scrub.c 110.6 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71 72
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			*raid_map;
	u64			map_length;
};

A
Arne Jansen 已提交
73
struct scrub_page {
74 75
	struct scrub_block	*sblock;
	struct page		*page;
76
	struct btrfs_device	*dev;
77
	struct list_head	list;
A
Arne Jansen 已提交
78 79
	u64			flags;  /* extent flags */
	u64			generation;
80 81
	u64			logical;
	u64			physical;
82
	u64			physical_for_dev_replace;
83
	atomic_t		ref_count;
84 85 86 87 88
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
89
	u8			csum[BTRFS_CSUM_SIZE];
90 91

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
92 93 94 95
};

struct scrub_bio {
	int			index;
96
	struct scrub_ctx	*sctx;
97
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
98 99 100 101
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
102 103 104 105 106
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
107
	int			page_count;
A
Arne Jansen 已提交
108 109 110 111
	int			next_free;
	struct btrfs_work	work;
};

112
struct scrub_block {
113
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
114 115 116
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
117
	struct scrub_ctx	*sctx;
118
	struct scrub_parity	*sparity;
119 120 121 122
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
123
		unsigned int	generation_error:1; /* also sets header_error */
124 125 126 127

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
128 129 130
	};
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

	atomic_t		ref_count;

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196 197 198
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

199
struct scrub_fixup_nodatasum {
200
	struct scrub_ctx	*sctx;
201
	struct btrfs_device	*dev;
202 203 204 205 206 207
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

208 209 210 211 212 213 214
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

215 216 217 218 219 220
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
221
	struct list_head	inodes;
222 223 224
	struct btrfs_work	work;
};

225 226 227 228 229 230 231 232 233
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

234 235 236 237
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
238
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
239
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
240
				     struct btrfs_fs_info *fs_info,
241
				     struct scrub_block *original_sblock,
242
				     u64 length, u64 logical,
243
				     struct scrub_block *sblocks_for_recheck);
244 245 246
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
247
				u16 csum_size, int retry_failed_mirror);
248 249 250 251 252 253 254 255 256 257 258
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
277
static void scrub_bio_end_io(struct bio *bio, int err);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299
				      struct scrub_copy_nocow_ctx *ctx);
300 301 302
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
303
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
S
Stefan Behrens 已提交
305 306


307 308 309 310 311 312 313 314 315 316 317
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

318
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 320 321 322 323 324 325 326 327
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

328 329 330 331 332 333 334 335 336 337 338 339 340
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
362 363 364 365 366 367 368 369 370 371

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

393
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
394
{
395
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
396
		struct btrfs_ordered_sum *sum;
397
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
398 399 400 401 402 403
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

404
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
405 406 407
{
	int i;

408
	if (!sctx)
A
Arne Jansen 已提交
409 410
		return;

411 412
	scrub_free_wr_ctx(&sctx->wr_ctx);

413
	/* this can happen when scrub is cancelled */
414 415
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
416 417

		for (i = 0; i < sbio->page_count; i++) {
418
			WARN_ON(!sbio->pagev[i]->page);
419 420 421 422 423
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

424
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
425
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
426 427 428 429 430 431

		if (!sbio)
			break;
		kfree(sbio);
	}

432 433
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
434 435 436
}

static noinline_for_stack
437
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
438
{
439
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
440 441
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
442 443
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
444

445 446 447 448 449 450 451 452 453 454 455 456
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
457 458
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
459
		goto nomem;
460
	sctx->is_dev_replace = is_dev_replace;
461
	sctx->pages_per_rd_bio = pages_per_rd_bio;
462
	sctx->curr = -1;
463
	sctx->dev_root = dev->dev_root;
464
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
465 466 467 468 469
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
470
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
471 472

		sbio->index = i;
473
		sbio->sctx = sctx;
474
		sbio->page_count = 0;
475 476
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
477

478
		if (i != SCRUB_BIOS_PER_SCTX - 1)
479
			sctx->bios[i]->next_free = i + 1;
480
		else
481 482 483 484 485
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
486 487
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
488 489 490 491 492 493 494
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
495 496 497 498 499 500 501

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
502
	return sctx;
A
Arne Jansen 已提交
503 504

nomem:
505
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
506 507 508
	return ERR_PTR(-ENOMEM);
}

509 510
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
511 512 513 514 515 516 517
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
518
	struct scrub_warning *swarn = warn_ctx;
519 520 521 522
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
523
	struct btrfs_key key;
524 525 526 527 528 529 530 531 532 533

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

534 535 536
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
537 538 539 540 541
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
542 543 544 545 546 547 548 549 550 551 552 553 554
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
555 556 557 558 559
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
560 561 562 563 564 565 566 567 568 569
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
570
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
571 572
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
573
			swarn->logical, rcu_str_deref(swarn->dev->name),
574 575
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
576
			(char *)(unsigned long)ipath->fspath->val[i]);
577 578 579 580 581

	free_ipath(ipath);
	return 0;

err:
582
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
583 584
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
585
		swarn->logical, rcu_str_deref(swarn->dev->name),
586 587 588 589 590 591
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

