tlb_uv.c 23.2 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
9
#include <linux/seq_file.h>
10 11 12 13
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
T
Tejun Heo 已提交
14
#include <asm/uv/uv.h>
15
#include <asm/uv/uv_mmrs.h>
16
#include <asm/uv/uv_hub.h>
17
#include <asm/uv/uv_bau.h>
I
Ingo Molnar 已提交
18
#include <asm/apic.h>
19
#include <asm/idle.h>
20
#include <asm/tsc.h>
21
#include <asm/irq_vectors.h>
22

23 24 25 26 27
static struct bau_control	**uv_bau_table_bases __read_mostly;
static int			uv_bau_retry_limit __read_mostly;

/* position of pnode (which is nasid>>1): */
static int			uv_nshift __read_mostly;
28 29
/* base pnode in this partition */
static int			uv_partition_base_pnode __read_mostly;
30 31

static unsigned long		uv_mmask __read_mostly;
32

33 34
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
35

36 37 38 39 40 41 42 43 44 45 46 47
/*
 * Determine the first node on a blade.
 */
static int __init blade_to_first_node(int blade)
{
	int node, b;

	for_each_online_node(node) {
		b = uv_node_to_blade_id(node);
		if (blade == b)
			return node;
	}
48
	return -1; /* shouldn't happen */
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
}

/*
 * Determine the apicid of the first cpu on a blade.
 */
static int __init blade_to_first_apicid(int blade)
{
	int cpu;

	for_each_present_cpu(cpu)
		if (blade == uv_cpu_to_blade_id(cpu))
			return per_cpu(x86_cpu_to_apicid, cpu);
	return -1;
}

64 65 66 67 68 69 70 71
/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
72
static void uv_reply_to_message(int resource,
73 74
				struct bau_payload_queue_entry *msg,
				struct bau_msg_status *msp)
75
{
76
	unsigned long dw;
77

78
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
79 80 81 82
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
83
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
84 85 86 87 88 89
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
90
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
91
				   int msg_slot, int sw_ack_slot)
92 93 94
{
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;
95
	int cpu;
96 97 98 99

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
100
		uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
101
	this_cpu_mask = 1UL << cpu;
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
}

/*
125
 * Examine the payload queue on one distribution node to see
126 127 128 129
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
130
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
131 132 133
{
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;
134 135 136
	int count = 0;
	int i;
	int j;
137

138 139 140 141 142 143 144 145 146
	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
	     msg++, i++) {
		if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
			msp = bau_tablesp->msg_statuses + i;
			printk(KERN_DEBUG
			       "blade %d: address:%#lx %d of %d, not cpu(s): ",
			       i, msg->address, msg->acknowledge_count,
			       msg->number_of_cpus);
			for (j = 0; j < msg->number_of_cpus; j++) {
147
				if (!((1L << j) & msp->seen_by.bits)) {
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
					count++;
					printk("%d ", j);
				}
			}
			printk("\n");
		}
	}
	return count;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int count = 0;

170
	sender = smp_processor_id();
171
	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
172 173
		if (!bau_node_isset(i, distribution))
			continue;
174
		count += uv_examine_destination(uv_bau_table_bases[i], sender);
175 176 177 178
	}
	return count;
}

179 180 181 182 183
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
184
static int uv_wait_completion(struct bau_desc *bau_desc,
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
232
		cpu_relax();
233 234 235 236 237 238 239 240 241
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
T
Tejun Heo 已提交
242
 * The flush_mask contains the cpus the broadcast was sent to.
243
 *
T
Tejun Heo 已提交
244 245 246
 * Returns NULL if all remote flushing was done. The mask is zeroed.
 * Returns @flush_mask if some remote flushing remains to be done. The
 * mask will have some bits still set.
247
 */
248
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
T
Tejun Heo 已提交
249 250
					     struct bau_desc *bau_desc,
					     struct cpumask *flush_mask)
251 252 253 254
{
	int completion_status = 0;
	int right_shift;
	int tries = 0;
255
	int pnode;
256
	int bit;
257
	unsigned long mmr_offset;
258
	unsigned long index;
259 260 261 262 263 264 265 266 267 268 269 270 271 272
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
273 274
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
			cpu;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
290
		return flush_mask;
291 292 293 294 295 296
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
T
Tejun Heo 已提交
297
	for_each_cpu(bit, flush_mask) {
298 299
		pnode = uv_cpu_to_pnode(bit);
		if (pnode == this_pnode)
300
			continue;
T
Tejun Heo 已提交
301
		cpumask_clear_cpu(bit, flush_mask);
302
	}
T
Tejun Heo 已提交
303 304 305
	if (!cpumask_empty(flush_mask))
		return flush_mask;
	return NULL;
306 307
}

