scrub.c 93.2 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65 66

struct scrub_page {
67 68
	struct scrub_block	*sblock;
	struct page		*page;
69
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
70 71
	u64			flags;  /* extent flags */
	u64			generation;
72 73
	u64			logical;
	u64			physical;
74
	u64			physical_for_dev_replace;
75
	atomic_t		ref_count;
76 77 78 79 80
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
81 82 83 84 85
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88 89 90 91
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105 106
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115
	};
};

116 117 118 119 120 121 122 123
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

124
struct scrub_ctx {
125
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
127 128
	int			first_free;
	int			curr;
129 130
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
131 132 133 134 135
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
136
	int			readonly;
137
	int			pages_per_rd_bio;
138 139
	u32			sectorsize;
	u32			nodesize;
140 141

	int			is_dev_replace;
142
	struct scrub_wr_ctx	wr_ctx;
143

A
Arne Jansen 已提交
144 145 146 147 148 149 150
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

151
struct scrub_fixup_nodatasum {
152
	struct scrub_ctx	*sctx;
153
	struct btrfs_device	*dev;
154 155 156 157 158 159
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

160 161 162 163 164 165 166
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

167 168 169 170 171 172
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
173
	struct list_head	inodes;
174 175 176
	struct btrfs_work	work;
};

177 178 179 180 181 182 183 184 185 186 187 188 189
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	char			*scratch_buf;
	char			*msg_buf;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
	int			msg_bufsize;
	int			scratch_bufsize;
};

190

191 192 193 194
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
195
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
196
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
197
				     struct btrfs_fs_info *fs_info,
198
				     struct scrub_block *original_sblock,
199
				     u64 length, u64 logical,
200
				     struct scrub_block *sblocks_for_recheck);
201 202 203 204
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size);
205 206 207 208 209 210 211 212 213 214 215
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
216 217 218
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
219 220 221 222 223
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
224 225
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
226 227
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
228
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
229
		       u64 physical, struct btrfs_device *dev, u64 flags,
230 231
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
232
static void scrub_bio_end_io(struct bio *bio, int err);
233 234
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
254
				      struct scrub_copy_nocow_ctx *ctx);
255 256 257
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
258
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
259
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
260 261


262 263 264 265 266 267 268 269 270 271 272
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

273
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274 275 276 277 278 279 280 281 282
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

283 284 285 286 287 288 289 290 291 292 293 294 295
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
317 318 319 320 321 322 323 324 325 326

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

348
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
349
{
350
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
351
		struct btrfs_ordered_sum *sum;
352
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
353 354 355 356 357 358
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

359
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
360 361 362
{
	int i;

363
	if (!sctx)
A
Arne Jansen 已提交
364 365
		return;

366 367
	scrub_free_wr_ctx(&sctx->wr_ctx);

368
	/* this can happen when scrub is cancelled */
369 370
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
371 372

		for (i = 0; i < sbio->page_count; i++) {
373
			WARN_ON(!sbio->pagev[i]->page);
374 375 376 377 378
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

379
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
380
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
381 382 383 384 385 386

		if (!sbio)
			break;
		kfree(sbio);
	}

387 388
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
389 390 391
}

static noinline_for_stack
392
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
393
{
394
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
395 396
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
397 398
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
399

400 401 402 403 404 405 406 407 408 409 410 411
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
412 413
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
414
		goto nomem;
415
	sctx->is_dev_replace = is_dev_replace;
416
	sctx->pages_per_rd_bio = pages_per_rd_bio;
417
	sctx->curr = -1;
418
	sctx->dev_root = dev->dev_root;
419
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
420 421 422 423 424
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
425
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
426 427

		sbio->index = i;
428
		sbio->sctx = sctx;
429
		sbio->page_count = 0;
430 431
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
432

433
		if (i != SCRUB_BIOS_PER_SCTX - 1)
434
			sctx->bios[i]->next_free = i + 1;
435
		else
436 437 438 439 440
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
441 442
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
443 444 445 446 447 448 449
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
450 451 452 453 454 455 456

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
457
	return sctx;
A
Arne Jansen 已提交
458 459

nomem:
460
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
461 462 463
	return ERR_PTR(-ENOMEM);
}

464 465
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
466 467 468 469 470 471 472
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
473
	struct scrub_warning *swarn = warn_ctx;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
502 503 504 505 506
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
507 508 509 510 511 512 513 514 515 516
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
517
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
518 519
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
520
			swarn->logical, rcu_str_deref(swarn->dev->name),
521 522
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
523
			(char *)(unsigned long)ipath->fspath->val[i]);
524 525 526 527 528

	free_ipath(ipath);
	return 0;

err:
529
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
530 531
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
532
		swarn->logical, rcu_str_deref(swarn->dev->name),
533 534 535 536 537 538
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