592
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
593
{
594 595
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
596 597 598 599 600
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
601 602 603
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
604
	u64 ref_root;
605
	u32 item_size;
606
	u8 ref_level;
607
	int ret;
608

609
	WARN_ON(sblock->page_count < 1);
610
	dev = sblock->pagev[0]->dev;
611 612
	fs_info = sblock->sctx->dev_root->fs_info;

613
	path = btrfs_alloc_path();
614 615
	if (!path)
		return;
616

617 618
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
619
	swarn.errstr = errstr;
620
	swarn.dev = NULL;
621

622 623
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
624 625 626
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
627
	extent_item_pos = swarn.logical - found_key.objectid;
628 629 630 631 632 633
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

634
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
635
		do {
636 637 638
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
639
			printk_in_rcu(KERN_WARNING
640
				"BTRFS: %s at logical %llu on dev %s, "
641
				"sector %llu: metadata %s (level %d) in tree "
642 643
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
644 645 646 647 648
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
649
		btrfs_release_path(path);
650
	} else {
651
		btrfs_release_path(path);
652
		swarn.path = path;
653
		swarn.dev = dev;
654 655
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
656 657 658 659 660 661 662
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

663
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
664
{
665
	struct page *page = NULL;
666
	unsigned long index;
667
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
668
	int ret;
669
	int corrected = 0;
670
	struct btrfs_key key;
671
	struct inode *inode = NULL;
672
	struct btrfs_fs_info *fs_info;
673 674
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
675
	int srcu_index;
676 677 678 679

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
680 681 682 683 684 685 686

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
687
		return PTR_ERR(local_root);
688
	}
689 690 691 692

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
693 694
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695 696 697 698 699 700
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
727
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
728
					fixup->logical, page,
729
					offset - page_offset(page),
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
764 765

	iput(inode);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
785
	struct scrub_ctx *sctx;
786 787 788 789 790
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
791
	sctx = fixup->sctx;
792 793 794

	path = btrfs_alloc_path();
	if (!path) {
795 796 797
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

826 827 828
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
829 830 831 832 833

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
834 835 836
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
837 838 839
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
840 841
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
842
			fixup->logical, rcu_str_deref(fixup->dev->name));
843 844 845 846 847
	}

	btrfs_free_path(path);
	kfree(fixup);

848
	scrub_pending_trans_workers_dec(sctx);
849 850
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
		kfree(recover->bbio);
		kfree(recover->raid_map);
		kfree(recover);
	}
}

A
Arne Jansen 已提交
865
/*
866 867 868 869 870 871
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
872
 */
873
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
874
{
875
	struct scrub_ctx *sctx = sblock_to_check->sctx;
876
	struct btrfs_device *dev;
877 878 879 880 881 882 883 884 885 886 887 888 889 890
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
891
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
892 893 894
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
895
	fs_info = sctx->dev_root->fs_info;
896 897 898 899 900 901 902 903 904 905 906
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
907
	length = sblock_to_check->page_count * PAGE_SIZE;
908 909 910 911 912
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
913
			BTRFS_EXTENT_FLAG_DATA);
914 915 916
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
917

918 919 920 921 922
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
956 957 958 959 960
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
961
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
962
		goto out;
A
Arne Jansen 已提交
963 964
	}

965
	/* setup the context, map the logical blocks and alloc the pages */
966
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
967 968
					logical, sblocks_for_recheck);
	if (ret) {
969 970 971 972
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
973
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
974 975 976 977
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
978

979
	/* build and submit the bios for the failed mirror, check checksums */
980
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
981
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
982

983 984 985 986 987 988 989 990 991 992
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
993 994
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
995
		sblock_to_check->data_corrected = 1;
996
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
997

998 999
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1000
		goto out;
A
Arne Jansen 已提交
1001 1002
	}

1003
	if (!sblock_bad->no_io_error_seen) {
1004 1005 1006
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1007 1008
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1009
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010
	} else if (sblock_bad->checksum_error) {
1011 1012 1013
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1014 1015
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1016
		btrfs_dev_stat_inc_and_print(dev,
1017
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018
	} else if (sblock_bad->header_error) {
1019 1020 1021
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1022 1023 1024
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1025
		if (sblock_bad->generation_error)
1026
			btrfs_dev_stat_inc_and_print(dev,
1027 1028
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1029
			btrfs_dev_stat_inc_and_print(dev,
1030
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031
	}
A
Arne Jansen 已提交
1032

1033 1034 1035 1036
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1037

1038 1039
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1040

1041 1042 1043
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1054
		fixup_nodatasum->sctx = sctx;
1055
		fixup_nodatasum->dev = dev;
1056 1057 1058
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1059
		scrub_pending_trans_workers_inc(sctx);
1060 1061
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1062 1063
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1064
		goto out;
A
Arne Jansen 已提交
1065 1066
	}

1067 1068
	/*
	 * now build and submit the bios for the other mirrors, check
1069 1070
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1086
		struct scrub_block *sblock_other;
1087