308 309
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);

310 311 312
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
T
Tejun Heo 已提交
313
 * @cpumask: mask of all cpu's in which the address is to be removed
314 315
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
T
Tejun Heo 已提交
316
 * @cpu: the current cpu
317 318 319 320 321 322
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
T
Tejun Heo 已提交
323 324
 * The caller has derived the cpumask from the mm_struct.  This function
 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
325
 *
T
Tejun Heo 已提交
326
 * The cpumask is converted into a nodemask of the nodes containing
327
 * the cpus.
328
 *
T
Tejun Heo 已提交
329 330 331 332 333
 * Note that this function should be called with preemption disabled.
 *
 * Returns NULL if all remote flushing was done.
 * Returns pointer to cpumask if some remote flushing remains to be
 * done.  The returned pointer is valid till preemption is re-enabled.
334
 */
T
Tejun Heo 已提交
335 336 337
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
					  struct mm_struct *mm,
					  unsigned long va, unsigned int cpu)
338
{
339
	struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
340
	int i;
341
	int bit;
342
	int pnode;
T
Tejun Heo 已提交
343
	int uv_cpu;
344
	int this_pnode;
345
	int locals = 0;
346
	struct bau_desc *bau_desc;
T
Tejun Heo 已提交
347 348 349 350

	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));

	uv_cpu = uv_blade_processor_id();
351
	this_pnode = uv_hub_info->pnode;
352
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
T
Tejun Heo 已提交
353
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
354 355 356 357

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
T
Tejun Heo 已提交
358
	for_each_cpu(bit, flush_mask) {
359 360 361
		pnode = uv_cpu_to_pnode(bit);
		BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
		if (pnode == this_pnode) {
362
			locals++;
363
			continue;
364
		}
365 366
		bau_node_set(pnode - uv_partition_base_pnode,
				&bau_desc->distribution);
367 368
		i++;
	}
369 370 371 372 373
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
T
Tejun Heo 已提交
374
			return flush_mask;
375
		else
T
Tejun Heo 已提交
376
			return NULL;
377
	}
378 379 380 381
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
T
Tejun Heo 已提交
382
	bau_desc->payload.sending_cpu = cpu;
383

384
	return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
401
void uv_bau_message_interrupt(struct pt_regs *regs)
402
{
403 404
	struct bau_payload_queue_entry *va_queue_first;
	struct bau_payload_queue_entry *va_queue_last;
405
	struct bau_payload_queue_entry *msg;
406
	struct pt_regs *old_regs = set_irq_regs(regs);
407 408
	cycles_t time1;
	cycles_t time2;
409 410 411 412 413 414 415 416 417 418
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

419
	time1 = get_cycles();
420 421 422

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

423
	va_queue_first = __get_cpu_var(bau_control).va_queue_first;
424
	va_queue_last = __get_cpu_var(bau_control).va_queue_last;
425

426 427 428 429
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
430
		msg_slot = msg - va_queue_first;
431 432 433 434 435
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
436 437
		if (msg > va_queue_last)
			msg = va_queue_first;
438 439 440 441 442 443 444
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