539
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
540
{
541 542
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
543 544 545 546 547
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
548 549 550
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
551
	u64 ref_root;
552
	u32 item_size;
553 554
	u8 ref_level;
	const int bufsize = 4096;
555
	int ret;
556

557
	WARN_ON(sblock->page_count < 1);
558
	dev = sblock->pagev[0]->dev;
559 560
	fs_info = sblock->sctx->dev_root->fs_info;

561 562 563 564
	path = btrfs_alloc_path();

	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
565 566
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
567
	swarn.errstr = errstr;
568
	swarn.dev = NULL;
569 570 571 572 573 574
	swarn.msg_bufsize = bufsize;
	swarn.scratch_bufsize = bufsize;

	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
		goto out;

575 576
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
577 578 579
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
580
	extent_item_pos = swarn.logical - found_key.objectid;
581 582 583 584 585 586
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

587
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
588
		do {
589 590 591
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
592
			printk_in_rcu(KERN_WARNING
593
				"BTRFS: %s at logical %llu on dev %s, "
594
				"sector %llu: metadata %s (level %d) in tree "
595 596
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
597 598 599 600 601
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
602
		btrfs_release_path(path);
603
	} else {
604
		btrfs_release_path(path);
605
		swarn.path = path;
606
		swarn.dev = dev;
607 608
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
609 610 611 612 613 614 615 616 617
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
	kfree(swarn.scratch_buf);
	kfree(swarn.msg_buf);
}

618
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
619
{
620
	struct page *page = NULL;
621
	unsigned long index;
622
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
623
	int ret;
624
	int corrected = 0;
625
	struct btrfs_key key;
626
	struct inode *inode = NULL;
627
	struct btrfs_fs_info *fs_info;
628 629
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
630
	int srcu_index;
631 632 633 634

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
635 636 637 638 639 640 641

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
642
		return PTR_ERR(local_root);
643
	}
644 645 646 647

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
648 649
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
650 651 652 653 654 655
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
682 683
		fs_info = BTRFS_I(inode)->root->fs_info;
		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
684
					fixup->logical, page,
685
					offset - page_offset(page),
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
720 721

	iput(inode);
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
741
	struct scrub_ctx *sctx;
742 743 744 745 746
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
747
	sctx = fixup->sctx;
748 749 750

	path = btrfs_alloc_path();
	if (!path) {
751 752 753
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

782 783 784
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
785 786 787 788 789

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
790 791 792
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
793 794 795
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
796 797
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
798
			fixup->logical, rcu_str_deref(fixup->dev->name));
799 800 801 802 803
	}

	btrfs_free_path(path);
	kfree(fixup);

804
	scrub_pending_trans_workers_dec(sctx);
805 806
}

A
Arne Jansen 已提交
807
/*
808 809 810 811 812 813
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
814
 */
815
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
816
{
817
	struct scrub_ctx *sctx = sblock_to_check->sctx;
818
	struct btrfs_device *dev;
819 820 821 822 823 824 825 826 827 828 829 830 831 832
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
833
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
834 835 836
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
837
	fs_info = sctx->dev_root->fs_info;
838 839 840 841 842 843 844 845 846 847 848
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
849
	length = sblock_to_check->page_count * PAGE_SIZE;
850 851 852 853 854
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
855
			BTRFS_EXTENT_FLAG_DATA);
856 857 858
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
859

860 861 862 863 864
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
898 899 900 901 902
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
903
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
904
		goto out;
A
Arne Jansen 已提交
905 906
	}

907
	/* setup the context, map the logical blocks and alloc the pages */
908
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
909 910
					logical, sblocks_for_recheck);
	if (ret) {
911 912 913 914
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
915
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
916 917 918 919
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
920

921
	/* build and submit the bios for the failed mirror, check checksums */
922 923
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
			    csum, generation, sctx->csum_size);
A
Arne Jansen 已提交
924

925 926 927 928 929 930 931 932 933 934
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
935 936 937
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
938

939 940
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
941
		goto out;
A
Arne Jansen 已提交
942 943
	}

944
	if (!sblock_bad->no_io_error_seen) {
945 946 947
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
948 949
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
950
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
951
	} else if (sblock_bad->checksum_error) {
952 953 954
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
955 956
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
957
		btrfs_dev_stat_inc_and_print(dev,
958
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
959
	} else if (sblock_bad->header_error) {
960 961 962
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
963 964 965
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
966
		if (sblock_bad->generation_error)
967
			btrfs_dev_stat_inc_and_print(dev,
968 969
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
970
			btrfs_dev_stat_inc_and_print(dev,
971
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
972
	}
A
Arne Jansen 已提交
973

974 975 976 977
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
978

979 980
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
981

982 983 984
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

985 986 987 988 989 990 991 992 993 994
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
995
		fixup_nodatasum->sctx = sctx;
996
		fixup_nodatasum->dev = dev;
997 998 999
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1000
		scrub_pending_trans_workers_inc(sctx);
1001 1002
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1003 1004
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1005
		goto out;
A
Arne Jansen 已提交
1006 1007
	}

