
	void *mapped_buffer;

1332
	WARN_ON(!sblock->pagev[0]->page);
1333 1334 1335
	if (is_metadata) {
		struct btrfs_header *h;

1336
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1337 1338
		h = (struct btrfs_header *)mapped_buffer;

1339
		if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1340 1341
		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1342
			   BTRFS_UUID_SIZE)) {
1343
			sblock->header_error = 1;
1344 1345 1346 1347
		} else if (generation != le64_to_cpu(h->generation)) {
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1348 1349 1350 1351
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1352

1353
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1354
	}
A
Arne Jansen 已提交
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
			crc = btrfs_csum_data(root,
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
			crc = btrfs_csum_data(root, mapped_buffer, crc,
					      PAGE_SIZE);

1365
		kunmap_atomic(mapped_buffer);
1366 1367 1368
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1369
		WARN_ON(!sblock->pagev[page_num]->page);
1370

1371
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1372 1373 1374 1375 1376
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1377 1378
}

1379
static void scrub_complete_bio_end_io(struct bio *bio, int err)
A
Arne Jansen 已提交
1380
{
1381 1382
	complete((struct completion *)bio->bi_private);
}
A
Arne Jansen 已提交
1383

1384 1385 1386 1387 1388 1389
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1390

1391 1392
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1393

1394 1395 1396 1397 1398 1399
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1400
	}
1401 1402 1403 1404 1405 1406 1407 1408

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1409 1410
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1411

1412 1413
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1414 1415 1416 1417 1418 1419
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;
		DECLARE_COMPLETION_ONSTACK(complete);

1420 1421 1422 1423 1424 1425
		if (!page_bad->dev->bdev) {
			printk_ratelimited(KERN_WARNING
				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
			return -EIO;
		}

1426
		bio = bio_alloc(GFP_NOFS, 1);
1427 1428
		if (!bio)
			return -EIO;
1429
		bio->bi_bdev = page_bad->dev->bdev;
1430 1431 1432 1433 1434 1435 1436 1437
		bio->bi_sector = page_bad->physical >> 9;
		bio->bi_end_io = scrub_complete_bio_end_io;
		bio->bi_private = &complete;

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1438
		}
1439 1440 1441 1442
		btrfsic_submit_bio(WRITE, bio);

		/* this will also unplug the queue */
		wait_for_completion(&complete);
1443 1444 1445
		if (!bio_flagged(bio, BIO_UPTODATE)) {
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1446 1447 1448
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1449 1450 1451
			bio_put(bio);
			return -EIO;
		}
1452
		bio_put(bio);
A
Arne Jansen 已提交
1453 1454
	}

1455 1456 1457
	return 0;
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
			bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
		bio->bi_sector = sbio->physical >> 9;
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

	sbio->work.func = scrub_wr_bio_end_io_worker;
	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1620 1621 1622 1623
{
	u64 flags;
	int ret;

1624 1625
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1637 1638

	return ret;
A
Arne Jansen 已提交
1639 1640
}

1641
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1642
{
1643
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1644
	u8 csum[BTRFS_CSUM_SIZE];
1645 1646 1647
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1648 1649
	u32 crc = ~(u32)0;
	int fail = 0;
1650
	struct btrfs_root *root = sctx->dev_root;
1651 1652
	u64 len;
	int index;
A
Arne Jansen 已提交
1653

1654
	BUG_ON(sblock->page_count < 1);
1655
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1656 1657
		return 0;

1658 1659
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1660
	buffer = kmap_atomic(page);
1661

1662
	len = sctx->sectorsize;
1663 1664 1665 1666 1667
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

		crc = btrfs_csum_data(root, buffer, crc, l);
1668
		kunmap_atomic(buffer);
1669 1670 1671 1672 1673
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1674 1675
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1676
		buffer = kmap_atomic(page);
1677 1678
	}