1088 1089 1090 1091 1092
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1093 1094
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1095
				    sctx->csum_size, 0);
1096 1097

		if (!sblock_other->header_error &&
1098 1099
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1100 1101 1102 1103 1104 1105 1106 1107 1108
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1109 1110 1111 1112
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1113 1114

	/*
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1194 1195
	 */

1196 1197 1198 1199 1200 1201
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1202
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1203 1204

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1205
			continue;
1206 1207 1208 1209 1210 1211 1212

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1213 1214
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1215 1216 1217 1218 1219 1220 1221 1222 1223

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1224
		}
A
Arne Jansen 已提交
1225

1226 1227 1228 1229
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1230 1231
	}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1243 1244
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1245
					    generation, sctx->csum_size, 1);
1246
			if (!sblock_bad->header_error &&
1247 1248 1249 1250 1251 1252 1253
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1254 1255
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1256
			sblock_to_check->data_corrected = 1;
1257
			spin_unlock(&sctx->stat_lock);
1258
			printk_ratelimited_in_rcu(KERN_ERR
1259
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1260
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1261
		}
1262 1263
	} else {
did_not_correct_error:
1264 1265 1266
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1267
		printk_ratelimited_in_rcu(KERN_ERR
1268
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1269
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1270
	}
A
Arne Jansen 已提交
1271

1272 1273 1274 1275 1276 1277
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1278
			struct scrub_recover *recover;
1279 1280
			int page_index;

1281 1282 1283
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1284 1285 1286 1287 1288 1289
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1290 1291
				scrub_page_put(sblock->pagev[page_index]);
			}
1292 1293 1294
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1295

1296 1297
	return 0;
}
A
Arne Jansen 已提交
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio, u64 *raid_map)
{
	if (raid_map) {
		if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
			return 3;
		else
			return 2;
	} else {
		return (int)bbio->num_stripes;
	}
}

static inline void scrub_stripe_index_and_offset(u64 logical, u64 *raid_map,
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

	if (raid_map) {
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1340
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1341
				     struct btrfs_fs_info *fs_info,
1342
				     struct scrub_block *original_sblock,
1343 1344 1345
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
1346 1347 1348 1349 1350 1351 1352
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 *raid_map;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1353 1354
	int page_index;
	int mirror_index;
1355
	int nmirrors;
1356 1357 1358
	int ret;

	/*
1359
	 * note: the two members ref_count and outstanding_pages
1360 1361 1362 1363 1364 1365
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
1366 1367 1368 1369
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
		raid_map = NULL;
A
Arne Jansen 已提交
1370

1371 1372 1373 1374
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1375 1376
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
				       &mapped_length, &bbio, 0, &raid_map);
1377 1378
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
1379
			kfree(raid_map);
1380 1381
			return -EIO;
		}
A
Arne Jansen 已提交
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
			kfree(bbio);
			kfree(raid_map);
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->raid_map = raid_map;
		recover->map_length = mapped_length;

1395
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1396 1397 1398

		nmirrors = scrub_nr_raid_mirrors(bbio, raid_map);
		for (mirror_index = 0; mirror_index < nmirrors;
1399 1400 1401 1402 1403 1404 1405 1406
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1407 1408 1409 1410
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1411 1412 1413
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1414
				scrub_put_recover(recover);
1415 1416
				return -ENOMEM;
			}
1417 1418 1419
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

			scrub_stripe_index_and_offset(logical, raid_map,
						      mapped_length,
						      bbio->num_stripes,
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1431 1432 1433 1434
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1435 1436
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1437
			sblock->page_count++;
1438 1439 1440
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1441 1442 1443

			scrub_get_recover(recover);
			page->recover = recover;
1444
		}
1445
		scrub_put_recover(recover);
1446 1447 1448 1449 1450 1451
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover && page->recover->raid_map;
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->raid_map,
				    page->recover->map_length,
1488
				    page->mirror_num, 0);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1499 1500 1501 1502 1503 1504 1505
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1506 1507 1508
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1509
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1510
{
1511
	int page_num;
I
Ilya Dryomov 已提交
1512

1513 1514 1515
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1516

1517 1518
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1519
		struct scrub_page *page = sblock->pagev[page_num];
1520

1521
		if (page->dev->bdev == NULL) {
1522 1523 1524 1525 1526
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1527
		WARN_ON(!page->page);
1528
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1529 1530 1531 1532 1533
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1534
		bio->bi_bdev = page->dev->bdev;
1535

1536
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1537 1538 1539 1540 1541 1542 1543 1544 1545
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1546

1547 1548
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1549

1550 1551 1552 1553 1554
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1555
	return;
A
Arne Jansen 已提交
1556 1557
}

M
Miao Xie 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1568 1569 1570 1571 1572
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1573
{
1574 1575 1576 1577 1578
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1579
	WARN_ON(!sblock->pagev[0]->page);
1580 1581 1582
	if (is_metadata) {
		struct btrfs_header *h;

1583
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1584 1585
		h = (struct btrfs_header *)mapped_buffer;