1008 1009
	/*
	 * now build and submit the bios for the other mirrors, check
1010 1011
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1027
		struct scrub_block *sblock_other;
1028

1029 1030 1031 1032 1033
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1034 1035 1036 1037 1038
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
				    sctx->csum_size);

		if (!sblock_other->header_error &&
1039 1040
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1041 1042 1043 1044 1045 1046 1047 1048 1049
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1050 1051 1052 1053
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1054 1055

	/*
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1135 1136
	 */

1137 1138 1139 1140 1141 1142
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1143
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1144 1145

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1146
			continue;
1147 1148 1149 1150 1151 1152 1153

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1154 1155
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1156 1157 1158 1159 1160 1161 1162 1163 1164

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1165
		}
A
Arne Jansen 已提交
1166

1167 1168 1169 1170
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1171 1172
	}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1184 1185 1186 1187
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
					    generation, sctx->csum_size);
			if (!sblock_bad->header_error &&
1188 1189 1190 1191 1192 1193 1194
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1195 1196 1197
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
			spin_unlock(&sctx->stat_lock);
1198
			printk_ratelimited_in_rcu(KERN_ERR
1199
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1200
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1201
		}
1202 1203
	} else {
did_not_correct_error:
1204 1205 1206
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1207
		printk_ratelimited_in_rcu(KERN_ERR
1208
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1209
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1210
	}
A
Arne Jansen 已提交
1211

1212 1213 1214 1215 1216 1217 1218 1219
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

1220 1221 1222 1223 1224
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
				scrub_page_put(sblock->pagev[page_index]);
			}
1225 1226 1227
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1228

1229 1230
	return 0;
}
A
Arne Jansen 已提交
1231

1232
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1233
				     struct btrfs_fs_info *fs_info,
1234
				     struct scrub_block *original_sblock,
1235 1236 1237 1238 1239 1240 1241 1242
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
1243
	 * note: the two members ref_count and outstanding_pages
1244 1245 1246 1247 1248 1249 1250 1251 1252
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;
A
Arne Jansen 已提交
1253

1254 1255 1256 1257
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1258 1259
		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
				      &mapped_length, &bbio, 0);
1260 1261 1262 1263
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}
A
Arne Jansen 已提交
1264

1265
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1266 1267 1268 1269 1270 1271 1272 1273 1274
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1275 1276 1277 1278
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1279 1280 1281
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1282
				kfree(bbio);
1283 1284
				return -ENOMEM;
			}
1285 1286 1287 1288
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
1289 1290 1291 1292
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1293 1294 1295
			/* for missing devices, dev->bdev is NULL */
			page->dev = bbio->stripes[mirror_index].dev;
			page->mirror_num = mirror_index + 1;
1296
			sblock->page_count++;
1297 1298 1299
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1300 1301 1302 1303 1304 1305 1306 1307
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1308 1309
}

1310 1311 1312 1313 1314 1315 1316
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1317 1318 1319 1320
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size)
I
Ilya Dryomov 已提交
1321
{
1322
	int page_num;
I
Ilya Dryomov 已提交
1323

1324 1325 1326
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1327

1328 1329
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1330
		struct scrub_page *page = sblock->pagev[page_num];
1331

1332
		if (page->dev->bdev == NULL) {
1333 1334 1335 1336 1337
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1338
		WARN_ON(!page->page);
1339
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1340 1341 1342 1343 1344
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1345
		bio->bi_bdev = page->dev->bdev;
1346
		bio->bi_iter.bi_sector = page->physical >> 9;
1347

1348
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1349
		if (btrfsic_submit_bio_wait(READ, bio))
1350
			sblock->no_io_error_seen = 0;
1351

1352 1353
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1354

1355 1356 1357 1358 1359
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1360
	return;
A
Arne Jansen 已提交
1361 1362
}

M
Miao Xie 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1373 1374 1375 1376 1377
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1378
{
1379 1380 1381 1382 1383
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1384
	WARN_ON(!sblock->pagev[0]->page);
1385 1386 1387
	if (is_metadata) {
		struct btrfs_header *h;

1388
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1389 1390
		h = (struct btrfs_header *)mapped_buffer;

1391
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1392
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1393
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1394
			   BTRFS_UUID_SIZE)) {
1395
			sblock->header_error = 1;
1396
		} else if (generation != btrfs_stack_header_generation(h)) {
1397 1398 1399
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1400 1401 1402 1403
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1404

1405
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1406
	}
A
Arne Jansen 已提交
1407

1408 1409
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1410
			crc = btrfs_csum_data(
1411 1412 1413
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1414
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1415