A
Arne Jansen 已提交
1679
	btrfs_csum_final(crc, csum);
1680
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1681 1682 1683 1684 1685
		fail = 1;

	return fail;
}

1686
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1687
{
1688
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1689
	struct btrfs_header *h;
1690
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1691
	struct btrfs_fs_info *fs_info = root->fs_info;
1692 1693 1694 1695 1696 1697
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1698 1699 1700
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1701 1702 1703 1704
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1705
	page = sblock->pagev[0]->page;
1706
	mapped_buffer = kmap_atomic(page);
1707
	h = (struct btrfs_header *)mapped_buffer;
1708
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1709 1710 1711 1712 1713 1714 1715

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1716
	if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
A
Arne Jansen 已提交
1717 1718
		++fail;

1719
	if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
A
Arne Jansen 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728
		++fail;

	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1729
	WARN_ON(sctx->nodesize != sctx->leafsize);
1730
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1731 1732 1733 1734 1735 1736 1737
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

		crc = btrfs_csum_data(root, p, crc, l);
1738
		kunmap_atomic(mapped_buffer);
1739 1740 1741 1742 1743
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1744 1745
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1746
		mapped_buffer = kmap_atomic(page);
1747 1748 1749 1750 1751
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1752
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1753 1754 1755 1756 1757
		++crc_fail;

	return fail || crc_fail;
}

1758
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1759 1760
{
	struct btrfs_super_block *s;
1761
	struct scrub_ctx *sctx = sblock->sctx;
1762
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1763
	struct btrfs_fs_info *fs_info = root->fs_info;
1764 1765 1766 1767 1768 1769
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1770
	u32 crc = ~(u32)0;
1771 1772
	int fail_gen = 0;
	int fail_cor = 0;
1773 1774
	u64 len;
	int index;
A
Arne Jansen 已提交
1775

1776
	BUG_ON(sblock->page_count < 1);
1777
	page = sblock->pagev[0]->page;
1778
	mapped_buffer = kmap_atomic(page);
1779
	s = (struct btrfs_super_block *)mapped_buffer;
1780
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1781

1782
	if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1783
		++fail_cor;
A
Arne Jansen 已提交
1784

1785
	if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1786
		++fail_gen;
A
Arne Jansen 已提交
1787 1788

	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1789
		++fail_cor;
A
Arne Jansen 已提交
1790

1791 1792 1793 1794 1795 1796 1797 1798
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

		crc = btrfs_csum_data(root, p, crc, l);
1799
		kunmap_atomic(mapped_buffer);
1800 1801 1802 1803 1804
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1805 1806
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1807
		mapped_buffer = kmap_atomic(page);
1808 1809 1810 1811 1812
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1813
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1814
		++fail_cor;
A
Arne Jansen 已提交
1815

1816
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1817 1818 1819 1820 1821
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1822 1823 1824
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1825
		if (fail_cor)
1826
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1827 1828
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1829
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1830
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1831 1832
	}

1833
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
1847
			scrub_page_put(sblock->pagev[i]);
1848 1849 1850 1851
		kfree(sblock);
	}
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1866
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1867 1868 1869
{
	struct scrub_bio *sbio;

1870
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1871
		return;
A
Arne Jansen 已提交
1872

1873 1874
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1875
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
1891 1892
}

1893 1894
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1895
{
1896
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1897
	struct scrub_bio *sbio;
1898
	int ret;
A
Arne Jansen 已提交
1899 1900 1901 1902 1903

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1904 1905 1906 1907 1908 1909 1910 1911
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1912
		} else {
1913 1914
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1915 1916
		}
	}
1917
	sbio = sctx->bios[sctx->curr];
1918
	if (sbio->page_count == 0) {
1919 1920
		struct bio *bio;

1921 1922
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1923
		sbio->dev = spage->dev;
1924 1925
		bio = sbio->bio;
		if (!bio) {
1926
			bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1927 1928 1929 1930
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
1931 1932 1933

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
1934 1935
		bio->bi_bdev = sbio->dev->bdev;
		bio->bi_sector = sbio->physical >> 9;
1936
		sbio->err = 0;
1937 1938 1939
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1940 1941
		   spage->logical ||
		   sbio->dev != spage->dev) {
1942
		scrub_submit(sctx);
A
Arne Jansen 已提交
1943 1944
		goto again;
	}
1945