1586
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1587
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1588
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1589
			   BTRFS_UUID_SIZE)) {
1590
			sblock->header_error = 1;
1591
		} else if (generation != btrfs_stack_header_generation(h)) {
1592 1593 1594
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1595 1596 1597 1598
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1599

1600
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1601
	}
A
Arne Jansen 已提交
1602

1603 1604
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1605
			crc = btrfs_csum_data(
1606 1607 1608
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1609
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1610

1611
		kunmap_atomic(mapped_buffer);
1612 1613 1614
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1615
		WARN_ON(!sblock->pagev[page_num]->page);
1616

1617
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1618 1619 1620 1621 1622
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1623 1624
}

1625 1626 1627 1628 1629 1630
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1631

1632 1633
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1634

1635 1636 1637 1638 1639 1640
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1641
	}
1642 1643 1644 1645 1646 1647 1648 1649

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1650 1651
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1652

1653 1654
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1655 1656 1657 1658 1659
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1660
		if (!page_bad->dev->bdev) {
1661 1662 1663
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1664 1665 1666
			return -EIO;
		}

1667
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1668 1669
		if (!bio)
			return -EIO;
1670
		bio->bi_bdev = page_bad->dev->bdev;
1671
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1672 1673 1674 1675 1676

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1677
		}
1678

1679
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1680 1681
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1682 1683 1684
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1685 1686 1687
			bio_put(bio);
			return -EIO;
		}
1688
		bio_put(bio);
A
Arne Jansen 已提交
1689 1690
	}

1691 1692 1693
	return 0;
}

1694 1695 1696 1697
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1698 1699 1700 1701 1702 1703 1704
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1760
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1771
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1830 1831
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1832
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1864 1865 1866 1867
{
	u64 flags;
	int ret;

1868 1869
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1881 1882

	return ret;
A
Arne Jansen 已提交
1883 1884
}

1885
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1886
{
1887
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1888
	u8 csum[BTRFS_CSUM_SIZE];
1889 1890 1891
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1892 1893
	u32 crc = ~(u32)0;
	int fail = 0;
1894 1895
	u64 len;
	int index;
A
Arne Jansen 已提交
1896

1897
	BUG_ON(sblock->page_count < 1);
1898
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1899 1900
		return 0;

1901 1902
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1903
	buffer = kmap_atomic(page);
1904

1905
	len = sctx->sectorsize;
1906 1907 1908 1909
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1910
		crc = btrfs_csum_data(buffer, crc, l);
1911
		kunmap_atomic(buffer);
1912 1913 1914 1915 1916
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1917 1918
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1919
		buffer = kmap_atomic(page);
1920 1921
	}

A
Arne Jansen 已提交
1922
	btrfs_csum_final(crc, csum);
1923
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1924 1925 1926 1927 1928
		fail = 1;

	return fail;
}

1929
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1930
{
1931
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1932
	struct btrfs_header *h;
1933
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1934
	struct btrfs_fs_info *fs_info = root->fs_info;
1935 1936 1937 1938 1939 1940
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1941 1942 1943
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1944 1945 1946 1947
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1948
	page = sblock->pagev[0]->page;
1949
	mapped_buffer = kmap_atomic(page);
1950
	h = (struct btrfs_header *)mapped_buffer;
1951
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1952 1953 1954 1955 1956 1957 1958

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1959
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1960 1961
		++fail;

1962
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1963 1964
		++fail;

M
Miao Xie 已提交
1965
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1966 1967 1968 1969 1970 1971
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1972
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1973 1974 1975 1976 1977 1978
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1979
		crc = btrfs_csum_data(p, crc, l);
1980
		kunmap_atomic(mapped_buffer);
1981 1982 1983 1984 1985
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1986 1987
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1988
		mapped_buffer = kmap_atomic(page);
1989 1990 1991 1992 1993
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1994
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1995 1996 1997 1998 1999
		++crc_fail;

	return fail || crc_fail;
}

2000
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
2001 2002
{
	struct btrfs_super_block *s;
2003
	struct scrub_ctx *sctx = sblock->sctx;
2004 2005 2006 2007 2008 2009
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
2010
	u32 crc = ~(u32)0;
2011 2012
	int fail_gen = 0;
	int fail_cor = 0;
2013 2014
	u64 len;
	int index;
A
Arne Jansen 已提交
2015

2016
	BUG_ON(sblock->page_count < 1);
2017
	page = sblock->pagev[0]->page;
2018
	mapped_buffer = kmap_atomic(page);
2019
	s = (struct btrfs_super_block *)mapped_buffer;
2020
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
2021

2022
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
2023
		++fail_cor;
A
Arne Jansen 已提交
2024

2025
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
2026
		++fail_gen;
A
Arne Jansen 已提交
2027

M
Miao Xie 已提交
2028
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2029
		++fail_cor;
A
Arne Jansen 已提交
2030

2031 2032 2033 2034 2035 2036 2037
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2038
		crc = btrfs_csum_data(p, crc, l);
2039
		kunmap_atomic(mapped_buffer);
2040 2041 2042 2043 2044
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2045 2046
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2047
		mapped_buffer = kmap_atomic(page);
2048 2049 2050 2051 2052
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2053
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2054
		++fail_cor;
A
Arne Jansen 已提交
2055