1416
		kunmap_atomic(mapped_buffer);
1417 1418 1419
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1420
		WARN_ON(!sblock->pagev[page_num]->page);
1421

1422
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1423 1424 1425 1426 1427
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1428 1429
}

1430 1431 1432 1433 1434 1435
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1436

1437 1438
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1439

1440 1441 1442 1443 1444 1445
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1446
	}
1447 1448 1449 1450 1451 1452 1453 1454

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1455 1456
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1457

1458 1459
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1460 1461 1462 1463 1464
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1465
		if (!page_bad->dev->bdev) {
1466 1467 1468
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1469 1470 1471
			return -EIO;
		}

1472
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1473 1474
		if (!bio)
			return -EIO;
1475
		bio->bi_bdev = page_bad->dev->bdev;
1476
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1477 1478 1479 1480 1481

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1482
		}
1483

1484
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1485 1486
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1487 1488 1489
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1490 1491 1492
			bio_put(bio);
			return -EIO;
		}
1493
		bio_put(bio);
A
Arne Jansen 已提交
1494 1495
	}

1496 1497 1498
	return 0;
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1558
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1569
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1628 1629
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1630
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1662 1663 1664 1665
{
	u64 flags;
	int ret;

1666 1667
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1679 1680

	return ret;
A
Arne Jansen 已提交
1681 1682
}

1683
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1684
{
1685
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1686
	u8 csum[BTRFS_CSUM_SIZE];
1687 1688 1689
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1690 1691
	u32 crc = ~(u32)0;
	int fail = 0;
1692 1693
	u64 len;
	int index;
A
Arne Jansen 已提交
1694

1695
	BUG_ON(sblock->page_count < 1);
1696
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1697 1698
		return 0;

1699 1700
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1701
	buffer = kmap_atomic(page);
1702

1703
	len = sctx->sectorsize;
1704 1705 1706 1707
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1708
		crc = btrfs_csum_data(buffer, crc, l);
1709
		kunmap_atomic(buffer);
1710 1711 1712 1713 1714
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1715 1716
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1717
		buffer = kmap_atomic(page);
1718 1719
	}

A
Arne Jansen 已提交
1720
	btrfs_csum_final(crc, csum);
1721
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1722 1723 1724 1725 1726
		fail = 1;

	return fail;
}

1727
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1728
{
1729
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1730
	struct btrfs_header *h;
1731
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1732
	struct btrfs_fs_info *fs_info = root->fs_info;
1733 1734 1735 1736 1737 1738
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1739 1740 1741
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1742 1743 1744 1745
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1746
	page = sblock->pagev[0]->page;
1747
	mapped_buffer = kmap_atomic(page);
1748
	h = (struct btrfs_header *)mapped_buffer;
1749
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1750 1751 1752 1753 1754 1755 1756

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1757
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1758 1759
		++fail;

1760
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1761 1762
		++fail;

M
Miao Xie 已提交
1763
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1764 1765 1766 1767 1768 1769
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1770
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1771 1772 1773 1774 1775 1776
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1777
		crc = btrfs_csum_data(p, crc, l);
1778
		kunmap_atomic(mapped_buffer);
1779 1780 1781 1782 1783
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1784 1785
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1786
		mapped_buffer = kmap_atomic(page);
1787 1788 1789 1790 1791
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1792
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1793 1794 1795 1796 1797
		++crc_fail;

	return fail || crc_fail;
}

1798
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1799 1800
{
	struct btrfs_super_block *s;
1801
	struct scrub_ctx *sctx = sblock->sctx;
1802 1803 1804 1805 1806 1807
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1808
	u32 crc = ~(u32)0;
1809 1810
	int fail_gen = 0;
	int fail_cor = 0;
1811 1812
	u64 len;
	int index;
A
Arne Jansen 已提交
1813

1814
	BUG_ON(sblock->page_count < 1);
1815
	page = sblock->pagev[0]->page;
1816
	mapped_buffer = kmap_atomic(page);
1817
	s = (struct btrfs_super_block *)mapped_buffer;
1818
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1819

1820
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1821
		++fail_cor;
A
Arne Jansen 已提交
1822

1823
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1824
		++fail_gen;
A
Arne Jansen 已提交
1825

M
Miao Xie 已提交
1826
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1827
		++fail_cor;
A
Arne Jansen 已提交
1828

1829 1830 1831 1832 1833 1834 1835
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1836
		crc = btrfs_csum_data(p, crc, l);
1837
		kunmap_atomic(mapped_buffer);
1838 1839 1840 1841 1842
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1843 1844
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1845
		mapped_buffer = kmap_atomic(page);
1846 1847 1848 1849 1850
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1851
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1852
		++fail_cor;
A
Arne Jansen 已提交
1853

1854
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1855 1856 1857 1858 1859
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1860 1861 1862
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1863
		if (fail_cor)
1864
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1865 1866
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1867
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1868
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1869 1870
	}