1946 1947 1948 1949 1950 1951 1952 1953
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
1954
		scrub_submit(sctx);
1955 1956 1957
		goto again;
	}

1958
	scrub_block_get(sblock); /* one for the page added to the bio */
1959 1960
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
1961
	if (sbio->page_count == sctx->pages_per_rd_bio)
1962
		scrub_submit(sctx);
1963 1964 1965 1966

	return 0;
}

1967
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1968
		       u64 physical, struct btrfs_device *dev, u64 flags,
1969 1970
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
1971 1972 1973 1974 1975 1976
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
1977 1978 1979
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
1980
		return -ENOMEM;
A
Arne Jansen 已提交
1981
	}
1982

1983 1984
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
1985
	atomic_set(&sblock->ref_count, 1);
1986
	sblock->sctx = sctx;
1987 1988 1989
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
1990
		struct scrub_page *spage;
1991 1992
		u64 l = min_t(u64, len, PAGE_SIZE);

1993 1994 1995
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
1996 1997 1998
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
1999
			scrub_block_put(sblock);
2000 2001
			return -ENOMEM;
		}
2002 2003 2004
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2005
		spage->sblock = sblock;
2006
		spage->dev = dev;
2007 2008 2009 2010
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2011
		spage->physical_for_dev_replace = physical_for_dev_replace;
2012 2013 2014
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2015
			memcpy(spage->csum, csum, sctx->csum_size);
2016 2017 2018 2019
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2020 2021 2022
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2023 2024 2025
		len -= l;
		logical += l;
		physical += l;
2026
		physical_for_dev_replace += l;
2027 2028
	}

2029
	WARN_ON(sblock->page_count == 0);
2030
	for (index = 0; index < sblock->page_count; index++) {
2031
		struct scrub_page *spage = sblock->pagev[index];
2032 2033
		int ret;

2034
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2035 2036
		if (ret) {
			scrub_block_put(sblock);
2037
			return ret;
2038
		}
2039
	}
A
Arne Jansen 已提交
2040

2041
	if (force)
2042
		scrub_submit(sctx);
A
Arne Jansen 已提交
2043

2044 2045
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2046 2047 2048
	return 0;
}

2049 2050 2051
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2052
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

	sbio->err = err;
	sbio->bio = bio;

	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2063
	struct scrub_ctx *sctx = sbio->sctx;
2064 2065
	int i;

2066
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2088 2089 2090 2091
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2092 2093 2094 2095 2096 2097 2098 2099

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2100
	scrub_pending_bio_dec(sctx);
2101 2102 2103 2104
}

static void scrub_block_complete(struct scrub_block *sblock)
{
2105
	if (!sblock->no_io_error_seen) {
2106
		scrub_handle_errored_block(sblock);
2107 2108 2109 2110 2111 2112 2113 2114 2115
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock);
	}
2116 2117
}

2118
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2119 2120 2121 2122 2123 2124 2125
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
	int ret = 0;
	unsigned long i;
	unsigned long num_sectors;

2126 2127
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2128 2129 2130 2131 2132 2133
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2134
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2135 2136 2137 2138 2139 2140 2141
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2142
	num_sectors = sum->len / sctx->sectorsize;
A
Arne Jansen 已提交
2143 2144
	for (i = 0; i < num_sectors; ++i) {
		if (sum->sums[i].bytenr == logical) {
2145
			memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
A
Arne Jansen 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
			ret = 1;
			break;
		}
	}
	if (ret && i == num_sectors - 1) {
		list_del(&sum->list);
		kfree(sum);
	}
	return ret;
}

/* scrub extent tries to collect up to 64 kB for each bio */
2158
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2159
			u64 physical, struct btrfs_device *dev, u64 flags,
2160
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2161 2162 2163
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2164 2165 2166
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2167 2168 2169 2170 2171
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2172
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2173
		WARN_ON(sctx->nodesize != sctx->leafsize);
2174 2175 2176 2177 2178
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2179
	} else {
2180
		blocksize = sctx->sectorsize;
2181
		WARN_ON(1);
2182
	}
A
Arne Jansen 已提交
2183 2184

	while (len) {
2185
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2186 2187 2188 2189
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2190
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2191
			if (have_csum == 0)
2192
				++sctx->stat.no_csum;
2193 2194 2195 2196 2197 2198
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2199
		}
2200
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2201 2202 2203
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2204 2205 2206 2207 2208
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2209
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2210 2211 2212 2213
	}
	return 0;
}