2056
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2057 2058 2059 2060 2061
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2062 2063 2064
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2065
		if (fail_cor)
2066
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2067 2068
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2069
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2070
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2071 2072
	}

2073
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2074 2075
}

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

2086 2087 2088
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2089
		for (i = 0; i < sblock->page_count; i++)
2090
			scrub_page_put(sblock->pagev[i]);
2091 2092 2093 2094
		kfree(sblock);
	}
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2109
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2110 2111 2112
{
	struct scrub_bio *sbio;

2113
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2114
		return;
A
Arne Jansen 已提交
2115

2116 2117
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2118
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2129
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2130 2131 2132 2133
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2134 2135
}

2136 2137
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2138
{
2139
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2140
	struct scrub_bio *sbio;
2141
	int ret;
A
Arne Jansen 已提交
2142 2143 2144 2145 2146

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2147 2148 2149 2150 2151 2152 2153 2154
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2155
		} else {
2156 2157
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2158 2159
		}
	}
2160
	sbio = sctx->bios[sctx->curr];
2161
	if (sbio->page_count == 0) {
2162 2163
		struct bio *bio;

2164 2165
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2166
		sbio->dev = spage->dev;
2167 2168
		bio = sbio->bio;
		if (!bio) {
2169
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2170 2171 2172 2173
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2174 2175 2176

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2177
		bio->bi_bdev = sbio->dev->bdev;
2178
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2179
		sbio->err = 0;
2180 2181 2182
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2183 2184
		   spage->logical ||
		   sbio->dev != spage->dev) {
2185
		scrub_submit(sctx);
A
Arne Jansen 已提交
2186 2187
		goto again;
	}
2188

2189 2190 2191 2192 2193 2194 2195 2196
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2197
		scrub_submit(sctx);
2198 2199 2200
		goto again;
	}

2201
	scrub_block_get(sblock); /* one for the page added to the bio */
2202 2203
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2204
	if (sbio->page_count == sctx->pages_per_rd_bio)
2205
		scrub_submit(sctx);
2206 2207 2208 2209

	return 0;
}

2210
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2211
		       u64 physical, struct btrfs_device *dev, u64 flags,
2212 2213
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2214 2215 2216 2217 2218 2219
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2220 2221 2222
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2223
		return -ENOMEM;
A
Arne Jansen 已提交
2224
	}
2225

2226 2227
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2228
	atomic_set(&sblock->ref_count, 1);
2229
	sblock->sctx = sctx;
2230 2231 2232
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2233
		struct scrub_page *spage;
2234 2235
		u64 l = min_t(u64, len, PAGE_SIZE);

2236 2237 2238
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2239 2240 2241
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2242
			scrub_block_put(sblock);
2243 2244
			return -ENOMEM;
		}
2245 2246 2247
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2248
		spage->sblock = sblock;
2249
		spage->dev = dev;
2250 2251 2252 2253
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2254
		spage->physical_for_dev_replace = physical_for_dev_replace;
2255 2256 2257
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2258
			memcpy(spage->csum, csum, sctx->csum_size);
2259 2260 2261 2262
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2263 2264 2265
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2266 2267 2268
		len -= l;
		logical += l;
		physical += l;
2269
		physical_for_dev_replace += l;
2270 2271
	}

2272
	WARN_ON(sblock->page_count == 0);
2273
	for (index = 0; index < sblock->page_count; index++) {
2274
		struct scrub_page *spage = sblock->pagev[index];
2275 2276
		int ret;

2277
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2278 2279
		if (ret) {
			scrub_block_put(sblock);
2280
			return ret;
2281
		}
2282
	}
A
Arne Jansen 已提交
2283

2284
	if (force)
2285
		scrub_submit(sctx);
A
Arne Jansen 已提交
2286

2287 2288
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2289 2290 2291
	return 0;
}

2292 2293 2294
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2295
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2296 2297 2298 2299

	sbio->err = err;
	sbio->bio = bio;

2300
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2301 2302 2303 2304 2305
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2306
	struct scrub_ctx *sctx = sbio->sctx;
2307 2308
	int i;

2309
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2331 2332 2333 2334
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2335 2336 2337 2338 2339 2340 2341 2342

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2343
	scrub_pending_bio_dec(sctx);
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2385 2386
static void scrub_block_complete(struct scrub_block *sblock)
{
2387 2388
	int corrupted = 0;

2389
	if (!sblock->no_io_error_seen) {
2390
		corrupted = 1;
2391
		scrub_handle_errored_block(sblock);
2392 2393 2394 2395 2396 2397
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2398 2399
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2400 2401
			scrub_write_block_to_dev_replace(sblock);
	}
2402 2403 2404 2405 2406 2407 2408 2409 2410

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2411 2412
}

2413
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2414 2415 2416
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2417
	unsigned long index;
A
Arne Jansen 已提交
2418 2419
	unsigned long num_sectors;