1871
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
1885
			scrub_page_put(sblock->pagev[i]);
1886 1887 1888 1889
		kfree(sblock);
	}
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1904
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1905 1906 1907
{
	struct scrub_bio *sbio;

1908
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1909
		return;
A
Arne Jansen 已提交
1910

1911 1912
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1913
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
1924
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1925 1926 1927 1928
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
1929 1930
}

1931 1932
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1933
{
1934
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1935
	struct scrub_bio *sbio;
1936
	int ret;
A
Arne Jansen 已提交
1937 1938 1939 1940 1941

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1942 1943 1944 1945 1946 1947 1948 1949
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1950
		} else {
1951 1952
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1953 1954
		}
	}
1955
	sbio = sctx->bios[sctx->curr];
1956
	if (sbio->page_count == 0) {
1957 1958
		struct bio *bio;

1959 1960
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1961
		sbio->dev = spage->dev;
1962 1963
		bio = sbio->bio;
		if (!bio) {
1964
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1965 1966 1967 1968
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
1969 1970 1971

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
1972
		bio->bi_bdev = sbio->dev->bdev;
1973
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1974
		sbio->err = 0;
1975 1976 1977
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1978 1979
		   spage->logical ||
		   sbio->dev != spage->dev) {
1980
		scrub_submit(sctx);
A
Arne Jansen 已提交
1981 1982
		goto again;
	}
1983

1984 1985 1986 1987 1988 1989 1990 1991
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
1992
		scrub_submit(sctx);
1993 1994 1995
		goto again;
	}

1996
	scrub_block_get(sblock); /* one for the page added to the bio */
1997 1998
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
1999
	if (sbio->page_count == sctx->pages_per_rd_bio)
2000
		scrub_submit(sctx);
2001 2002 2003 2004

	return 0;
}

2005
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2006
		       u64 physical, struct btrfs_device *dev, u64 flags,
2007 2008
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2009 2010 2011 2012 2013 2014
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2015 2016 2017
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2018
		return -ENOMEM;
A
Arne Jansen 已提交
2019
	}
2020

2021 2022
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2023
	atomic_set(&sblock->ref_count, 1);
2024
	sblock->sctx = sctx;
2025 2026 2027
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2028
		struct scrub_page *spage;
2029 2030
		u64 l = min_t(u64, len, PAGE_SIZE);

2031 2032 2033
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2034 2035 2036
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2037
			scrub_block_put(sblock);
2038 2039
			return -ENOMEM;
		}
2040 2041 2042
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2043
		spage->sblock = sblock;
2044
		spage->dev = dev;
2045 2046 2047 2048
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2049
		spage->physical_for_dev_replace = physical_for_dev_replace;
2050 2051 2052
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2053
			memcpy(spage->csum, csum, sctx->csum_size);
2054 2055 2056 2057
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2058 2059 2060
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2061 2062 2063
		len -= l;
		logical += l;
		physical += l;
2064
		physical_for_dev_replace += l;
2065 2066
	}

2067
	WARN_ON(sblock->page_count == 0);
2068
	for (index = 0; index < sblock->page_count; index++) {
2069
		struct scrub_page *spage = sblock->pagev[index];
2070 2071
		int ret;

2072
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2073 2074
		if (ret) {
			scrub_block_put(sblock);
2075
			return ret;
2076
		}
2077
	}
A
Arne Jansen 已提交
2078

2079
	if (force)
2080
		scrub_submit(sctx);
A
Arne Jansen 已提交
2081

2082 2083
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2084 2085 2086
	return 0;
}

2087 2088 2089
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2090
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2091 2092 2093 2094

	sbio->err = err;
	sbio->bio = bio;

2095
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2096 2097 2098 2099 2100
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2101
	struct scrub_ctx *sctx = sbio->sctx;
2102 2103
	int i;

2104
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2126 2127 2128 2129
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2130 2131 2132 2133 2134 2135 2136 2137

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2138
	scrub_pending_bio_dec(sctx);
2139 2140 2141 2142
}

static void scrub_block_complete(struct scrub_block *sblock)
{
2143
	if (!sblock->no_io_error_seen) {
2144
		scrub_handle_errored_block(sblock);
2145 2146 2147 2148 2149 2150 2151 2152 2153
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock);
	}
2154 2155
}

2156
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2157 2158 2159
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2160
	unsigned long index;
A
Arne Jansen 已提交
2161 2162
	unsigned long num_sectors;

2163 2164
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2165 2166 2167 2168 2169 2170
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2171
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2172 2173 2174 2175 2176 2177 2178
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2179
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2180
	num_sectors = sum->len / sctx->sectorsize;
2181 2182
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2183 2184 2185
		list_del(&sum->list);
		kfree(sum);
	}
2186
	return 1;
A
Arne Jansen 已提交
2187 2188 2189
}