2214
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2215 2216
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2217 2218
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2219 2220
{
	struct btrfs_path *path;
2221
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2222 2223 2224
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2225
	struct blk_plug plug;
A
Arne Jansen 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
	u64 flags;
	int ret;
	int slot;
	int i;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
	u64 generation;
2236
	int mirror_num;
A
Arne Jansen 已提交
2237 2238 2239 2240
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2241 2242
	u64 increment = map->stripe_len;
	u64 offset;
2243 2244 2245 2246 2247
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
A
Arne Jansen 已提交
2248 2249 2250 2251 2252 2253 2254

	nstripes = length;
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2255
		mirror_num = 1;
A
Arne Jansen 已提交
2256 2257 2258 2259
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2260
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2261 2262
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2263
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2264 2265
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2266
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2267 2268
	} else {
		increment = map->stripe_len;
2269
		mirror_num = 1;
A
Arne Jansen 已提交
2270 2271 2272 2273 2274 2275
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2276 2277 2278 2279 2280
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
2281 2282 2283 2284
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
2285 2286 2287
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
2288 2289 2290
	 */
	logical = base + offset;

2291
	wait_event(sctx->list_wait,
2292
		   atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
	key_end.objectid = base + offset + nstripes * increment;
	key_end.type = BTRFS_EXTENT_ITEM_KEY;
	key_end.offset = (u64)0;
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
	key_end.offset = base + offset + nstripes * increment;
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

	mutex_lock(&fs_info->scrub_lock);
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
A
Arne Jansen 已提交
2324
	}
A
Arne Jansen 已提交
2325 2326 2327
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	wake_up(&fs_info->scrub_pause_wait);
A
Arne Jansen 已提交
2328 2329 2330 2331 2332

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
2333
	blk_start_plug(&plug);
A
Arne Jansen 已提交
2334 2335 2336 2337

	/*
	 * now find all extents for each stripe and scrub them
	 */
A
Arne Jansen 已提交
2338 2339
	logical = base + offset;
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2340
	ret = 0;
A
Arne Jansen 已提交
2341
	for (i = 0; i < nstripes; ++i) {
A
Arne Jansen 已提交
2342 2343 2344 2345
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
2346
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
2347 2348 2349 2350 2351 2352 2353 2354
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
2355
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2356
			scrub_submit(sctx);
2357 2358 2359
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
2360
			wait_event(sctx->list_wait,
2361
				   atomic_read(&sctx->bios_in_flight) == 0);
2362
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
A
Arne Jansen 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
			atomic_inc(&fs_info->scrubs_paused);
			wake_up(&fs_info->scrub_pause_wait);
			mutex_lock(&fs_info->scrub_lock);
			while (atomic_read(&fs_info->scrub_pause_req)) {
				mutex_unlock(&fs_info->scrub_lock);
				wait_event(fs_info->scrub_pause_wait,
				   atomic_read(&fs_info->scrub_pause_req) == 0);
				mutex_lock(&fs_info->scrub_lock);
			}
			atomic_dec(&fs_info->scrubs_paused);
			mutex_unlock(&fs_info->scrub_lock);
			wake_up(&fs_info->scrub_pause_wait);
		}

A
Arne Jansen 已提交
2377 2378
		ret = btrfs_lookup_csums_range(csum_root, logical,
					       logical + map->stripe_len - 1,
2379
					       &sctx->csum_list, 1);
A
Arne Jansen 已提交
2380 2381 2382
		if (ret)
			goto out;