2420 2421
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2422 2423 2424 2425 2426 2427
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2428
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2429 2430 2431 2432 2433 2434 2435
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2436
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2437
	num_sectors = sum->len / sctx->sectorsize;
2438 2439
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2440 2441 2442
		list_del(&sum->list);
		kfree(sum);
	}
2443
	return 1;
A
Arne Jansen 已提交
2444 2445 2446
}

/* scrub extent tries to collect up to 64 kB for each bio */
2447
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2448
			u64 physical, struct btrfs_device *dev, u64 flags,
2449
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2450 2451 2452
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2453 2454 2455
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2456 2457 2458 2459 2460
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2461
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2462 2463 2464 2465 2466
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2467
	} else {
2468
		blocksize = sctx->sectorsize;
2469
		WARN_ON(1);
2470
	}
A
Arne Jansen 已提交
2471 2472

	while (len) {
2473
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2474 2475 2476 2477
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2478
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2479
			if (have_csum == 0)
2480
				++sctx->stat.no_csum;
2481 2482 2483 2484 2485 2486
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2487
		}
2488
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2489 2490 2491
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2492 2493 2494 2495 2496
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2497
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2498 2499 2500 2501
	}
	return 0;
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
	atomic_set(&sblock->ref_count, 1);
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2620
skip:
2621 2622 2623 2624 2625 2626 2627
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2628 2629 2630 2631 2632 2633 2634 2635
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2636 2637
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2648 2649 2650
	if (stripe_start)
		*stripe_start = last_offset;

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2663
		stripe_index = rot % map->num_stripes;
2664 2665 2666 2667 2668 2669 2670 2671 2672
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 *raid_map = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2725
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
			       sparity->logic_start,
			       &length, &bbio, 0, &raid_map);
	if (ret || !bbio || !raid_map)
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
					      raid_map, length,
					      sparity->scrub_dev,
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	kfree(bbio);
	kfree(raid_map);
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
	atomic_inc(&sparity->ref_count);
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
	if (!atomic_dec_and_test(&sparity->ref_count))
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
	atomic_set(&sparity->ref_count, 1);
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2990
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2991 2992
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2993 2994
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2995
{
2996
	struct btrfs_path *path, *ppath;
2997
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2998 2999 3000
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3001
	struct blk_plug plug;
A
Arne Jansen 已提交
3002 3003 3004 3005 3006 3007 3008 3009
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3010
	u64 logic_end;
3011
	u64 physical_end;
A
Arne Jansen 已提交
3012
	u64 generation;
3013
	int mirror_num;
A
Arne Jansen 已提交
3014 3015 3016 3017
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3018 3019
	u64 increment = map->stripe_len;
	u64 offset;
3020 3021 3022
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3023 3024
	u64 stripe_logical;
	u64 stripe_end;
3025 3026
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3027
	int stop_loop = 0;
D
David Woodhouse 已提交
3028

A
Arne Jansen 已提交
3029
	nstripes = length;
3030
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3031 3032 3033 3034 3035
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3036
		mirror_num = 1;
A
Arne Jansen 已提交
3037 3038 3039 3040
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3041
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3042 3043
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3044
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3045 3046
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3047
		mirror_num = num % map->num_stripes + 1;
3048 3049
	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
3050
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3051 3052
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3053 3054
	} else {
		increment = map->stripe_len;
3055
		mirror_num = 1;
A
Arne Jansen 已提交
3056 3057 3058 3059 3060 3061
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3062 3063 3064 3065 3066 3067
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3068 3069 3070 3071 3072
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3073 3074 3075 3076
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3077 3078 3079
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3080 3081
	 */
	logical = base + offset;
3082 3083 3084 3085
	physical_end = physical + nstripes * map->stripe_len;
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		get_raid56_logic_offset(physical_end, num,
3086
					map, &logic_end, NULL);
3087 3088 3089 3090
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3091
	wait_event(sctx->list_wait,
3092
		   atomic_read(&sctx->bios_in_flight) == 0);
3093
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3094 3095 3096 3097 3098

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3099
	key_end.objectid = logic_end;
3100 3101
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3102 3103 3104 3105 3106 3107 3108
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3109
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3110 3111 3112 3113 3114 3115 3116
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3117 3118 3119 3120 3121

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3122
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3123 3124 3125 3126 3127

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3128 3129 3130 3131 3132
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
				BTRFS_BLOCK_GROUP_RAID6)) {
			ret = get_raid56_logic_offset(physical, num,
3133
					map, &logical, &stripe_logical);
3134
			logical += base;
3135 3136 3137 3138 3139 3140 3141 3142
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3143
				goto skip;
3144
			}
3145
		}
A
Arne Jansen 已提交
3146 3147 3148 3149
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3150
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3151 3152 3153 3154 3155 3156 3157 3158
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3159
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3160
			scrub_submit(sctx);
3161 3162 3163
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3164
			wait_event(sctx->list_wait,
3165
				   atomic_read(&sctx->bios_in_flight) == 0);
3166
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3167
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3168 3169
		}

3170 3171 3172 3173
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3174
		key.objectid = logical;
L
Liu Bo 已提交
3175
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3176 3177 3178 3179