/* scrub extent tries to collect up to 64 kB for each bio */
2190
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2191
			u64 physical, struct btrfs_device *dev, u64 flags,
2192
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2193 2194 2195
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2196 2197 2198
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2199 2200 2201 2202 2203
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2204
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2205 2206 2207 2208 2209
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2210
	} else {
2211
		blocksize = sctx->sectorsize;
2212
		WARN_ON(1);
2213
	}
A
Arne Jansen 已提交
2214 2215

	while (len) {
2216
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2217 2218 2219 2220
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2221
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2222
			if (have_csum == 0)
2223
				++sctx->stat.no_csum;
2224 2225 2226 2227 2228 2229
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2230
		}
2231
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2232 2233 2234
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2235 2236 2237 2238 2239
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2240
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2241 2242 2243 2244
	}
	return 0;
}

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
				   struct map_lookup *map, u64 *offset)
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2276
		stripe_index = rot % map->num_stripes;
2277 2278 2279 2280 2281 2282 2283 2284 2285
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2286
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2287 2288
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2289 2290
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2291 2292
{
	struct btrfs_path *path;
2293
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2294 2295 2296
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2297
	struct blk_plug plug;
A
Arne Jansen 已提交
2298 2299 2300 2301 2302 2303 2304 2305
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2306
	u64 logic_end;
2307
	u64 physical_end;
A
Arne Jansen 已提交
2308
	u64 generation;
2309
	int mirror_num;
A
Arne Jansen 已提交
2310 2311 2312 2313
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2314 2315
	u64 increment = map->stripe_len;
	u64 offset;
2316 2317 2318 2319 2320
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2321
	int stop_loop = 0;
D
David Woodhouse 已提交
2322

A
Arne Jansen 已提交
2323
	nstripes = length;
2324
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
2325 2326 2327 2328 2329
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2330
		mirror_num = 1;
A
Arne Jansen 已提交
2331 2332 2333 2334
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2335
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2336 2337
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2338
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2339 2340
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2341
		mirror_num = num % map->num_stripes + 1;
2342 2343 2344 2345 2346
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical, num, map, &offset);
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
2347 2348
	} else {
		increment = map->stripe_len;
2349
		mirror_num = 1;
A
Arne Jansen 已提交
2350 2351 2352 2353 2354 2355
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2356 2357 2358 2359 2360
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
2361 2362 2363 2364
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
2365 2366 2367
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
2368 2369
	 */
	logical = base + offset;
2370 2371 2372 2373 2374 2375 2376 2377 2378
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
					map, &logic_end);
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
2379
	wait_event(sctx->list_wait,
2380
		   atomic_read(&sctx->bios_in_flight) == 0);
2381
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2382 2383 2384 2385 2386

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
2387
	key_end.objectid = logic_end;
2388 2389
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
2390 2391 2392 2393 2394 2395 2396
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
2397
	key_end.offset = logic_end;
A
Arne Jansen 已提交
2398 2399 2400 2401 2402 2403 2404
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
2405 2406 2407 2408 2409

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
2410
	blk_start_plug(&plug);
A
Arne Jansen 已提交
2411 2412 2413 2414 2415

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
					map, &logical);
			logical += base;
			if (ret)
				goto skip;
		}
A
Arne Jansen 已提交
2426 2427 2428 2429
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
2430
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
2431 2432 2433 2434 2435 2436 2437 2438
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
2439
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2440
			scrub_submit(sctx);
2441 2442 2443
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
2444
			wait_event(sctx->list_wait,
2445
				   atomic_read(&sctx->bios_in_flight) == 0);
2446
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2447
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
2448 2449
		}

2450 2451 2452 2453
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
2454
		key.objectid = logical;
L
Liu Bo 已提交
2455
		key.offset = (u64)-1;
A
Arne Jansen 已提交
2456 2457 2458 2459

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
2460

2461
		if (ret > 0) {
2462
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
2463 2464
			if (ret < 0)
				goto out;
2465 2466 2467 2468 2469 2470 2471 2472 2473
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
2474 2475
		}

L
Liu Bo 已提交
2476
		stop_loop = 0;
A
Arne Jansen 已提交
2477
		while (1) {
2478 2479
			u64 bytes;

A
Arne Jansen 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
2489
				stop_loop = 1;
A
Arne Jansen 已提交
2490 2491 2492 2493
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2494
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2495
				bytes = root->nodesize;
2496 2497 2498 2499
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
2500 2501
				goto next;

L
Liu Bo 已提交
2502 2503 2504
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
2505

L
Liu Bo 已提交
2506 2507 2508 2509 2510 2511
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
2512 2513 2514 2515 2516 2517 2518 2519

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2520 2521 2522
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
2523
				       key.objectid, logical);
A
Arne Jansen 已提交
2524 2525 2526
				goto next;
			}