A
Arne Jansen 已提交
2383 2384 2385 2386 2387 2388 2389
		key.objectid = logical;
		key.type = BTRFS_EXTENT_ITEM_KEY;
		key.offset = (u64)0;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
2390
		if (ret > 0) {
A
Arne Jansen 已提交
2391 2392 2393 2394
			ret = btrfs_previous_item(root, path, 0,
						  BTRFS_EXTENT_ITEM_KEY);
			if (ret < 0)
				goto out;
2395 2396 2397 2398 2399 2400 2401 2402 2403
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		}

		while (1) {
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.objectid + key.offset <= logical)
				goto next;

			if (key.objectid >= logical + map->stripe_len)
				break;

			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
				goto next;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				printk(KERN_ERR
				       "btrfs scrub: tree block %llu spanning "
				       "stripes, ignored. logical=%llu\n",
				       (unsigned long long)key.objectid,
				       (unsigned long long)logical);
				goto next;
			}

			/*
			 * trim extent to this stripe
			 */
			if (key.objectid < logical) {
				key.offset -= logical - key.objectid;
				key.objectid = logical;
			}
			if (key.objectid + key.offset >
			    logical + map->stripe_len) {
				key.offset = logical + map->stripe_len -
					     key.objectid;
			}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
			extent_logical = key.objectid;
			extent_physical = key.objectid - logical + physical;
			extent_len = key.offset;
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
					   key.objectid - logical + physical);
A
Arne Jansen 已提交
2471 2472 2473 2474 2475 2476
			if (ret)
				goto out;

next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
2477
		btrfs_release_path(path);
A
Arne Jansen 已提交
2478 2479
		logical += increment;
		physical += map->stripe_len;
2480 2481 2482
		spin_lock(&sctx->stat_lock);
		sctx->stat.last_physical = physical;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
2483
	}
2484
out:
A
Arne Jansen 已提交
2485
	/* push queued extents */
2486
	scrub_submit(sctx);
2487 2488 2489
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
2490

2491
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
2492 2493 2494 2495
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

2496
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2497 2498 2499
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
2500
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
2501 2502
{
	struct btrfs_mapping_tree *map_tree =
2503
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
2504 2505 2506
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2507
	int ret = 0;
A
Arne Jansen 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
2524
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2525
		    map->stripes[i].physical == dev_offset) {
2526
			ret = scrub_stripe(sctx, map, scrub_dev, i,
2527 2528
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
2540
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2541 2542
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
2543 2544 2545
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2546
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
2558
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2559 2560 2561 2562 2563 2564 2565 2566 2567

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

2568
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2569 2570 2571 2572 2573 2574
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2575 2576 2577 2578 2579 2580 2581 2582 2583
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
2584 2585 2586 2587 2588 2589

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2590
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2591 2592
			break;

2593
		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (found_key.offset + length <= start) {
			key.offset = found_key.offset + length;
C
Chris Mason 已提交
2607
			btrfs_release_path(path);
A
Arne Jansen 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
			continue;
		}

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
		if (!cache) {
			ret = -ENOENT;
2622
			break;
A
Arne Jansen 已提交
2623
		}
2624 2625 2626
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2627
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);

		mutex_lock(&fs_info->scrub_lock);
		while (atomic_read(&fs_info->scrub_pause_req)) {
			mutex_unlock(&fs_info->scrub_lock);
			wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrub_pause_req) == 0);
			mutex_lock(&fs_info->scrub_lock);
		}
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);

		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
A
Arne Jansen 已提交
2668 2669 2670
		btrfs_put_block_group(cache);
		if (ret)
			break;
2671 2672
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2673 2674 2675 2676 2677 2678 2679
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
2680 2681

		key.offset = found_key.offset + length;
C
Chris Mason 已提交
2682
		btrfs_release_path(path);
A
Arne Jansen 已提交
2683 2684 2685
	}

	btrfs_free_path(path);
2686 2687 2688 2689 2690 2691

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
2692 2693
}

2694 2695
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2696 2697 2698 2699 2700
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
2701
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2702

2703 2704 2705
	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
		return -EIO;

A
Arne Jansen 已提交
2706 2707 2708 2709
	gen = root->fs_info->last_trans_committed;

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2710
		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
A
Arne Jansen 已提交
2711 2712
			break;