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3180

3181
		if (ret > 0) {
3182
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3183 3184
			if (ret < 0)
				goto out;
3185 3186 3187 3188 3189 3190 3191 3192 3193
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3194 3195
		}

L
Liu Bo 已提交
3196
		stop_loop = 0;
A
Arne Jansen 已提交
3197
		while (1) {
3198 3199
			u64 bytes;

A
Arne Jansen 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3209
				stop_loop = 1;
A
Arne Jansen 已提交
3210 3211 3212 3213
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3214
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3215
				bytes = root->nodesize;
3216 3217 3218 3219
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3220 3221
				goto next;

L
Liu Bo 已提交
3222 3223 3224
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3225

L
Liu Bo 已提交
3226 3227 3228 3229 3230 3231
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3232 3233 3234 3235 3236 3237 3238 3239

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3240 3241 3242
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3243
				       key.objectid, logical);
A
Arne Jansen 已提交
3244 3245 3246
				goto next;
			}

L
Liu Bo 已提交
3247 3248 3249 3250
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3251 3252 3253
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3254 3255 3256
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3257
			}
L
Liu Bo 已提交
3258
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3259
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3260 3261
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3262 3263
			}

L
Liu Bo 已提交
3264
			extent_physical = extent_logical - logical + physical;
3265 3266 3267 3268 3269 3270 3271
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3272 3273 3274 3275 3276 3277 3278

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3279 3280 3281
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3282
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3283 3284 3285
			if (ret)
				goto out;

3286
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3287 3288
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3289 3290 3291 3292 3293 3294
				if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
					BTRFS_BLOCK_GROUP_RAID6)) {
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3314 3315 3316 3317
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3318 3319 3320 3321 3322
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3323
				if (physical >= physical_end) {
L
Liu Bo 已提交
3324 3325 3326 3327
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3328 3329 3330
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3331
		btrfs_release_path(path);
3332
skip:
A
Arne Jansen 已提交
3333 3334
		logical += increment;
		physical += map->stripe_len;
3335
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3336 3337 3338 3339 3340
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3341
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3342 3343
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3344
	}
3345
out:
A
Arne Jansen 已提交
3346
	/* push queued extents */
3347
	scrub_submit(sctx);
3348 3349 3350
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3351

3352
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3353
	btrfs_free_path(path);
3354
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3355 3356 3357
	return ret < 0 ? ret : 0;
}

3358
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3359 3360 3361
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3362
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3363 3364
{
	struct btrfs_mapping_tree *map_tree =
3365
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3366 3367 3368
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3369
	int ret = 0;
A
Arne Jansen 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3386
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3387
		    map->stripes[i].physical == dev_offset) {
3388
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3389 3390
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3402
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3403 3404
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3405 3406 3407
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3408
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3420
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3430
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3431 3432 3433 3434 3435 3436
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3437 3438 3439 3440 3441 3442 3443 3444 3445
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3446 3447 3448 3449 3450 3451

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3452
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3453 3454
			break;

3455
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3467 3468
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3479 3480 3481 3482 3483 3484

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3485 3486 3487
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3488
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3510 3511 3512 3513 3514 3515 3516 3517
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3518 3519
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3520 3521 3522 3523 3524 3525 3526
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3527

A
Arne Jansen 已提交
3528 3529 3530
		btrfs_put_block_group(cache);
		if (ret)
			break;
3531 3532
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3533 3534 3535 3536 3537 3538 3539
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3540

3541 3542
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3543
skip:
A
Arne Jansen 已提交
3544
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3545
		btrfs_release_path(path);
A
Arne Jansen 已提交
3546 3547 3548
	}

	btrfs_free_path(path);
3549 3550 3551 3552 3553 3554

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3555 3556
}

3557 3558
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3559 3560 3561 3562 3563
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3564
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3565

3566
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3567 3568
		return -EIO;

3569 3570 3571 3572 3573
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3574 3575 3576

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3577 3578
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3579 3580
			break;

3581
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3582
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3583
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3584 3585 3586
		if (ret)
			return ret;
	}
3587
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3588 3589 3590 3591 3592 3593 3594

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3595 3596
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3597
{
3598
	int ret = 0;
3599 3600
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3601

A
Arne Jansen 已提交
3602
	if (fs_info->scrub_workers_refcnt == 0) {
3603
		if (is_dev_replace)
3604 3605 3606
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3607
		else
3608 3609 3610 3611 3612
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3613
			goto out;
3614 3615 3616 3617 3618 3619
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3620
			goto out;
3621 3622 3623 3624 3625
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3626
			goto out;
3627
		}
A
Arne Jansen 已提交
3628
	}
A
Arne Jansen 已提交
3629
	++fs_info->scrub_workers_refcnt;
3630 3631
out:
	return ret;
A
Arne Jansen 已提交
3632 3633
}

3634
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3635
{
3636
	if (--fs_info->scrub_workers_refcnt == 0) {
3637 3638 3639
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3640
	}
A
Arne Jansen 已提交
3641 3642 3643
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3644 3645
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3646
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3647
{
3648
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3649 3650
	int ret;
	struct btrfs_device *dev;
3651
	struct rcu_string *name;
A
Arne Jansen 已提交
3652