L
Liu Bo 已提交
2527 2528 2529 2530
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
2531 2532 2533
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
2534 2535 2536
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
2537
			}
L
Liu Bo 已提交
2538
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
2539
			    logical + map->stripe_len) {
L
Liu Bo 已提交
2540 2541
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
2542 2543
			}

L
Liu Bo 已提交
2544
			extent_physical = extent_logical - logical + physical;
2545 2546 2547 2548 2549 2550 2551
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
2552 2553 2554 2555 2556 2557 2558

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

2559 2560 2561
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
2562
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
2563 2564 2565
			if (ret)
				goto out;

2566
			scrub_free_csums(sctx);
L
Liu Bo 已提交
2567 2568
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
					do {
						physical += map->stripe_len;
						ret = get_raid56_logic_offset(
								physical, num,
								map, &logical);
						logical += base;
					} while (physical < physical_end && ret);
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
2586 2587 2588 2589 2590
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

2591
				if (physical >= physical_end) {
L
Liu Bo 已提交
2592 2593 2594 2595
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
2596 2597 2598
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
2599
		btrfs_release_path(path);
2600
skip:
A
Arne Jansen 已提交
2601 2602
		logical += increment;
		physical += map->stripe_len;
2603
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
2604 2605 2606 2607 2608
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
2609
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
2610 2611
		if (stop_loop)
			break;
A
Arne Jansen 已提交
2612
	}
2613
out:
A
Arne Jansen 已提交
2614
	/* push queued extents */
2615
	scrub_submit(sctx);
2616 2617 2618
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
2619

2620
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
2621 2622 2623 2624
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

2625
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2626 2627 2628
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
2629
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
2630 2631
{
	struct btrfs_mapping_tree *map_tree =
2632
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
2633 2634 2635
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2636
	int ret = 0;
A
Arne Jansen 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
2653
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2654
		    map->stripes[i].physical == dev_offset) {
2655
			ret = scrub_stripe(sctx, map, scrub_dev, i,
2656 2657
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
2669
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2670 2671
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
2672 2673 2674
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2675
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
2687
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

2697
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2698 2699 2700 2701 2702 2703
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2704 2705 2706 2707 2708 2709 2710 2711 2712
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
2713 2714 2715 2716 2717 2718

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2719
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2720 2721
			break;

2722
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

2734 2735
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2746 2747 2748 2749 2750 2751

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

2752 2753 2754
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2755
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
2777 2778 2779 2780 2781 2782 2783 2784
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
2785 2786
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
2787 2788 2789 2790 2791 2792 2793
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
2794

A
Arne Jansen 已提交
2795 2796 2797
		btrfs_put_block_group(cache);
		if (ret)
			break;
2798 2799
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2800 2801 2802 2803 2804 2805 2806
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
2807

2808 2809
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
2810
skip:
A
Arne Jansen 已提交
2811
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
2812
		btrfs_release_path(path);
A
Arne Jansen 已提交
2813 2814 2815
	}

	btrfs_free_path(path);
2816 2817 2818 2819 2820 2821

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
2822 2823
}

2824 2825
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2826 2827 2828 2829 2830
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
2831
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2832

2833
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2834 2835
		return -EIO;

2836 2837 2838 2839 2840
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
2841 2842 2843

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2844 2845
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
2846 2847
			break;

2848
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2849
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2850
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
2851 2852 2853
		if (ret)
			return ret;
	}
2854
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2855 2856 2857 2858 2859 2860 2861

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2862 2863
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2864
{
2865
	int ret = 0;
2866 2867
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
2868

A
Arne Jansen 已提交
2869
	if (fs_info->scrub_workers_refcnt == 0) {
2870
		if (is_dev_replace)
2871 2872 2873
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
2874
		else
2875 2876 2877 2878 2879
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
2880
			goto out;
2881 2882 2883 2884 2885 2886
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
2887
			goto out;
2888 2889 2890 2891 2892
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
2893
			goto out;
2894
		}
A
Arne Jansen 已提交
2895
	}
A
Arne Jansen 已提交
2896
	++fs_info->scrub_workers_refcnt;
2897 2898
out:
	return ret;
A
Arne Jansen 已提交
2899 2900
}

2901
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2902
{
2903
	if (--fs_info->scrub_workers_refcnt == 0) {
2904 2905 2906
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2907
	}
A
Arne Jansen 已提交
2908 2909 2910
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

2911 2912
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2913
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2914
{
2915
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2916 2917
	int ret;
	struct btrfs_device *dev;
2918
	struct rcu_string *name;
A
Arne Jansen 已提交
2919

2920
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
2921 2922
		return -EINVAL;

2923
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2924 2925 2926 2927 2928
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
2929 2930
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2931
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2932 2933 2934
		return -EINVAL;
	}

2935
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2936
		/* not supported for data w/o checksums */
2937 2938 2939
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
2940
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
2941 2942 2943
		return -EINVAL;
	}