2713
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2714
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2715
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
2716 2717 2718
		if (ret)
			return ret;
	}
2719
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2720 2721 2722 2723 2724 2725 2726

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2727 2728
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2729
{
2730
	int ret = 0;
A
Arne Jansen 已提交
2731 2732

	mutex_lock(&fs_info->scrub_lock);
A
Arne Jansen 已提交
2733
	if (fs_info->scrub_workers_refcnt == 0) {
2734 2735 2736 2737 2738 2739 2740
		if (is_dev_replace)
			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
					&fs_info->generic_worker);
		else
			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
					fs_info->thread_pool_size,
					&fs_info->generic_worker);
A
Arne Jansen 已提交
2741
		fs_info->scrub_workers.idle_thresh = 4;
2742 2743 2744
		ret = btrfs_start_workers(&fs_info->scrub_workers);
		if (ret)
			goto out;
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
				   "scrubwrc",
				   fs_info->thread_pool_size,
				   &fs_info->generic_worker);
		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
		ret = btrfs_start_workers(
				&fs_info->scrub_wr_completion_workers);
		if (ret)
			goto out;
		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
				   &fs_info->generic_worker);
		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
		if (ret)
			goto out;
A
Arne Jansen 已提交
2759
	}
A
Arne Jansen 已提交
2760
	++fs_info->scrub_workers_refcnt;
2761
out:
A
Arne Jansen 已提交
2762 2763
	mutex_unlock(&fs_info->scrub_lock);

2764
	return ret;
A
Arne Jansen 已提交
2765 2766
}

2767
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2768 2769
{
	mutex_lock(&fs_info->scrub_lock);
2770
	if (--fs_info->scrub_workers_refcnt == 0) {
A
Arne Jansen 已提交
2771
		btrfs_stop_workers(&fs_info->scrub_workers);
2772 2773 2774
		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
	}
A
Arne Jansen 已提交
2775 2776 2777 2778
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
	mutex_unlock(&fs_info->scrub_lock);
}

2779 2780
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2781
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2782
{
2783
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2784 2785 2786
	int ret;
	struct btrfs_device *dev;

2787
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
2788 2789 2790 2791 2792
		return -EINVAL;

	/*
	 * check some assumptions
	 */
2793
	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2794 2795
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2796 2797
		       fs_info->chunk_root->nodesize,
		       fs_info->chunk_root->leafsize);
2798 2799 2800
		return -EINVAL;
	}

2801
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2802 2803 2804 2805 2806 2807 2808
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2809
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2810 2811 2812
		return -EINVAL;
	}

2813
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2814 2815 2816
		/* not supported for data w/o checksums */
		printk(KERN_ERR
		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2817 2818
		       fs_info->chunk_root->sectorsize,
		       (unsigned long long)PAGE_SIZE);
A
Arne Jansen 已提交
2819 2820 2821
		return -EINVAL;
	}

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

2838
	ret = scrub_workers_get(fs_info, is_dev_replace);
A
Arne Jansen 已提交
2839 2840 2841
	if (ret)
		return ret;

2842 2843
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2844
	if (!dev || (dev->missing && !is_dev_replace)) {
2845 2846
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
A
Arne Jansen 已提交
2847 2848 2849 2850
		return -ENODEV;
	}
	mutex_lock(&fs_info->scrub_lock);

2851
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
2852
		mutex_unlock(&fs_info->scrub_lock);
2853 2854 2855
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
		return -EIO;
A
Arne Jansen 已提交
2856 2857
	}

2858 2859 2860 2861 2862
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
2863
		mutex_unlock(&fs_info->scrub_lock);
2864 2865
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
A
Arne Jansen 已提交
2866 2867
		return -EINPROGRESS;
	}
2868
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2869
	sctx = scrub_setup_ctx(dev, is_dev_replace);
2870
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
2871
		mutex_unlock(&fs_info->scrub_lock);
2872 2873
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
2874
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
2875
	}
2876 2877
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
A
Arne Jansen 已提交
2878 2879 2880

	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);
2881
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2882