445 446
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
447 448 449 450 451

	irq_exit();
	set_irq_regs(old_regs);
}

C
Cliff Wickman 已提交
452 453 454 455 456 457 458 459
/*
 * uv_enable_timeouts
 *
 * Each target blade (i.e. blades that have cpu's) needs to have
 * shootdown message timeouts enabled.  The timeout does not cause
 * an interrupt, but causes an error message to be returned to
 * the sender.
 */
460
static void uv_enable_timeouts(void)
461 462
{
	int blade;
C
Cliff Wickman 已提交
463
	int nblades;
464
	int pnode;
C
Cliff Wickman 已提交
465
	unsigned long mmr_image;
466

C
Cliff Wickman 已提交
467
	nblades = uv_num_possible_blades();
468

C
Cliff Wickman 已提交
469 470
	for (blade = 0; blade < nblades; blade++) {
		if (!uv_blade_nr_possible_cpus(blade))
471
			continue;
C
Cliff Wickman 已提交
472

473
		pnode = uv_blade_to_pnode(blade);
C
Cliff Wickman 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
		mmr_image =
		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
		/*
		 * Set the timeout period and then lock it in, in three
		 * steps; captures and locks in the period.
		 *
		 * To program the period, the SOFT_ACK_MODE must be off.
		 */
		mmr_image &= ~((unsigned long)1 <<
			       UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Set the 4-bit period.
		 */
		mmr_image &= ~((unsigned long)0xf <<
			UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
			     UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Subsequent reversals of the timebase bit (3) cause an
		 * immediate timeout of one or all INTD resources as
		 * indicated in bits 2:0 (7 causes all of them to timeout).
		 */
		mmr_image |= ((unsigned long)1 <<
			      UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
504 505 506
	}
}

507
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
508 509 510 511 512 513
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

514
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
515 516 517 518 519 520 521
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

522
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
523 524 525 526 527 528 529
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
530
static int uv_ptc_seq_show(struct seq_file *file, void *data)
531 532 533 534 535 536 537 538 539 540
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
541
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
542 543 544 545 546 547 548 549
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
550
			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
551
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
552
			   stat->sflush, stat->dflush,
553 554 555 556 557 558 559 560 561 562 563
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
564
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
565
				 size_t count, loff_t *data)
566 567 568 569
{
	long newmode;
	char optstr[64];

570
	if (count == 0 || count > sizeof(optstr))
571
		return -EINVAL;
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
599
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
600
		printk(KERN_DEBUG
601
		"dflush_us:  cycles spent in handling flush requests\n");
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
617 618 619 620
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
621 622
};

623
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
624 625 626 627 628
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
629 630 631 632 633
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
634 635
};

636
static int __init uv_ptc_init(void)
637
{
638
	struct proc_dir_entry *proc_uv_ptc;
639 640 641 642 643 644 645 646 647 648 649 650 651 652

	if (!is_uv_system())
		return 0;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

653 654 655 656
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
657
{
658 659
	int i;
	struct bau_msg_status *msp;
660
	struct bau_control *bau_tabp;
661

662
	bau_tabp =
663
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
664
	BUG_ON(!bau_tabp);
665

666
	bau_tabp->msg_statuses =
667
	    kmalloc_node(sizeof(struct bau_msg_status) *
668 669
			 DEST_Q_SIZE, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->msg_statuses);
670

671
	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
672 673
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
674

675
	uv_bau_table_bases[blade] = bau_tabp;
676

677
	return bau_tabp;
678 679
}

680 681 682
/*
 * finish the initialization of the per-blade control structures
 */
683
static void __init
684
uv_table_bases_finish(int blade,
685 686
		      struct bau_control *bau_tablesp,
		      struct bau_desc *adp)
687 688
{
	struct bau_control *bcp;
689
	int cpu;
690

691 692 693
	for_each_present_cpu(cpu) {
		if (blade != uv_cpu_to_blade_id(cpu))
			continue;
694

695
		bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
696 697 698 699 700
		bcp->bau_msg_head	= bau_tablesp->va_queue_first;
		bcp->va_queue_first	= bau_tablesp->va_queue_first;
		bcp->va_queue_last	= bau_tablesp->va_queue_last;
		bcp->msg_statuses	= bau_tablesp->msg_statuses;
		bcp->descriptor_base	= adp;
701 702
	}
}
703 704