2944 2945 2946 2947 2948 2949 2950 2951
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
2952 2953
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2954 2955 2956 2957 2958 2959 2960
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
2961

2962 2963
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2964
	if (!dev || (dev->missing && !is_dev_replace)) {
2965
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2966 2967 2968
		return -ENODEV;
	}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

2979
	mutex_lock(&fs_info->scrub_lock);
2980
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
2981
		mutex_unlock(&fs_info->scrub_lock);
2982 2983
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
2984 2985
	}

2986 2987 2988 2989 2990
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
2991
		mutex_unlock(&fs_info->scrub_lock);
2992
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2993 2994
		return -EINPROGRESS;
	}
2995
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2996 2997 2998 2999 3000 3001 3002 3003

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3004
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3005
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3006
		mutex_unlock(&fs_info->scrub_lock);
3007 3008
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3009
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3010
	}
3011 3012
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3013
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3014

3015 3016 3017 3018
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3019
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3020 3021 3022
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3023
	if (!is_dev_replace) {
3024 3025 3026 3027
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3028
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3029
		ret = scrub_supers(sctx, dev);
3030
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3031
	}
A
Arne Jansen 已提交
3032 3033

	if (!ret)
3034 3035
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3036

3037
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3038 3039 3040
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3041
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3042

A
Arne Jansen 已提交
3043
	if (progress)
3044
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3045 3046 3047

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3048
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3049 3050
	mutex_unlock(&fs_info->scrub_lock);

3051
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3052 3053 3054 3055

	return ret;
}

3056
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3073
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3074 3075 3076 3077 3078 3079 3080
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3081
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3102 3103
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3104
{
3105
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3106 3107

	mutex_lock(&fs_info->scrub_lock);
3108 3109
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3110 3111 3112
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3113
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3124

A
Arne Jansen 已提交
3125 3126 3127 3128
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3129
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3130 3131

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3132
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3133
	if (dev)
3134 3135 3136
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3137 3138
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3139
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3140
}
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3217 3218
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3219
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3220 3221
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3222 3223 3224 3225

	return 0;
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3278
					  record_inode_for_nocow, nocow_ctx);
3279
	if (ret != 0 && ret != -ENOENT) {
3280 3281
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3282 3283
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3284 3285 3286 3287
		not_written = 1;
		goto out;
	}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3306
out:
3307 3308 3309 3310 3311 3312 3313 3314
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

3327 3328
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
3329
{
3330
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3331
	struct btrfs_key key;
3332 3333
	struct inode *inode;
	struct page *page;
3334
	struct btrfs_root *local_root;
3335 3336 3337 3338
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	struct extent_state *cached_state = NULL;
	struct extent_io_tree *io_tree;
3339
	u64 physical_for_dev_replace;
3340 3341
	u64 len = nocow_ctx->len;
	u64 lockstart = offset, lockend = offset + len - 1;
3342
	unsigned long index;
3343
	int srcu_index;
3344 3345
	int ret = 0;
	int err = 0;
3346 3347 3348 3349

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
3350 3351 3352

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

3353
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3354 3355
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3356
		return PTR_ERR(local_root);
3357
	}
3358 3359 3360 3361 3362

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3363
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3364 3365 3366
	if (IS_ERR(inode))
		return PTR_ERR(inode);

3367 3368 3369 3370
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

3371
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > nocow_ctx->logical ||
	    em->block_start + em->block_len < nocow_ctx->logical + len) {
		free_extent_map(em);
		goto out_unlock;
	}
	free_extent_map(em);

3398 3399
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
3400
again:
3401 3402
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
3403
			btrfs_err(fs_info, "find_or_create_page() failed");
3404
			ret = -ENOMEM;
3405
			goto out;
3406 3407 3408 3409 3410 3411 3412
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
3413 3414 3415
			err = extent_read_full_page_nolock(io_tree, page,
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
3416 3417
			if (err) {
				ret = err;
3418 3419
				goto next_page;
			}
3420

3421
			lock_page(page);
3422 3423 3424 3425 3426 3427 3428
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
3429
				unlock_page(page);
3430 3431 3432
				page_cache_release(page);
				goto again;
			}
3433 3434 3435 3436 3437
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
3438 3439 3440 3441
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
3442
next_page:
3443 3444 3445 3446 3447 3448
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

3449 3450 3451 3452
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}
3453 3454 3455 3456
	ret = COPY_COMPLETE;
out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
3457
out:
3458
	mutex_unlock(&inode->i_mutex);
3459
	iput(inode);
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
3475
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3476 3477
		return -EIO;
	}
3478
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3479 3480 3481 3482 3483 3484
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
3485 3486
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3487 3488 3489 3490 3491 3492 3493 3494 3495
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

3496
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3497 3498 3499 3500 3501
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}