2883 2884 2885 2886 2887
	if (!is_dev_replace) {
		down_read(&fs_info->scrub_super_lock);
		ret = scrub_supers(sctx, dev);
		up_read(&fs_info->scrub_super_lock);
	}
A
Arne Jansen 已提交
2888 2889

	if (!ret)
2890 2891
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
2892

2893
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2894 2895 2896
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

2897
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2898

A
Arne Jansen 已提交
2899
	if (progress)
2900
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
2901 2902 2903 2904 2905

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
	mutex_unlock(&fs_info->scrub_lock);

2906
	scrub_free_ctx(sctx);
2907
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
2908 2909 2910 2911

	return ret;
}

2912
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

2929
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
2930 2931 2932 2933 2934 2935 2936
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

2937
void btrfs_scrub_pause_super(struct btrfs_root *root)
A
Arne Jansen 已提交
2938 2939 2940 2941
{
	down_write(&root->fs_info->scrub_super_lock);
}

2942
void btrfs_scrub_continue_super(struct btrfs_root *root)
A
Arne Jansen 已提交
2943 2944 2945 2946
{
	up_write(&root->fs_info->scrub_super_lock);
}

2947
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

2968 2969
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
2970
{
2971
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2972 2973

	mutex_lock(&fs_info->scrub_lock);
2974 2975
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
2976 2977 2978
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
2979
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
2990

A
Arne Jansen 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
{
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct btrfs_device *dev;
	int ret;

	/*
	 * we have to hold the device_list_mutex here so the device
	 * does not go away in cancel_dev. FIXME: find a better solution
	 */
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3002
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3003 3004 3005 3006
	if (!dev) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -ENODEV;
	}
3007
	ret = btrfs_scrub_cancel_dev(fs_info, dev);
A
Arne Jansen 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);

	return ret;
}

int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3017
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3018 3019

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3020
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3021
	if (dev)
3022 3023 3024
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3025 3026
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3027
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3028
}
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
	nocow_ctx->work.func = copy_nocow_pages_worker;
	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
			   &nocow_ctx->work);

	return 0;
}

static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
					  copy_nocow_pages_for_inode,
					  nocow_ctx);
	if (ret != 0 && ret != -ENOENT) {
		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
			(unsigned long long)logical,
			(unsigned long long)physical_for_dev_replace,
			(unsigned long long)len,
			(unsigned long long)mirror_num, ret);
		not_written = 1;
		goto out;
	}

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
{
	unsigned long index;
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	int ret = 0;
	struct btrfs_key key;
	struct inode *inode = NULL;
	struct btrfs_root *local_root;
	u64 physical_for_dev_replace;
	u64 len;
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root))
		return PTR_ERR(local_root);

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	len = nocow_ctx->len;
	while (len >= PAGE_CACHE_SIZE) {
		struct page *page = NULL;
		int ret_sub;

		index = offset >> PAGE_CACHE_SHIFT;

		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
			pr_err("find_or_create_page() failed\n");
			ret = -ENOMEM;
			goto next_page;
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
			ret_sub = extent_read_full_page(&BTRFS_I(inode)->
							 io_tree,
							page, btrfs_get_extent,
							nocow_ctx->mirror_num);
			if (ret_sub) {
				ret = ret_sub;
				goto next_page;
			}
			wait_on_page_locked(page);
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
		ret_sub = write_page_nocow(nocow_ctx->sctx,
					   physical_for_dev_replace, page);
		if (ret_sub) {
			ret = ret_sub;
			goto next_page;
		}

next_page:
		if (page) {
			unlock_page(page);
			put_page(page);
		}
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}

	if (inode)
		iput(inode);
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;
	DECLARE_COMPLETION_ONSTACK(compl);

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
		return -EIO;
	}
	bio = bio_alloc(GFP_NOFS, 1);
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	bio->bi_private = &compl;
	bio->bi_end_io = scrub_complete_bio_end_io;
	bio->bi_size = 0;
	bio->bi_sector = physical_for_dev_replace >> 9;
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}
	btrfsic_submit_bio(WRITE_SYNC, bio);
	wait_for_completion(&compl);

	if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}