/*
705
 * initialize the sending side's sending buffers
706
 */
707
static struct bau_desc * __init
708
uv_activation_descriptor_init(int node, int pnode)
709 710 711 712
{
	int i;
	unsigned long pa;
	unsigned long m;
713
	unsigned long n;
714
	unsigned long mmr_image;
715 716
	struct bau_desc *adp;
	struct bau_desc *ad2;
717

718 719 720 721 722 723
	/*
	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
	 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade
	 */
	adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*
		UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
724
	BUG_ON(!adp);
725

726
	pa = uv_gpa(adp); /* need the real nasid*/
727 728
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
729

730
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
731
	if (mmr_image) {
732 733 734
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
735 736
	}

737 738 739 740 741 742 743
	/*
	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
	 * cpu even though we only use the first one; one descriptor can
	 * describe a broadcast to 256 nodes.
	 */
	for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
		i++, ad2++) {
744
		memset(ad2, 0, sizeof(struct bau_desc));
745
		ad2->header.sw_ack_flag = 1;
746 747 748 749 750 751
		/*
		 * base_dest_nodeid is the first node in the partition, so
		 * the bit map will indicate partition-relative node numbers.
		 * note that base_dest_nodeid is actually a nasid.
		 */
		ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
752 753 754 755 756 757 758 759 760 761 762 763 764
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
765 766
static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
767
{
768
	struct bau_payload_queue_entry *pqp;
769 770
	unsigned long pa;
	int pn;
771
	char *cp;
772

773 774 775 776
	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
		GFP_KERNEL, node);
	BUG_ON(!pqp);
777

778 779 780
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
781 782 783 784 785
	/*
	 * need the pnode of where the memory was really allocated
	 */
	pa = uv_gpa(pqp);
	pn = pa >> uv_nshift;
786 787
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
788
			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
789 790 791
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
792
	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
793 794 795
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
796
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
797

798 799
	return pqp;
}
800

801 802 803
/*
 * Initialization of each UV blade's structures
 */
804
static int __init uv_init_blade(int blade)
805
{
806
	int node;
807 808 809
	int pnode;
	unsigned long pa;
	unsigned long apicid;
810
	struct bau_desc *adp;
811 812
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
813

814
	node = blade_to_first_node(blade);
815 816 817 818
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
819
	uv_table_bases_finish(blade, bau_tablesp, adp);
820 821 822 823
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
824
	apicid = blade_to_first_apicid(blade);
825 826 827 828
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
829
	}
830 831 832 833 834 835 836 837 838 839
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int nblades;
840
	int cur_cpu;
841 842 843

	if (!is_uv_system())
		return 0;
844

845 846 847 848
	for_each_possible_cpu(cur_cpu)
		alloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
				       GFP_KERNEL, cpu_to_node(cur_cpu));

849
	uv_bau_retry_limit = 1;
850
	uv_nshift = uv_hub_info->n_val;
851
	uv_mmask = (1UL << uv_hub_info->n_val) - 1;
852 853
	nblades = uv_num_possible_blades();

854 855
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
856
	BUG_ON(!uv_bau_table_bases);
857

858 859 860 861 862
	uv_partition_base_pnode = 0x7fffffff;
	for (blade = 0; blade < nblades; blade++)
		if (uv_blade_nr_possible_cpus(blade) &&
			(uv_blade_to_pnode(blade) < uv_partition_base_pnode))
			uv_partition_base_pnode = uv_blade_to_pnode(blade);
863 864 865 866
	for (blade = 0; blade < nblades; blade++)
		if (uv_blade_nr_possible_cpus(blade))
			uv_init_blade(blade);

867
	alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
868
	uv_enable_timeouts();
869

870 871 872
	return 0;
}
__initcall(uv_bau_init);
873
__initcall(uv_ptc_init);