3653
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3654 3655
		return -EINVAL;

3656
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3657 3658 3659 3660 3661
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3662 3663
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3664
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3665 3666 3667
		return -EINVAL;
	}

3668
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3669
		/* not supported for data w/o checksums */
3670 3671 3672
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3673
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3674 3675 3676
		return -EINVAL;
	}

3677 3678 3679 3680 3681 3682 3683 3684
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3685 3686
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3687 3688 3689 3690 3691 3692 3693
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3694

3695 3696
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3697
	if (!dev || (dev->missing && !is_dev_replace)) {
3698
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3699 3700 3701
		return -ENODEV;
	}

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3712
	mutex_lock(&fs_info->scrub_lock);
3713
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3714
		mutex_unlock(&fs_info->scrub_lock);
3715 3716
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3717 3718
	}

3719 3720 3721 3722 3723
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3724
		mutex_unlock(&fs_info->scrub_lock);
3725
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3726 3727
		return -EINPROGRESS;
	}
3728
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3729 3730 3731 3732 3733 3734 3735 3736

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3737
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3738
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3739
		mutex_unlock(&fs_info->scrub_lock);
3740 3741
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3742
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3743
	}
3744 3745
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3746
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3747

3748 3749 3750 3751
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3752
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3753 3754 3755
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3756
	if (!is_dev_replace) {
3757 3758 3759 3760
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3761
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3762
		ret = scrub_supers(sctx, dev);
3763
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764
	}
A
Arne Jansen 已提交
3765 3766

	if (!ret)
3767 3768
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3769

3770
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3771 3772 3773
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3774
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3775

A
Arne Jansen 已提交
3776
	if (progress)
3777
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3778 3779 3780

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3781
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3782 3783
	mutex_unlock(&fs_info->scrub_lock);

3784
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
3785 3786 3787 3788

	return ret;
}

3789
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3806
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3807 3808 3809 3810 3811 3812 3813
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3814
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3835 3836
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3837
{
3838
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3839 3840

	mutex_lock(&fs_info->scrub_lock);
3841 3842
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3843 3844 3845
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3846
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3857

A
Arne Jansen 已提交
3858 3859 3860 3861
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3862
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3863 3864

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3865
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3866
	if (dev)
3867 3868 3869
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3870 3871
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3872
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3873
}
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3950 3951
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3952
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3953 3954
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3955 3956 3957 3958

	return 0;
}

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4011
					  record_inode_for_nocow, nocow_ctx);
4012
	if (ret != 0 && ret != -ENOENT) {
4013 4014
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4015 4016
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4017 4018 4019 4020
		not_written = 1;
		goto out;
	}

4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4039
out:
4040 4041 4042 4043 4044 4045 4046 4047
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4104 4105
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4106
{
4107
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4108
	struct btrfs_key key;
4109 4110
	struct inode *inode;
	struct page *page;
4111
	struct btrfs_root *local_root;
4112
	struct extent_io_tree *io_tree;
4113
	u64 physical_for_dev_replace;
4114
	u64 nocow_ctx_logical;
4115
	u64 len = nocow_ctx->len;
4116
	unsigned long index;
4117
	int srcu_index;
4118 4119
	int ret = 0;
	int err = 0;
4120 4121 4122 4123

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4124 4125 4126

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4127
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4128 4129
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4130
		return PTR_ERR(local_root);
4131
	}
4132 4133 4134 4135 4136

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4137
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4138 4139 4140
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4141 4142 4143 4144
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4145
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4146
	io_tree = &BTRFS_I(inode)->io_tree;
4147
	nocow_ctx_logical = nocow_ctx->logical;
4148

4149 4150 4151 4152
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4153 4154
	}

4155 4156
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4157
again:
4158 4159
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4160
			btrfs_err(fs_info, "find_or_create_page() failed");
4161
			ret = -ENOMEM;
4162
			goto out;
4163 4164 4165 4166 4167 4168 4169
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4170
			err = extent_read_full_page(io_tree, page,
4171 4172
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4173 4174
			if (err) {
				ret = err;
4175 4176
				goto next_page;
			}
4177

4178
			lock_page(page);
4179 4180 4181 4182 4183 4184 4185
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4186
				unlock_page(page);
4187 4188 4189
				page_cache_release(page);
				goto again;
			}
4190 4191 4192 4193 4194
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4195 4196 4197 4198 4199 4200 4201 4202

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4203 4204 4205 4206
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4207
next_page:
4208 4209 4210 4211 4212 4213
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4214 4215
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4216
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4217 4218
		len -= PAGE_CACHE_SIZE;
	}
4219
	ret = COPY_COMPLETE;
4220
out:
4221
	mutex_unlock(&inode->i_mutex);
4222
	iput(inode);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4238
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4239 4240
		return -EIO;
	}
4241
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4242 4243 4244 4245 4246 4247
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4248 4249
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4250 4251 4252 4253 4254 4255 4256 4257 4258
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4259
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4260 4261 4262 4263 4264
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}